

Copyright © 1975, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

MULTI-DIMENSIONAL DIRECTORY FOR RETRIEVAL ON SECONDARY KEYS

by

Jenn-Hann Liou

Memorandum No, ERL-M503

26 February 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

MULTI-DIMENSIONAL DIRECTORY FOR RETRIEVAL ON SECONDARY KEYS

by

Jenn-Hann Liou

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

ABSTRACT

This paper describes a new technique, called multi-dimensional

directory (MDD) method, for record retrieval on secondary keys. The

shortcomings of multiple key hashing (MKH) method [6,7] are discussed.

Then the MDD method is introduced, whose retrieval performance is

expected to be at least as good as the MKH method for static files.

Following that, the techniques used in B-tree, which is a special data

structure for one-dimensional directory, are applied to the maintenance

of an MDD. This makes MDD particularly suitable for dynamic files

Research sponsored by the Naval Electronics Systems Command, Contract
N00039-75-C-0034.

A file is dynamic if it is subject to deletion and insertion of records,
and its size is subject to growth and shrinkage; otherwise it is static.

1. INTRODUCTION

Automated information systems are requiring more efficient strategies

for retrieval on secondary keys. The relationships between objects

such as hierarchy and association, which have traditionally been repre

sented by pointers in the hierarchical and network models, are now

indicated by secondary keys in the relational model [1,2]. Query

languages [3,4] have been proposed to provide the user the freedom of

retrieving records on any combination of any keys. Thus efficiency of

.retrieval on secondary keys has become one of the most important issues

in the design of a modern information system.

Quite a few schemes have been introduced to facilitate the

retrieval on secondary keys. Among them [5], file inversion, index

combination [8], and multiple key hashing [6,7] have drawn the most

attention.

Files are almost always organized on their primary keys. They are

sorted or hashed on their primary keys. When retrieval on secondary keys

is necessary, inverted files or combined indices are created to expedite

it. But there are several serious drawbacks in them. (1) They need

extra storage spaces that are comparable to the main file. (2) All

inverted files and combined indices have to be updated whenever a record

is deleted from or inserted into the file. (3) They do not minimize page

access: The secondary key has the property that when a query specifies a

condition on this key, there are many records that satisfy this condition.2

2
If the key has values from a discrete domain> each value usually occurs

many times. If the key has values from a continuous domain, then only
range quierles are meaningful. In either case, a condition on this key
will hit many records.

-2-

These target records distribute randomly over the whole file and the

page accesses is about as many as the number of the target records.

Rothnie has calculated that, if a file has 64 pages and if 20 target

records are randomly distributed over the 64 pages, then the expected

number of page accesses is 17.3.

If the retrieval on secondary keys is a nontrivial part of the

file activity, then why not structure the file on the secondary keys

instead of the primary key so that the target records are not randomly dis

tributed with respect to secondary keys? An immediate idea that arises is to

somehow sort the file on the secondary keys and create a directory for it.

A simple way to do it is to concatenate the secondary keys and treat the con

catenation as a single key. An example is shown in Fig. 1. The keys A„, A~

and A. are concatenated. The file is sorted on this concatenation and a

directory is created to facilitate the searches. It is obvious that this

scheme is only helpful for queries conditioned on the first key (A„) and

is useless for queries conditioned on other keys (A_ or A.) alone.

Directory

A2 A3 A4 page #

Figure 1

File

1

1

1

1

1
•

2

a

a

a

c

c

m

1.5

2.9

4.7

0.9

2.8

1.4

2

2

5

q

y

c

3.8

1.3
•

0^6

•

•
•

In this paper we distinguish a directory from an index by insisting that
'directory* is used only when the file is structured on the key in the
directory. Thus ISAM is a directory, while an inverted file is an index.

-3-

Another way of structuring the file is to hash every secondary key

independently (multiple key hashing) and store the records that have the

same set of hashed values into the same page. The secondary keys are

treated symmetrically and the overall page access is expected to be minimized,

This idea has been discussed by Rothnie [6] and Rivest [7] and will be

explained in more detail in the next season.

