

Copyright © 1975, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

FINDING MINIMUM SPANNING TREES

by

R. Endre Tarjan

Memorandum No. ERL-M501

February 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

FINDING MINIMUM SPANNING TREES1*

R. Endre Tarjan

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory
University of California at Berkeley

February 1975

Abstract

This paper gives a method for finding a minimum spanning tree in an

undirected graph. If the problem graph has n vertices and e edges,

the algorithm runs in 0(e log log n) time. This time bound is the

same as that of a new algorithm by Yao, but Yao's method seems more

complicated to implement. A modification of the method improves the

l+€
running time to 0(e), if e is fl(n) for some positive constant

6. Another algorithm finds a minimum spanning tree of a planar graph

in 0(n) time. The paper also presents some results which suggest

that any method for finding a minimum spanning tree requires

ft(e log log n) comparisons in the worst case.

Keywords: graph algorithm, minimum spanning tree, optimum branching,
priority queue

t.
Research sponsored by National Science Foundation Grant GJ-35604X1 and
by a Miller Research Fellowship.

1. Introduction

Let G = (V,E) be a connected undirected graph with |v| = n ver

tices and |e| = e edges. Given a value c(v,w) for each edge

(v,w) 6 E, we wish to find a spanning tree T = (V,E'), E* C E, such

that I c(v,w) is minimum. Several efficient algorithms exist
(v,w)eEf

for solving this problem [2,4,8,10,11,15]. All of these algorithms are

based on the following lemma.

Lemma A. Let X C v. Let (v,w) 6 E be such that

c(v,w) = min{c(x,y)| (x,y) 6E, x6X and y6V-X}

Then some minimum spanning tree contains (v,w).

The "classical" algorithms are those by Kruskal [10] and Prim [4,11].

Kruskal's algorithm has a running time of 0(e log n), and Prim's

2
algorithm has a running time of 0(n). Recently, Yao [15] has developed

an 0(e log log n) algorithm. His algorithm requires a linear-time

median-finding method (e.g. [3]) as a subroutine.

This paper gives a new minimum spanning tree algorithm. The

algorithm has an 0(e log log n) running time. A modification improves the

1+6
running time to 0(e) if e is ft(n) for some positive constant 6. The

algorithm uses as subroutines methods for handling disjoint set unions

[6,13] and priority queues [9]. Since the algorithm does not require

a linear-time median-finding algorithm, it is simpler to implement than

Yao's method. The paper also presents some results which suggest that

any method to find minimum spanning trees must require &(e log log n)

comparisons in the worst case, and gives an algorithm for finding a

minimum spanning tree in a planar graph in 0(n) time.

2. An Algorithm for Minimum Spanning Trees

To find a minimum spanning tree in a graph G, we use the following

general method, which is based on Lemma A.

First Step: Pick some vertex. Choose the smallest edge

incident to the vertex. This is the first edge of the

minimum spanning tree.

General Step; The edges so far selected define a forest (set

of trees) which is a subgraph of G. Pick a tree in the

forest. Pick the smallest unexamined edge incident to a

vertex in the tree. If this edge connects two vertices

in the same tree, discard the edge. If the edge connects

two vertices in different trees, add the edge to the

minimum spanning tree (updating the forest). Repeat the

general step until all vertices are connected.

It is immediate from Lemma A that this general method correctly finds

a minimum spanning tree. The method requires certain bookkeeping

mechanisms. To keep track of the vertices in each tree of the forest,

we use a disjoint set union algorithm described in [6,13], Given a

collection of disjoint sets (in this case sets of the vertices in each

tree) the set union algorithm implements two operations:

(i) FIND(x) returns the name of the set containing element x;

(ii) UNION(A, B) adds the elements in set B to set A, destroy

ing set B.

The time required for 0(e) FIND's and 0(n) UNION'S is 0(n log*n + e)

[13], where log*n = min{i| log log* "log n < l}.
« v • —

i times

To keep track of the edges incident to each tree of the forest,

we use a mechanism based on a method of handling priority queues [9].

