

Copyright © 1975, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

FINDING OPTIMUM BRANCHINGS

by

R, Endre Tarjan

Memorandum No. ERL-M506

March 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

FINDING OPTIMUM BRANCHINGS

R. Endre Tarjan

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory
University of California at Berkeley

March 1975

Abstract

Edmonds has devised an efficient algorithm to find an optimum

branching in a directed graph. We give an implementation of this

algorithm which runs in 0(e log n) time if the problem graph has n

vertices and e edges. A modification for dense graphs gives a

2
running time of 0(n). We also show that the unmodified algorithm

2
runs in O(n(log n): +e) time on an average graph, assuming a

reasonable probability distribution.

Keywords: graph algorithm, equivalence algorithm, disjoint branching,
minimum spanning tree, priority queue, average time analysis

t
Research sponsored by National Science Foundation Grant GJ-35604X1 and
by a Miller Research Fellowship.

1. Introduction

A directed graph G = (V,E) consists of a set of vertices V of

size |V| = n and a set of edges E of size |e| = e. Each edge is

an ordered pair (v,w) of distinct vertices v, w, called the

endpoints of the edge. A semipath joining x. and x, in G is a

sequence of vertices x-,x2,...,x, such that (xi»xi+i^ e E or

(x. .,,x) e E for each i, 1 <_ i< k. A set of vertices WC v is

weakly connected if there is a semipath of vertices in W joining

any pair of vertices in W. A maximal weakly connected set of vertices

is a weakly connected component of G.

A path from x- to x, in G is a sequence of edges

(X;L,x2) (x2,x3)•••(x^fXfc)• The Path is simple if xi»•••̂ -l are

distinct. The path is a cycle if x. « x^. A set of vertices SCV

is strongly connected if there is a path whose edges have endpoints

in S from any vertex in S to any other vertex in S. A maximal

strongly connected set is a strongly connected component of G.

A branching B of G is a set of edges such that

(i) if (x1,y1), (x2,y2) are distinct edges of B then y;L ^ y2;

(ii) B does not contain a cycle.

Given a real value c(v,w) defined for each edge of G, we desire a

branching B such that I c(v,w) is maximum. Such a set B is
(v,w)eB.

called an optimum branching.

Edmonds [2] has given an efficient algorithm for finding an

optimum branching in a graph G. Karp [5] has provided a combinatorial

proof that the algorithm is correct (Edmonds' original proof is based

on linear programming theory). This paper gives an efficient implemen

tation of the algorithm. If G has n vertices and e edges the

algorithm runs in 0(e log n) time. A modification for dense graphs

2
gives an 0(n) running time. Also, assuming a reasonable probability

2
measure, the algorithm runs in 0(n(log n) + e) time on the average.

These time bounds assume e >^ kn for some constant k. (This is not a

serious restriction; any weakly connected graph has e > n-1.)

2. Edmonds1 Algorithm for Optimum Branchings

Let G = (V,E) be a weakly connected directed graph, having edge

values c(v,w). Edmonds1 algorithm finds an optimum branching in G.

The algorithm constructs a set of edges H defining a subgraph

G(H) = (V,H). At all times during the construction, G(H) is such

that for each strongly connected component S, there is at most one

edge (v,w) e H such that w e S, v e V-S. If S is such that no

edge (v,w) e H such that w e S, v e V-S we call S a root

component of G(H).

Initially H = 0; thus initially each vertex in V defines both

a weakly connected and a strongly connected component of G(H). Here

is Edmonds1 algorithm for constructing the set H.

Algorithm BRANCH:

First Step;

Fl: Choose any vertex v with an edge (x,v) of value c(x,v) > 0.

F2: Select the edge (u,v) of largest value.

F3: Add (u,v) to H.

General Step:

Gl: Choose any root component S of G(H) having an unexamined edge

(x,v) with v e S and c(x,v) > 0.

G2: Find the largest unexamined edge (u,v) such that v e S.

G3: If u e S, discard the edge and stop. Otherwise go to G4.

G4: u £ S. Let W be the weakly connected component of G(H)

containing v. If u | W add (u,v) to H and stop. Otherwise

go to G5.