The multi-dimensional directory is a more sophisticated way to

structure a file and construct a directory for it. It has the merits

of MKH (symmetrical treatment of keys and overall minimization of page

access) and it gets rid of the shortcomings of MKH. Furthermore, the

application of B-tree techniques to its maintenance makes it even more

attractive when the file is dynamic.

The following table shows the status of MDD in relation to other

access methods:

hashing indexing

retrieval on single key BDAM ISAM, B-TREE

retrieval on multiple keys MKH MDD

2. MKH METHOD

Assume a file has k secondary keys a..,a-,...,a and the corre

sponding domains are D-,D2>... ,D. respectively.

(1) Select a hash function h. for each domain D. such that
l l

Ik : D -*• {1,2,... ,m.}; where m xm x...xm, = N. the total number

of pages needed for the file.

(2) Associate with each tuple <z ,z_,...,z> a page in the secondary

memory, where z. is an integer and 1 _< z. <^ m..

(3) If the keys a-,a_,...,a, of record r have values v.,v«,...,v then

store r in the page associated with <h-(v), h?(v„),...,h, (v,)>,

-4-

where v± G d^ v2 GD^... ,vfc G Dfc.

In this scheme, the retrieval of records with a = v. requires

N/nu page accesses, and retrieval of records with keys a = v A a = v„ A

A... Aafc= vfc requires 1 page access. The algorithms for retrieval,

insertion and deletion are simple. The keys are created symmetrically,

and the overall page access is considerably reduced.

However, MKH has its shortcomings. We will discuss them by first

classifying the hash functions into two types: type I hash functions do

not preserve ordering, while type II hash functions do. That is,

Vl - v2 ^ hl(vl) - hi(v2) and vl - v2 ** h2*vl* - h2(v2)» where \ belongs
to type I and h„ belongs to type II.

If we use type I hash functions in MKH then

(1) To answer a range query, a search through the whole file is

necessary.

(2) If the domain has discrete values, some values may occur more

frequently than others. Then even after very sophisticated hashing the

record distribution can still be far from uniform. This may result in

high collision and poor performance.

The type II hash function h for domain D is obtained by dividing

domain D into m intervals I-, I_,...,I and letting h(v) = j if v G I..

Figure 2 shows a two dimensional example. Domain A is partitioned into

4 intervals and domain B into 5 intervals. The two hash functions

partition the domain space into 20 cubes. A page is assigned to each

cube. A record can be represented by a point in the domain space and a

4
The values of m^n^,..., and m^ are determined by the relative frequencies
of different queries. If query with condition a^ = (some constant) occurs
more frequently than others, we should make n^ large so that the page access
for this query (^) is small. For overall optimality see [6] or section 5
of this paper. 1

-5-

file can be represented by a set of points in the domain space.5

Obviously, a range query can now be answered without searching through

the whole file, and a cube can be made smaller where the record density

is high. But this type of hash functions has its own drawbacks.

(1) If there is some relationship between two domains, the storage

utility can be very low. For example, in case a domain pair (D1,D9) is

(AGE, SALARY) or (WEIGHT, HEIGHT) then values of key 1 and key 2 tend to

be proportional and record distribution will show a high density around

the diagonal line (Fig. 3). The pages assigned to cubes off the diagonal

B i

A2 A3 \ A

HEIGHT(SALARY)

/

/

, 1

*

/

'l,
t

/ i 'f 1 II

* f »

t

i

t

% »

*

1 * f * r
•

i t
1

>

'•'''•

"t" / 1

•

Figure 2

Figure 3

WEIGHT(AGE)

A point in the domain space may correspond to more than one record
occurrence in the file.

-6-

line have very few records in them. When there are more domains with

some relationships among them, the storage utility can be extremely low.

(2) If the partitions are made blindly, the performance can be very bad.

The common practice is that a hash function of this type is used only

when the record distribution is known before designing the hash function.

If the record distribution changes (due to deletions and insertions) the

performance can degrade very fast and reorganization will be necessary.