Given a collection of elements, each with a value, and a collection of

disjoint sets (called queues) of elements, the mechanism implements

three operations:

(iii) QUNION(C,D) adds the elements in queue D to queue C,

destroying queue D.

Time required: 0(1).

(iv) MIN(C,p) returns the smallest element in queue C satis

fying condition p, deleting this element and all smaller

elements from queue C.

Time required: 0((m+Wog(£j£+l)) plus time for m tests

of condition p, if m elements are deleted from queue C

during this MIN operation and I queues have been merged

into C before this MIN operation,

(v) INIT(C,L) initializes a queue C to contain all elements

in the list L.

Time required: 0(|l|)

Implementation of priority queues to satisfy these time bounds is

discussed in the appendix.

Our algorithm is the following special case of the general method:

In the first step, we pick any vertex and choose its minimum incident

edge. In the general step, we choose a tree with the smallest number

of vertices, select the smallest unexamined edge connecting a tree

vertex with a vertex outside the tree, and discard all incident edges

smaller than the selected edge.

We need a mechanism to select the tree with the smallest number

of vertices. The number of vertices in every tree is between 1 and

n, and the number of vertices in a tree never decreases. We use an

array tree of size n, where array element tree(i) is a list of

pointers to all trees with i vertices. We use a pointer which marches

along this array to find the tree with the smallest number of vertices.

An implementation of the algorithm, expressed in Algol-like notation,

appears below. The algorithm assumes that the graph G has vertices

V = {1,2,. ..,n} and that for each v, I(v) = {(v,w)| (v,w) 6E} is a

list of the edges incident to vertex v.

algorithm MINSPAN;

begin

Boolean procedure NEW(v);

NEW := (k^FIND(v));

for i := 1 until n do

begin

INIT(i,l(i));

tree(i) := the empty list;

comment size(i) gives the number of vertices in tree i;

size(i) := 1;

add i to tree(l);

initialize a set named i containing i as its only element;

end;

pointer :=» 1;

while pointer£n/2 do if tree(pointer) = the empty list

then

begin

increase: pointer := pointer+ 1;

end

else

begin

delete some element k from tree(pointer);

comment the next test is used to ignore out-of-date entries

in the tree array;

if size(k) = pointer then

begin

(i,j) := MIN(k,NEW);

add edge (i,j) to minimum spanning tree;

x := FIND(i);

if x = k then x = FIND(j);

UNION(x,k);

QUNION(x,k);

size(x) := size(x)+size(k);

size(k) := 0;

add x to tree (size(x));

end

end

end MINSPAN;

3. A Worst-Case Time Bound

Algorithm MINSPAN consists of

(a) priority queue operations;

(b) set operations; and

(c) other operations.

It is clear that 0(n+e) time is required for type (c) operations.

0(n) UNION operations and 0(e) FIND operations (at most six per edge)

are carried out by MINSPAN, so 0(n log*n + e) time is required for type

(b) operations. Most of the time used by MINSPAN is in type (a) operations,

MINSPAN is implemented so that M(k,NEW) is executed once for

each value of k (except one value) in the range l£k£n. Let number(k)

be the number of edges in queue k when MIN(k,NEW) is executed. Let

number(k) = 0 if MIN(k,NEW) is never executed. We need a bound on
n

I number(k). Since the number of vertices in a tree at least doubles
k=l

each time a MIN operation is performed on the corresponding queue,
n

each edge is counted at most log n times in £ number(k). Thus
n i=l

J number(k) £ e log n.
i=l

The time spent in INIT and QUNION is clearly 0(n+e). The

number(k)
time required for a call MIN(k,NEW) is 0((m(k)+&(k))log(=^km(k) +D),

where m(k) is the number of entries deleted from queue k in this

call, and &(k) is the number of queues merged into queue k before

this call. The total time for all calls on MIN is

(5 number(k)

We can break this sum into two parts: a sum over k such that

, number(k) , number(k)
m(k) + £(k) £ =- and a sum over k such that m(k) + £(k) > -=-

(log n) (log n)

The total is then

0

(n mimVto-v/'lrt nI r number(k) £ . , 2 1
E-~~loTn + I (m(k) +Jl(k))log((log n)Z+l)

Mc=l xog n k=l ^

=°(eiogSnn +(2e+n-l)2 log log n)
= 0(e log log n) .