G5: u £ S, u eW. Find the sequence S-,(x1,y-),S2, (x2,y2) ,... ,Sfc, (x^Y^)
such that each S is a strongly connected component of G(H),

(xi,yi) e H, y±e S±, and x± e S±+1 for all i, Sfc = S,

**k,yk* = (u,v)» and \ e sr
G6:.Find the edge (x. ,y.) with minimum value among the (x.,y.).

G7: For each unexamined edge (x,y) with y e S , modify the value

of (x,y) as follows:

c(x,y) := c(x,y) - c(x±,y1) + c^xj»vj)
H. (This combines S.,...,S, into a s

strongly connected component which is a root component of G(H).)

G8: Add (u,v) to H. (This combines S.,...,S, into a single

Repeat the general step until there is no root component S of G(H)

having an unexamined edge (u,v) with v £ S and c(u,v) > 0.

Suppose this algorithm is applied to a graph G. The following

results are implicit in the work of Edmonds and Karp [2,5]. Let

G(H) = (V,H).

Lemma 1: Each strongly connected component S of G(H) has at

most one edge (v,w) e H with v e S, u e V-S. Each weakly connected

component W of G(H) contains exactly one root component.

Lemma_2: Let S be any root component of G(H), let W be

the weakly connected component containing S, and let v e S. Then

for any w e W there is a unique simple path in G(H) from v to w.

These lemmas follow easily by induction on the number of edges

added to H. When the algorithm is completed, H contains an optimum

branching, which we can extract with the help of Lemma 2. All we need

to do is determine a unique vertex v in the root component of each

weakly connected component of G(H); these vertices determine a branch

ing consisting of the simple paths given by Lemma 2. If we determine

these vertices using the following algorithm, the resultant branching

is optimum [2,5].

Algorithm ROOT:

Rl: Find a root component R in G(H) containing more than one vertex.

R2: Find the sequence S^(x^y^••«Sk>(x^Y^ determined in BRANCH,
step G5 such that edge (x. fy.) was added to H to form R.

R3: Find the edge (x ,y.) of minimum value among the (x^y^.
R4: Delete (x ,y) from H (This step makes S a root component).

3 3 «*

Repeat steps R1-R4 until every root component consists of a single vertex.

If BRANCH keeps track of each minimum edge (x.,y.) found in step G6

and of each strongly connected component formed in step G8, then ROOT

is very easy to implement.

3. Efficient Implementation

We need several bookkeeping mechanisms to implement BRANCH effi

ciently. We must keep track of (a) the weakly connected components of

G(H), (b) the strongly connected components of G(H), and (c) the

unexamined edges entering each strongly connected component. For (a)

and (b) we use a disjoint set union algorithm described in [4,10].

Given a collection of disjoint sets, the set union algorithm implements

two operations:

(i) FIND(x) returns the name of the set containing element x;

(ii) UNION(A, B) adds the elements of set A to set B, destroy

ing set B.

The time required for 0(e) FIND's and 0(n) UNION'S is 0(n log*n+ e)

[10], where log*n = min {i| log log*•-log n £ 1}. We use one collection
v v '

i times

of sets, manipulated by WFIND and WUNION, to represent the weakly

connected components, and another collection of sets, manipulated by

SFIND and SUNION, to represent the strongly connected components.

To keep track of the edges entering each strongly connected

component, we use a priority queue mechanism described in [6,11].

Given a collection of elements, each with a value, and a collection of

disjoint sets (called queues) of elements, the mechanism implements

four operations:

(iii) QUNI0N(C,D) adds the elements in queue D to queue C.

Time required: 0(log|c|+log|D|)

(iv) MAX(C) returns the largest element in queue C, deleting

this element from the queue. (If C is empty, MAX(C) returns

a dummy element with value -°°.)

Time required: 0(log|c|)

(v) INIT(C,L) initializes a queue C to contain all elements

in the list L.

Time required: 0(|l|)

(vi) ADD(a,C) adds a constant a to the value of all elements

in queue C.

Time required: 0(1)

Here is an implementation of the optimum branching algorithm,

expressed in Algol-like notation. In the program, the set roots gives

the root components of G(H) which may have entering edges of positive

value. The set rset gives the root components of G(H) with no

entering edges of positive value. For each i, enter(i) gives the

unique edge in H entering strongly connected component i. (If

there is no such entering edge, enter(i) = (0,0).)