3. ONE-LEVEL MULTI-DIMENSIONAL DIRECTORY

In..the following, a two-dimensional example is used. The general

ization of the algorithms to any number of dimensions is straightforward.

Let us assume we want to construct a two-dimensional directory for a file

on two attributes whose domains are A and B respectively. In MDD the

domain space is partitioned into small cubes (Fig. 4a) in a different way

than is done by the type II hash functions in MKH, and the boundaries of

the cubes are free to shift as we will see in Section 6. The cubes are

obtained from the following procedure. Let us denote the total number of

records in the file by pN, where p is the number of records in a page and

N is the total number of pages in the file.

(1) Divide the domain A into m. intervals An,A«,...,A such that each
1 1' 2* m_

subspace A.x B(i=l,2,... ,m..) contains approximately pN/m.. records (Fig. 4b)

Let us call each Ax b subspace a lst-degree cube and denote it by C.

(2) For each lst-degree cube A.x B divide domain B into m„ intervals

B-, B_,...,B (Fig. 4c) such that each subspace A,x B. contains
2 **

approximately pN/(m x m^) records. Let us call each A.x B. subspace a

2nd-degree cube and denote it by C... Also let us call the whole domain

space a Oth-degree cube and denote it by C. C has C, i=l,2,..,, m- as

-7-

B
i i

m- = 4

9

8

7

6

5

4

_.

3

2

1

ABCDEFGHIJKLM

Figure 4a

2nd-degree cubes

•s
9

8 C23

[7

B2 6B2 6 C22
15

'4

3

2 1

Bi 2
C21

1

D E F G

Figure 4c

m2 = 3

lst-degree cubes

cl C2 C3 C4

ABCDEFGHIJKLM

A3 A4

Figure 4b

MDD

A

h BL BH Page // # of records

C 1 2 (1.1)
A C 3 6 (1.2)
A c 7 9 (1.3)
D G 1 4 (2.1)
D G 5 7 (2.2)
D G 8 9 (2.3)
H I 1 3 (3.1)
H I 4 6 (3.2)
H I 7 9 (3.3)
J M 1 2 (4.1)
J M 3 7 (4.2)
J M 8 9 (4.3)

Figure 4d

-8-

its subcubes and C. has C , j = l,2,...,m„ as its subcubes. If y is a

subcube of x then x is a supercube of y.

(3) Assign a page of secondary memory to each 2nd-degree cube, and

construct a directory (Fig. 4d). There is an entry in the directory for

each 2nd-degree cube. The entry contains the high and low keys of every

dimension of the cube and a pointer to the page assigned to the cube.

(4) All records occurring in a cube are stored in the page assigned to

the cube. The total number of records stored in the page is indicated

in the last column of the directory.

To answer a user query, a system query is issued to search the MDD

to find the pages that store the target records. The following are a few

examples expressed in language ALPHA [3]:

(i) user query : GET W x : x.B = 4

system query : GET Z y. page # : y . B_ < 4 A y . B„ > 4 (1)
L n

result : Z «- (1.2), (2.1), (3.2), (4.2)

(ii) user query : GET W x:x.A=FAx.B = 4

system query : GET Z y . page // : y . A^ < FAy . L > F A

y. B_ <4Ay. B > 4
L H

result : z "«- (2.1)

(iii) user query : GET W x : 4 < x . B^<5

system query : GET z Y : (y • B_ <_ 5 Ay . B >^ 4) V
L H

(y . BL < 5Ay • BR > 4)

result : Z «- (1.2), (2.1), (2.2), (3.2), (4.2)

If we want to construct a k-dimensional directory, it is only

necessary to generate the k-th-degree cubes. Figure 5 depicts a

3-dimensional example with m = 4, nu = 3, nu = 3. A page is assigned

-9-

Figure 5

to each 3rd-degree cube and there is an entry in the MDD for each 3rd-

degree cube, which contains the high and low keys of all dimensions of

the cube. Now N = n^ x m2 x m = 36. The number of page accesses for

GET x :x . A = a is N/m^; for GET x :x . A= aA x . B = b is

N/m^; and for GET x :x .A = aAx. B = bAx. C= C is N/m-m m .