Thus the total time required by MINSPAN is dominated by the time spent

in MIN, which is 0(e log log n). MINSPAN requires 0(n+e) storage,

4. A Modification for Dense Graphs

By adding an extra step to the algorithm, we can get a time bound

l+€
of 0(e) for dense graphs (i.e. graphs for which e is fi(n) for

some positive constant 6). To accomplish this, we add an initialization

statement

3 e 1/2a := fmaxUlog n) ,(p p) }"] ;.

at the front of MINSPAN and we insert the following block of code after

statement increase.

cleanup: if pointer= a then begin
3/2

re
a «- IVb^hlog n1
examine all edges remaining in priority queues;

discard all edges joining vertices in the same tree;

while two or more edges connect the same pair of

trees do discard all but the minimum such edge;

combine the remaining edges into new priority queues,

one for each tree;

end;

This cleanup step has the effect of eliminating useless edges. If

cleanup is implemented using a search [5,12], one execution of cleanup

requires 0(e) time.

Let x be the number of times cleanup is executed when the modi

fied version of MINSPAN is applied to a graph G, assuming that log n ^ 2,

If x > 0, then

3 x

(log n) l <| ,

3 e 1/2
which means x is 0(log log n). Also, if (log n) < (—=)

° — n log n '

i.e. n(log n) £ e, then

1 3 x± (2.)
2V

()Nn log n' n
x — 2 '

(log n)

which means x is 0(log[°-~]).

log(;rTsr^
The time required for all the cleanups is 0(ex). The rest of the

time required by MINSPAN is dominated by the time spent in MIN. The
f n fnumber(k)

which istime spent in MIN is 0J («00+t<k))l°g(.(tW(k)+l)).
0(e log log n) by the previous argument. If e >^ n(log n) , we can

get a better bound.

numberCkJTo bound \ (m(k)+Jt(k))log(,k)+jl(k) +l) , we divide this sum
k=l 7

among the cleanups. If e >^ n(log n) ,

E{(m(k)+£(k)) |MIN(k,NEW) executed before first clean-up}

is 0(n(-^)) = 0(r-S—).
1 n log n'J log n'

Z{(m(k)+il(k))| MIN(k,NEW) executed between ith, i+lSt clean-ups}

is 0(- —j) =°(S—2")" ThuS the t±me Spent ±n MIN ±S
a (log n) (log n)

Ofe+T^H =0(e) if e >n(log n)7.
v log TV —

It follows that the modified version of MINSPAN requires

0(e log[log P]) time if e>n(log n)7 and 0(e log log n) time if
log(nn^iT)

7 TICe < n(log n) . If e is i)(n) for some positive constant 6, the

modified algorithm runs in 0(e log(-)) time, and the modified algorithm

always runs as fast as the unmodified algorithm (to within a constant

factor).

10

11

5. Toward a Lower Bound

How fast is the best possible minimum spanning tree algorithm? To

answer this question, we need a simple definition of an algorithm and

a simple measure of complexity. For our purposes, an algorithm will

be a comparison tree. Each vertex of the tree represents a comparison

between the values of two edges in the problem graph. Depending upon

the outcome of the comparison, the next comparison to be made is either

the left son or the right son of the previous comparison. We allow a

different comparison tree for each possible graph. Given this model,

we want to know the minimum number of comparisons required to determine

a minimum spanning tree in the worst case.

We first show that, to within a constant factor, the worst case

occurs when the problem graph is sparse, in particular when all vertices

are of degree three. Let G be any graph. Consider applying the

following procedure to G:

procedure REGULARIZE(G);

begin

while G has a vertex v of degree 1 do

delete v and its incident edge;

while G has a vertex v of degree 2 do

begin

let (v,w) be the minimum value edge incident to v;

delete (v,w) and collapse v and w into a single vertex;

end;

while G has a vertex v of degree > 4 do

begin

create a new vertex w;

for half of the edges (u,v) in G do

convert (u,v) to an edge (u,w);

add an edge (v,w) of value less than that of all other edges;
end

end REGULARIZE;

Let G' be the graph produced when REGULARIZE is applied to graph

G. G' is regular of degree three. REGULARIZE can be implemented to

run in 0(n+e) time, if G has n vertices and e edges (e.g. see [7]).