The array min(i) gives, for each i, the root vertex which

algorithm ROOT will select if applied to root component i. The

variables val and vertex are used to select and record the minimum

edge found in step G6. The algorithm assumes that the graph G = (V,E)

has vertex set V = {1,2,...,n}, and that, for each j, I(j) = {(i,j)eE>

is an incidence list for vertex j.

algorithm BRANCH;

begin

roots := 0;

for i := 1 until n do

begin

INIT(i,I(i));

initialize an S-set named i containing i as its only element;

initialize a W-set named i containing i as its only element;

enter(i) := (0,0);

roots := roots U{i};

min(i) := i;

end;

H := 0;

rset := 0;

while roots =/ 0 do

begin

delete some entry k from roots;

(i,j) := MAX(k);

if v(i,j) < 0 then rset := rsetU{k}

else if SFIND(i) 4 k then

begin

H := Hu{(i,j)h

if WFIND(i) $ WFIND(j) then

begin

WUNION(WFIND(i) ,WFIND(j));

enter(k) := (i,j);

end

else

begin

val := °°;

(x,y) := (i,j);

while (x,y) i (0,0) do

begin

if c(x,y) < val then

begin

val := c(x,y);

vertex := FIND(y);

end;

10

(x,y) := enter(SFIND(x));

end;

ADD(yal-c(i,j),k);

min(k) := min(vertex);

(x,y) := enter(SFIND(i));

while (x,y) ^ (0,0) do

begin

ADD(val-c(x,y),SFIND(y));

QUNION(k,SFIND(y));

SUNION(k,SFIND(y));

end;

roots := rootsU{k};

end end end end BRANCH;

11

After BRANCH is executed, the set of vertices R = {min(i)| ierset}

defines an optimum branching, which may be found in 0(n+e) time by

using a search [9] to find the set of simple paths from the vertices

in R to all other vertices.

The operations in algorithm BRANCH are of three types:

(a) priority queue operations;

(b) disjoint set operations;

(c) other operations.

The priority queue operations required are: 0(n) INIT operations,

one for each vertex; 0(e) MAX operations, and 0(n) QUNION operations.

Thus the total time for the priority queue operations is 0(e log n).

The disjoint set operations required are: 0(e) WFIND's, 0(e) SFIND's,

0(n) WUNION's, and 0(n) SUNION's (the set H contains at most 2n-2

edges). Thus the total time for the set operations is 0(n log*n+ e).

The total time for other operations is clearly 0(n+e). Thus the total

time required to find an optimum branching is 0(e log n) (assuming

e >^ kn for some constant k). The space required is 0(e).

12

4. A Modification for Dense Graphs

The time bound given in Section 2 for the optimum branching algorithm

2 2
is 0(n log n) if the graph G is dense; i.e. e is fi(n). However,

by changing the priority queue representation, we can get the algorithm

2
to run in 0(n) time. This modification is analogous to that used in

2
a well-known 0(n) minimum spanning tree algorithm [1,7].

We use a different mechanism to represent the priority queues.

For each strongly connected component S, we have a list of edges

(i,j), at most one for each i, such that i | S, j e S, and for

all edges (i,k) such that k e S, c(i,k) _> c(i,j). This list is

ordered on i, and takes the place of the priority queue for component

5. Associated with each edge (i,j) in the list is its current value

c(i,j).

Since such a list has length at most n, a MAX operation requires

0(n) time. Furthermore, since every edge (i,j) on such a list has

2
i £ S, algorithm BRANCH executes only 0(n) MAX operations, and 0(n)

time total is required for the MAX operations.

A QUNION(C,D) operation requires 0(n) time plus time for 0(n)

2
SFIND's. Thus the total time for the QUNION operations is 0(n).

(0(n2) SFIND's plus 0(n) SUNION's require 0(n2) time [10].) An

INIT(|l|) operation requires 0(n) time since |l| <_ n (the edges

(i,j) e L may be sorted on the value of i in 0(|l| +n) time by using

a radix sort [6]). Thus the total time for the INIT operations is

2 2
0(n), and the running time of the modified version of BRANCH is 0(n).

The space required is still 0(e).

13

5. Average Time Analysis

In this section we show that the average running time of the

2
unmodified version of BRANCH is 0(n(log n) +e) assuming a reasonable

probability measure. The analysis is analogous to that used in [8] to

show the existence of an all-pairs shortest path algorithm with an

2
average running time of 0((n log n)).

Let G be selected according to some probability distribution

from among the () labelled graphs having vertex set {l,2,..,,n}

and e edges. Assume that, for all j, the probability of the

existence of an edge (i,j) in G is the same for each i. For each j,

1 £ j <. n, let p be a real-valued probability distribution, and

let the values of the edges (i,j) in G be independent random

variables with probability distribution p,.