It is approximately equivalent to the MKH method with h : A +{1,...,m.},

h^ : B ->{1,... ,m }, h„ : C -Kl,... ,m }. However, there is an asymmetry

in the fact that domain A is partitioned first, B next and C last. Which

domain is partitioned first does not affect the retrieval performance.

However, when records are deleted or inserted and a cube split or collapse

has to be done, it seems that dimensions should be ordered in decreasing

m value (see section 6). That is, the dimension with largest m value

should be partitioned first as we have done in last two examples. This

will minimize the number of pages involved in a split or collapse.

The way we partition the domain space in MDD (instead of partitioning

all dimensions at the same time, we partition them in sequence) not only

-10-

makes the performance unaffected by the record distribution in the

domain space (because all cubes of same degree contain the same number

of records), but also makes it convenient to modify the partition

(see section 6). Obviously the MDD scheme is as efficient as the MKH

scheme as far as retrieval is concerned. It is efficient for range query

and extra storage required is negligible when compared to the main file.

Although we have assumed the knowledge of record distribution in explaining

the MDD, we will see this is not necessary if we use B-tree techniques to

construct and maintain the MDD.

4. B-TREE TECHNIQUES

The basic techniques used in B-tree [9] can be summarized by the

following:

(1) At the insertion of an entry (a record in the case of a leaf page;

a key and a pointer in the case of any non-leaf page) a page may

become overloaded, then

(if) a brother on either side is not maximally loaded

(then) ovetflow an entry(s) to that brother

(else) get a free page, split the overloaded page in the middle,

move half of the entries to the new page, and add one

entry to the father page.

(2) At the deletion of an entry, a page may become underloaded, then

(if) a brother on either side is not minimally loaded

(then) underflow an entry(s) from that brother

(else) collapse the page with one brother and delete an entry

from the father page.

-11-

5. PRELIMINARIES

We can determine m. and nu so that the overall number of page

accesses is minimal by considering the relative frequencies of different

types of queries. The following is a list of each query type, its

relative frequency of occurrence and the page accesses it needs:

5
query

type

x . A =
al

x . a e I.2,,a3]

x . B = bl
x . b e [b2,,b3]

relative page accesses

frequency needed

pi m2

qi klm2

P2 ml

q2 Vl

P12 1

q12 k3

x.A=aAx.B = b

x.A€ [a2,a3] Ax .BG [b2,b3]

The constants p^ q^ p2> q2, p^, q^, l^, k2, k3 can be obtained

by a user estimate or system monitoring. Then the average number of

page access (npa) for any single query is

Efnpa] = Px m2 + ql km2 + P2 ml + q2 k2 ml + p12 + q12 k

- Pl m2 + P2 ml + P12'

where Pl = pl + ql kl>

P2 = P2 + q2 k2,

P12= P12 + q12 V

12 3

Also m^^ x m2 = N(t), the total number of pages in the file, which

5a
Only 1-(tuple) variable queries are considered because a complicated

query can always be decomposed into a sequence of 1-variable queries [10,11]

The queries are classified by the qualification part.

5c
The query of type x.A = a1Vx.B = b1 can be considered as two

separate queries x . A = a^ and x . B = b^.

-12-

is a function of time.

Minimizing E[npa], we get

ml=V^N(t) ' m2=V^N(t)
and — = — .

m2 P2

The ratio of m. to m is independent of the file size. In general

ml m2 "k
case, we have — = — =...=— . Therefore, we should keep the ratio

1 2 *k

of m : m2 : — : m, as close as possible to the ratio of P : P : ...

: P, in order to have optimal overall performance. In two-dimensional

ml Pl 5
case if —- = -— = — then when N increases, mn and m_ should increase as

nu r_ J 12

Che arrows in the following diagram indicate:

m1 1 ••> 2 > 3 3 •4 4 •> 5 •> 6 ...

m2l 1 l->2 2 + 3 3 3...

We will call this inter-dimensional constraint.

Let us define |c. . | = number of subcubes of cube c.