Furthermore, any minimum spanning tree T' of G' corresponds to a

minimum spanning tree T of G. T can be constructed from T' by

adding all edges deleted from G by REGULARIZE, deleting all edges

added to G by REGULARIZE, and restoring the original endpoints of

each edge modified by REGULARIZE. This process also takes 0(n+e)

time.

G' has at most 2(e-n) vertices and 3(e-n) vertices. Thus,

if f(e') is the time required to find minimum spanning trees of the

connected components of any graph regular of degree three with e'

edges, and F(e,n) is the time required to find minimum spanning trees

of the connected components of any graph with e edges and n vertices,

then F(e,n) is 0(f(3(e-n))+e). Obviously f(x) > x, f is

increasing, and f(x+y) >^ f(x)+f(y). Using these facts, we

can show that f(3e) <^ kf(e) for some constant factor k. For, given

a problem graph with 3e edges, partition the edges into nine equal

sets, consisting of the smallest ninth of edges, the next smallest

ninth, and so on. This can be done by using a linear-time median finding

algorithm. Now find the minimum spanning trees of the connected

components of the subgraph defined by the first ninth of the edges.

Shrink each component to a single vertex, add the second ninth of edges,

and find minimum spanning trees. Repeat until all vertices are

connected. The total time required is 0(9f(e)). It follows that

F(e,n) is 0(f(e)).

12

For the purpose of trying to get a lower bound, we will assume that

the values of all the edges are distinct. This guarantees that the

minimum spanning tree is unique. As a comparison-type algorithm pro

ceeds, there will be certain edges known to be in the minimum spanning

tree, called included edges, certain edges known not to be in the minimum

spanning tree, called excluded edges, and other edges, called unresolved

edges. The next two lemmas (which extend Lemma A) characterize the

moment when an edge becomes resolved.

Lemma 1. An edge (v,w) becomes included exactly when there is

a set X C v such that v 6 V, w 6 X-V, the most recent comparison

shows (v,w) to have minimum value in 6(X) = {(x,y)| (x,y) 6E, x6V and

yeX-V}, and all edges in 6(X)-{(v,w)} are unresolved or excluded

(just after the most recent comparison).

Proof. Suppose (v,w) is an edge such that a set X exists

satisfying the hypotheses of the lemma. Let T be any spanning tree

not containing (v,w). Some cycle exists composed of edges of T and

(v,w). Some edge on this cycle other than (v,w) is in 6(X). Deleting

this edge from T and adding (v,w) produces a new spanning tree of

smaller total value. Thus T is not minimum, and (v,w) must be in

any minimum spanning tree.

Conversely, suppose that after some comparison, edge (v,w) becomes

included. Choose edge values so that, subject to the constraints of

the comparisons made so far, as many edges as possible have values

smaller than c(v,w). Let T be a minimum spanning tree in the resul

tant graph. Removal of (v,w) from T breaks T into two parts. Let

X consist of the vertices in one of these parts. Then X must satisfy

13

the hypotheses of the lemma, since if the value of (v,w) is greater

than the value of some edge in 6(X), T can be modified to have smaller

total value by deleting (v,w) and adding an edge in 6(X). •

Lemma 2. An edge (v,w) becomes excluded exactly when there is

a cycle containing (v,w) and edges unresolved or included (just after

the most recent comparison) such that the most recent comparison shows

that (v,w) is the maximum value edge on this cycle.

Proof. Analogous to Lemma 1. •

We would like to prove a worst-case lower bound of ft(e log log n)

comparisons for finding a minimum spanning tree. Here we show that

this bound holds for a certain subclass of comparison algorithms. Con

sider only algorithms which obey the following rule:

Max: Any unresolved or included edge which is used in a com

parison must be a possible maximum among unresolved and

included edges.