With this definition of a random graph, the probability that there

exists an edge (i,j) e E and that (i,j) has minimum value among

edges in the set {(k,j)| (k,j)eE) is the same for each i. Furthermore,

at any time during the execution of BRANCH, the probability that there

exists an edge (i,j) £ E and that (i,j) has minimum value among

unexamined edges in the set {(k,j)| (k,j) eE> is the same for each i

such that (i,j) has not yet been returned by a call on MAX. This

follows from the fact that the only information known about (i,j) is

that if (i,j) is an edge in G then its value must be greater than

that of all edges returned by previous MAX calls on queues corresponding

to root components containing vertex j; and this information is inde

pendent of i.

We now derive an upper bound on the average number of MAX calls

used by BRANCH and hence on the average running time of BRANCH. Suppose

14

MAX(k) is executed for some root component k containing

m vertices. Then the probability of MAX(k) returning an edge (i,j)

with i outside component k is at least -=m-. Thus an upper bound

on M, , the average number of MAX(k) operations before a new edge is

added to H, is

fc — n ,^_ n n-m

The maximum number of edges which can be added to H after some root

component reaches size m is 2(n-m). It follows that an upper bound

on M, the average total number of executions of MAX, is

*-̂ k <1, £ "0(n log n>

2
and the average time required by all the MAX operations is 0(n(log n))

Combining this with the worst case time bounds on the other parts of

2
the algorithm gives an 0(n(log n) + e) bound on the average running

time of the algorithm.

We also have

var(V<2^<^ J!*$"<-*?
i=l (n-m)

and

n-1 ,2 9
var(M) < I -^-j =0(nZ) .

m58! (n-m)

Thus the standard deviation of M is 0(n), and the probability

15

that the number of executions M of MAX is greater than M+kn is

2
0(l/k). Thus the probability that the running time of BRANCH is not

0(n(log n)2+e) is 0(—^—j).
(log n)

16

6. Remarks

We have presented an implementation of Edmonds* optimum branching

algorithm which has a worst-case running time of 0(e log n), an

2
average running time of 0(n(log n) +e), and can be modified to run

2
in 0(n) time, which is an improvement if the graph is dense. One

naturally wonders if these results are best possible. Recently discovered

algorithms for finding minimum spanning trees in undirected graphs achieve

a time bound of 0(e log log n) [11,12]; they can be used to find

minimum spanning trees in 0(n log n log log n+e) time on the average,

using the result that a random graph with more than _-•— edges is

probably connected [3]. These results suggest the following research

questions:

Can optimum branchings be found in o(e log n). time?

If not, how can one prove that any optimum branching algorithm

requires ft(e log n) time in the worst case?

17

References

[1] E.W. Dijkstra, "A note on two problems in connection with graphs,"
Numerische Mathematik 1 (1959), 269-271.

[2] J. Edmonds, "Optimum branchings," Journal of Research of the
Natknal Bureau of Standards 71B (1967), 233-240.

[3] P. Erdos and A. Renyi, "On the evolution of random graphs," Pub, of
the Math. Inst, of the Hung. Acad, of Sciences 5 (1960), 17-60.

[4] J. Hopcroft and J.D. Ullman, "Set-oerging algorithms," SIAM J. Comput.
2 (1973), 294-303.

[5] R.M. Karp, "A simple derivation of Edmonds1 algorithm for optimum
branchings," Networks 1 (1971), 265-272.

[6] D. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching, Addison-Wesley, Reading, Mass. (1973).

[7] R.C. Prim, "Shortest connection networks and some generalizations,"
Bell System Tech. J. (1957), 1389-1401.

[8] P. Spira, "A new algorithm for finding all shortest paths in a
graph of positive arcs in average time 0(n2log2n)," SIAM J. Comput.
2 (1973), 28-32.

[9] R, Tarjan, "Depth-first search and linear graph algorithms,"
SIAM J. Comput. 1 (1972), 146-160.

[10] R. Tarjan, "Efficiency of a good but not linear set union algorithm,"
J. ACM, to appear.

[11] R. Tarjan, "Finding minimum spanning trees," SIAM J. Comput.,
submitted.

[12] A. Yao, "An 0(|E|log log|v|) algorithm for finding minimum spanning
trees," Info. Proc. Letters, to appear.

18

	Copyright notice 1975
	ERL-506