We have assumed |c| =m^ and \c±\ =m2 for all i=l,2,...,m . We will

now let m. = max|c.|, m' = min|c | and allow m_ - m' _< 1. This is
i1!1 ll

called intra-dimensional constraint. This constraint says that for any two

cubes of same degree their numbers of subcubes should not differ by more

than one.

In a k-dimensional case,

m A max|c | , m! A minlc. . I
1 J-l J 1l"',1j-l

i^ = l,2,...,m- i = 1,2, — ,m.

i. - = 1,2,...,m. . i. _ = 1,2,...,m. _
J-l J-l J-l J-l

-13-

and the intra-dimensional constraint is id. - m! < 1 for all j = 2 ... k.

When a file grows or shrinks, these constraints should be observed

so that the domain space is always optimally partitioned with respect to

overall page access.

6. APPLYING B-TREE TECHNIQUES TO MDD

In one-dimensional directory, only one key is associated with each

entry, and there is only one way to split the content of a page into two

equal parts. In the multi-dimensional case, each entry has as many keys

as there are dimensions. When a page becomes overloaded it is the last

dimension that is considered first (recall that we have ordered the

dimensions according to their m values). Again let us use the two-

dimensional example to illustrate the idea. When a 2nd-degree cube is

overloaded it can split into two 2nd-degree cubes or overflow some records

to other 2nd-degree cubes. All these activities should be within the

supercube of the overloaded cube. If neither split nor overflow is

possible then the supercube (a lst-degree cube) is considered. It can

split into two lst-degree cubes or overflow some records to other lst-

degree cubes. Under all circumstances the inter- and intra- dimensional

constraints should be observed.

For example, if P1/P2 = 5/3 and the domain space is currently

partitioned as in Fig. 6a. The inter-dimensional constraint is repeated

here and the current state indicated by an arrow:

mx 123344566..

m2 1112 2 «->3 3 3 4..

If c21 becomes overloaded, it can split (Fig. 6b). This means that

half of the records in the page assigned to c2_ are moved to a new page.

-14-

In the directory the entry for c21 is modified and an entry for the new

page is inserted. But if c~- becomes overloaded, it cannot split. Because

if it splits then m« (= max|c | = |c.J) becomes 4 and m remains 4. This

violates the inter-dimensional constraint. Also m_ - m' = 2 and the intra-

dimensional constraint is violated. Therefore, if c_- becomes overloaded,

records should be overflowed to c~_, which if in turn becomes overloaded

should overflow to c__ (Fig. 6c). The boundaries between c^ and c„„, and

c_9 and c_, are shifted downward because of the record migration. The

entries in the directory are correspondently modified. If both c _ and

c^_ are maximally loaded and again c^-, becomes overloaded then cube c_

(the supercube of c,.-) is considered. We can overflow c~ to c« (or c.)

and a subcube of c. may split (Fig. 6d). If later c. becomes overloaded,

it is free to split (no violation of either constraint) (Fig. 6e). The

algorithm for a K-dimensional case is shown in Fig. 7. Note that whenever

a cube is overloaded, the algorithm is used to try to solve the problem

within the supercube of the overloaded cube. If the problem cannot be

solved within the supercube, the algorithm is used again with the super-

cube as the overloaded cube. The algorithm for underload is shown in Fig. 8.

-15-

B "

13

12

11

22

'21

m^ = 4
m£ = 3
m^ = 2

'33

'32

'31

c._ overflows
B I 31 V

'43

'42

c splits

c>

41

Figure 6a

B-

c_ overflows

>

ml.
= 4

mo

m2
=

3

2 Figure 6c

B I

-16-

m1 = 4

mo = 3

m^ = 3

mx = 4
ni2 = 3
m$ = 2

c., splits

m^ = 5
m£ = 3
mj = 3

*»

Figure 6b

Figure 6d

V

Figure 6e

OVERLOADED(c. . • .)
11 ...i

s SPLITTABLE >
YKS

;ol it

'i-'.i

SPLITTABLE

c .
l ... i

1 j-l

" NO

m

Does an increment of nu by

1 violate either constraint ?