The following oracle generates a bad case for such a comparison

algorithm:

(i) If two excluded edges are compared, the oracle declares

either as bigger,

(ii) If an excluded and a non-excluded edge are compared, the

oracle declares the excluded one as bigger,

(iii) If two non-excluded edges are compared, the oracle declares

the one with more edges known to be smaller as bigger.

14

Lemma 3. Suppose the oracle above determines the results of com

parisons for a comparison algorithm obeying rule Max. Then at all

times during the comparison process, any non-excluded edge known to be

bigger than k edges must have been directly compared to at least log k

such edges.

Proof. Because of rule Max, rule (ii) of the oracle, and Lemma 2,

no excluded edge is ever known to be smaller than any non-excluded edge.

Let (v,w) be any non-excluded edge. By rule Max and rule (iii) of

the oracle, any comparison which adds to the number of non-excluded

edges known to be smaller than (v,w) must be a direct comparison with

(v,w) and can at most double the number of edges known to be less than

(v,w). The lemma follows. D

By appealing to a result of Tutte, we can use Lemma 3 to give the

desired lower bound. The girth of a graph is the length of the shortest

cycle in the graph.

Lemma 4 (Tutte [14]). For all n, there is a graph of n vertices,

with all vertices of degree three or more, having a girth which is

fi(log n).

Lemma 5. Any comparison algorithm obeying rule Max requires

fi(e log log n) comparisons in the worst case.

Proof. Suppose a comparison algorithm obeying rule Max is

applied to one of the graphs given by Lemma 4. Any such graph has at

least (3/2)n edges. Thus at least (1/3)e edges must be excluded

before the minimum spanning tree is determined. For an edge to be

15

excluded, it must be known to be a maximum over a cycle of non-excluded

edges (Lemma 2), but since any such cycle has length fl(n log n),

Lemma 3 implies that ft(log log n) direct comparisons with the excluded

edge are required. These ft(log log n) comparisons are distinct for

each excluded edge; thus a total of ft(e log log n) comparisons are

required. D

We can generalize the result in Lemma 5 a little. Suppose we

consider an algorithm which uses an arbitrary number of copies of each

edge. The algorithm makes comparisons between the values of the various

copies, and only excludes an edge (from the spanning tree) when com

parisons previously made with a single copy of the edge imply that it

is the largest on some cycle. Comparisons are only allowed between

possible maxima among the non-excluded edges. Then a proof like that

of Lemma 5 shows that ft(e log log n) comparisons are required in the

worst case by such an algorithm.

One might suspect that it is possible to beat 0(e log log n)

for some classes of graphs which contain enough small cycles. Planar

graphs form such a class. Any planar graph without degree one or two

vertices has a cycle of five edges or less, and we can find a minimum

spanning tree of a planar graph in 0(n) time using the following

algorithm.

16

algorithm PLANARSPAN

begin

construct a planar representation of G;

until minimum spanning tree found do

begin

if G has a vertex v of degree one or two do

begin

find smallest edge incident to v;

add edge to minimum spanning tree;

collapse endpoints of edge into a single vertex;

end

else

begin

find a face of five edges or less;

delete largest edge on face;

end end end PLANARSPAN;

Finding a planar representation for G requires 0(e) time [5].

Using a suitable representation of G, each iteration of the until

loop, including all necessary updating of the graph representation, can

be carried out in 0(1) time (e.g. see [7]). Thus the total running

time of PLANARSPAN is 0(e). Since any planar graph has e <_ 3n-3,

this running time is 0(n). Other special classes of graphs may have

similar algorithms, though it seems reasonable to conjecture that the

0(e log log n) bound is not improvable in the general case.

Another step toward a general non-linear lower bound would be to

prove a dual to Lemma 5, by using Lemma 1 and an analogy to Lemma 4 for

cuts,to show that any algorithm, which, among non-included edges,

compares only minima, requires ft(e log log n) comparisons in the worst

case. Most of the algorithms known to be efficient operate by computing

minima over cuts, but they sometimes compare hon-minimal edges.