YES

return NO

OVERFLOW

YES

(3x)(c
v-1 in.. .i. -x not

1 J-l
maximally loaded) ?

NO

return YES return NO

" NO

<<OVERFLOWABLE ?>
,r YES

overflow c
i.. ... 1.

1 J

YES

NO
_Z- Ireturn YES

-17-

NO
OVERLOADED (c.)

Figure 7

UNDERLOADED (c.V..i)

YES
< UNDERFLOWABLE ?

underflow c.

UNDERFLOWABLE

>
NO

<COLLAPSIBLE ? >
YES

collapse c. .
i,.•.i.
1 J

YES

NO

(3x)(c. , v .
i-... 1. .x not
1 J-l

minimally loaded) ?
return YES

NO

return NO

COLLAPSIBLE

c. . > m ?
l- ...1. -' j
1 J-l

NO

Does a decrement of mj by 1
violates either constraint ?

YES

return NO

YES

Figure 8

-18-

NO

return YES

underloaded(c. . *

In these algorithms, an overload (underload) of a k-th degree cube

requires 2 torn, page accesses, and an overload of a (k-l)st degree cube

requires (2 to mfc_^) * m, page accesses, and so on. The overload of high

degree cubes has much higher frequency of occurrence than the overload

of lower degree cubes. The average page access for each insertion

(deletion) should still be low. Also we can see now if we make

ml — m2 — m3 — '** — mk' t*ien tne overl°ad of higher degree cubes (which

happens more frequently) requires less page accesses. This is why we

want to order the dimensions in decreasing m values.

7. MDD OF MORE LEVELS

When the file is large, the directory itself may occupy more than

one page, and we need a directory for the directory. A two level MDD is

shown in Fig. 9. Now there are two levels of cubes. The cubes in the

second level are separated by double lines. A 2nd-degree cube in the

second level is a Oth-degree cube in the first level. Let us denote the

cubes in the second level by c (lst-degree) and c . (2nd-degree), and

denote the cubes in the first level by c.., (lst-degree) and c. ,0(2nd-

degree).

A page (leaf page) is assigned to each c. for all i,j,k,£; the
1J l KX»

page stores all records that occur in this cube. A page (first-level MDD

page) is assigned to each cube c.. for all i,j; this page contains an

entry for each cube c--.i.o; tne entry contains the high and low keys of

every dimension in cube c.. .., anc* a pointer to the page assigned to

cube ci. ^. A page (second-level MDD page) is assigned to cube c, it

contains an entry for each cube c.., for all i,j; the entry contains the
ij

high and low keys of every dimension in cube c and a pointer to the

-19-

PQ

-20-

0)
U

&
•H

page assigned to cube c...
ij

When a user query GET w x : x.B = b1 is processed, a system query

like (1) in section 3 is generated, page c is searched and page addresses

of c_.., con, c.j0 are returned. Then the same query is issued to pages

c.-, c„„ and c~0 and the page addresses of all (leaf) pages that contain

the target records are returned.

When overload (underload) occurs at an insertion, split and over

flow (collapse and underflow) are tried in the first level. If this fails,

the second level is considered and split and overflow are tried in the

second level.

8. A VARIATION

The algorithms in section 6 have been purposely primitive in order

to make the basic ideas clear and the retrieval cost has been minimized

at the expense of insertion and deletion efficiency. When insertion and

deletion are frequent, it is advisable to modify the algorithms so that

the overall cost is minimal. In the appendix (section 11) we show that

suppressing split and collapse until the last moment is not a good idea

and a simple modification can appreciably improve the B-tree algorithms.

We will extend this idea to MDD.

Again let us use the two-dimensional example. The main modification

is to loosen the intra-dimensional constraint nu- ml <_ 1 and replace it

2 i i 4by -r- m0 £ |c.| <_ -T- m for all i = l,2,...,m.., where m. is determined by

the inter-dimensional constraint. In section 6 c. is maximally loaded
i

if |c.| = m? and c.. is maximally loaded for all j = l,2,...,m . Let us

now determine the fullness of c, solely by the number of its subcubes

disregarding the fullness of its subcubes. That is cube c. is overloaded

-21-

if |c±| >jm2; underloaded if |c±| <|i2; maximally loaded if
|c±| =jm2; and minimally loaded if |c±| =|m2. If we use the
principles in the appendix and the new constraint then the algorithms

read as follows:

OVERLOAD (c)

(if) a brother of c is not nearly maximally loaded

(then) overflow to that brother

(else) if \c±\ =- m2 then OVERLOADED'(c)

else split c and its most loaded adjacent brother into 3 cubes.

OVERLOADED'(c)

(if) a brother of c± is not nearly maximally loaded

(then) overflow to that brother

(else) if n^ <- m^+1 does not violate the inter-dimensional

constraint

then split c± and its most loaded adjacent brother into 3 cubes

and increment m. by 1

else split c± and its most loaded adjacent brother into 3 cubes

and increment m« by 1

UNDERLOADED (c)

(if) a brother is not nearly minimally loaded

(then) underflow from that brother

(else) if |c±| =- m2 then UNDERLOADED'(c)

else collapse c and its adjacent brothers into 2 cubes

UNDERLOADED'(c)

(if) a brother is not nearly minimally loaded

(then) underflow from that brother

-22-

(else) if m ««- m -1 does not violate the inter-dimensional

constraint

then collapse c. and its adjacent brothers into 2 cubes

and decrement m- by 1

else collapse c. and its adjacent brothers into 2 cubes

and decrement m0 by 1

In these algorithms, when a cube is overloaded (underloaded), the

overflow (underflow) involves only the two adjacent brothers, and it

does not propagate to non-adjacent brothers. The looser constraint

allows the overload and underload problems to be solved locally most of

the time; but on the other hand, it degrades the retrieval efficiency.

The tradeoff between retrieval cost and insertion-deletion cost is

obvious.

9. TREATMENT OF THE PRIMARY KEY

The primary key K of a file is by definition [12] a combination of

attributes (possibly a single attribute) of the file with properties p1

and p2.

p^. In each record of the file, K uniquely identifies that record.

P2. No attribute in K can be discarded without destroying

property p..

A primary key is simple if it consists of only one attribute and is

compound if it consists of two or more attributes.

When the MDD method is used to structure the file, we can consider

each attribute in the primary key as a secondary key and incorporate it

in the MDD. In case the primary key is compound, each attribute does

not identify a record and therefore possesses the property of a secondary

-23-

key mentioned in section 1 note 2. Incorporation of these attributes

as secondary keys in the MDD is natural and profitable. On the other

hand, if the primary key is simple, it should be excluded from the MDD.

We can create an inverted file for it and store the inverted file in a

B-tree, in which a record consists of a primary key and a pointer to the

record identified by the primary key in the main file. A transaction6

then needs 1 to 4 page accesses (depending on the size of the file;

because of the large fan-out of a B-tree, its height is unlikely to

exceed 4) for the search of the B-tree and 1 page access to the page that

contains the target record. This is only 1 more access than if the file

is structured by the primary key and stored in a B-tree. (The extra

access is due to the separation of the main file and the inverted file).

And obviously this is much more economical than to incorporate the

primary key in the MDD. On first thought since the file is not structured

by the primary key, the batch processing may be difficult. Actually a

technique similar to "batch random" [13] easily solves this problem. The

keys in the batch are sorted, then the B-tree of the inverted file is

searched (probably sequentially) and returns a set of primary key and

pointer pairs. The set of the primary key and pointer pairs are then

sorted on the pointers and finally they are sequentially processed.

10. SUMMARY

The new concept of a single directory for more than one key has

A transaction is the access of a single record (given its primary key)
at a request.

A batch is the access of a set of records (given their primary keys)
at a request.

-24-

been presented. The directory treats all keys symmetrically, and helps

the search of records on any combination of any number of these keys.

The retrieval efficiency is expected to be as good as the MKH method.

Also introduced are the basic ideas of the algorithms for the

construction and maintenance of the directory. Attempts have been made

to employ the B-tree techniques in these algorithms. The insertion and

deletion cost are believed to be lower than those of the file inversion

scheme (note that every insertion and deletion causes an update on

every inverted file, while most of the time nothing has to be done to

the MDD).

11. APPENDIX

If we follow the algorithm given in section 4, overflow, under

flow, split and collapse can be very frequent in some situations. When

adjacent pages are nearly maximally (minimally)loaded and entries keep

coming in, frequency of overflow (underflow) will become higher and

higher until a split (collapse) occurs. Also, because newly split pages

tend to collapse and a newly collapsed page tends to split, when

insertions and deletions are mixed, the frequencies of split and collapse

can be very high [9]. A simple modification that adopts early split and

early collapse easily gets around these undesirable situations.

Assume x, y, z are adjacent pages and each page can store 100

entries. Let |w| denote the number of entries stored in page w and let

x if |x| _> |z|

z if |x| < |z|

x if |x| < |z|

-f Ixl > Iz!

M=|

{x i

z li

-25-

Also let w' denote page w denote page w after an underflow or overflow.

(1) y becomes overload (|y| > 100)

(If) |y| + |n| _> 190

(then) split y and M into three pages, each containing

(|y| + |M|)/3 entries

(else) overflow entries from y to N so that

|y'| = |N'| = (|y| + |N|)/2

(2) y becomes underloaded (|y| < 50)

(If) |y| + |x| + |z| < 180

(then) collapse x, y, z into 2 pages, each containing

(|y| + |x| + |z|)/2 entries

(else) underflow entries from M to y so that

|y'| = |M'| = (|y| + |M|)/2

The thresholds 190, 50 and 180 are arbitrarily selected here.

Obviously, in this scheme, pages are more evenly loaded and frequency of

overflow, underflow, split and collapse are considerably reduced.

ACKNOWLEDGEMENT

The author is grateful to Professor L. A. Zadeh and the attendants

of his weekly seminar for their helpful discussions. Thanks are also

due to Mr. Rowland Johnson for his careful reading of the draft of this

paper.

-26-

REFERENCES

[1] Whitney, V. K. M., "Relational Data Management Implementation

Techniques," ACM SIGMOD, 1974.

[2] Date, C. J. and Codd, E. F., "The Relational and Network Approaches

Comparison of the Application Programming Interfaces," IBM Research

Laboratory, San Jose, California, 1974.

[3] Codd, E. F., "A Data Base Sublanguage Founded on the Relational

Calculus," IBM Research Laboratory, San Jose, California, 1971.

[4] Chamberlin, D. D. and Boyce, R. F., "SEQUEL: A Structural English

Query Language," ACM SIGMOD, 1974.

[5] Knuth, D. E. The Art of Programming, Vol. 3, Section 6.5, 1973.

[6] Rothnie, J. B. and Lozano, T., "Attribute Based File Organization

in a Page Memory Environment," CACM, Vol. 17, No. 2, Feb. 1974.

[7] Rivest, R. L., "Analysis of Associative Retrieval Algorithms,"

Ph.D. Thesis, Computer Science Dept., Stanford University, 1974.

[8] Lum, V. Y., "Multi-attribute Retrieval with Combined Indexes,"

CACM, Vol. 13, No. 11, Nov. 1970.

[9] Bayer, R. and McCreight, E., "Organization and Maintenance of

Large Ordered Indices," Boeing Scientific Research Laboratory,

July 1970.

[10] Stonebraker, M., et al., "Preliminary Design of INGRES," ERL-M435

Electronics Research Laboratory, University of California,

Berkeley, 1974.

[11] Rothnie, J. B., "An Approach to Implementing a Relational Data

Management System," ACM SIGMOD, 1974.

[12] Codd, E. F., "Further Normalization of the Data Base Relational

Model," IBM Research Laboratory, San Jose, California, 1971.

-27-

[13] Nijssen, G. M., "Indexed Sequential Versus Random," IAG Journal,

Vol. 4, March 1971.

-28-

	Copyright notice 1975
	ERL-503