17

Conclusions and Conjectures

This paper has presented 0(e log log n)-worst case algorithm for

finding a minimum spanning tree in an undirected graph, A modification

to the algorithm improves its running time to 0(e) for dense graphs.

Another algorithm finds a minimum spanning tree of a planar graph in

0(n) time. The paper also shows that all algorithms obeying a certain

rule require ft(e log log n) comparisons in the worst case.

We close with two conjectures:

(i) The algorithm presented in Section 2 runs in 0(e) time on

the average (thus the worst case is very rare), assuming any reasonable

probability measure on graphs.

(ii) Every algorithm for finding minimum spanning trees requires

ft(e log log n) comparisons in the worst case.

18

Appendix: Implementation of Priority Queues

To implement the priority queue operations, we extend a method

discovered by Crane [9]. In Crane's implementation, each queue is

represented by a leftist binary tree. (A leftist binary tree is a tree

such that, given any vertex v, there is a shortest path from v to a

vertex with a missing left or right son, such that this path contains

the right son of v.) Each vertex in such a tree represents an element

in a queue. The vertices in the tree are heap-ordered (ordered so that

the vertex with smallest value is at the root of the tree and any

vertex has value smaller than the values of both its sons).

A basic operation on two leftist binary trees is:

MERGE(i,j) combines trees i and j into a single leftist

binary heap-ordered tree named i.

The MERGE operation can be carried out by finding, in each tree,

a shortest (rightist) path from the root to a missing vertex, merging

the two paths into a single path on which the vertices are sorted by

value, attaching the remaining subtrees of each original tree to the

appropriate vertices on the combined path, and switching left sons and

right sons of vertices along the path (if necessary) to make the new

tree leftist. To implement this operation, we must store four parameters

with each vertex: its value, pointers to its left and right sons, and

the length of the shortest path from the vertex to a missing vertex.

See [9] for implementation details. Figure 1 illustrates such a MERGE

operation. Since a leftist binary tree with n(i) vertices has a

leftist path of length at most log(n(i) + l), the time required for

MERGE(i,j) is 0(log(n(i))+log(n(j)) + !).

19

Here we extend Crane's idea. We represent each priority queue by a

binary tree. Some of the vertices in the tree correspond to queue

elements, and some of the vertices are dummy vertices which correspond

to previous QUNION operations. Each vertex which corresponds to a

queue element is the root of a subtree which consists only of queue

vertices and is leftist, binary, and heap-ordered. The dummy vertices

define a subtree rooted at the root of the entire tree.

Each vertex v requires five associated parameters:

leftson(v), rightson(v): pointers to the left and right son of v;

path(v): the length of the shortest path from v to a missing

vertex (only necessary if v is a queue vertex);

c(v): the value of the queue element associated with v (only

defined if v is a queue vertex);

q(v): a Boolean variable true if and only if v is a queue vertex.

Here is an implementation of QUNION, MIN, and INIT, using this

data structure. To carry out QUNI0N(i,j), we create a new dummy

vertex, make the roots of trees i and j the left and right sons

of the new vertex, and mark the new vertex as the root of the new tree i.

QUNION clearly requires 0(1) time.

We carry out MIN(i,p) in three steps. Suppose there are SL

dummy vertices in tree i. First, we explore tree i, from the root

up, stopping at queue vertices which satisfy condition p. That is, we

locate the set of queue elements {v| v is in queue i, v satisfies p,

and no ancestor of v is a queue vertex satisfying p}. We discard all

ancestors of such minimal elements. Let m be the number of discarded

queue vertices (all the dummy vertices are also discarded).

20

We are left with £+m+l or fewer leftist binary trees, each rooted

at one of the minimal elements. We place these trees in a circular

queue, merge the first two trees in the queue using MERGE, add the

resultant tree to the end of the queue, and repeat until only one tree

is left. The root of this tree is the desired element of minimum value

satisfying p. We record this element and convert the root of the tree

to a dummy vertex.

The overall effect of the MIN(i,p) operation is to discard from

tree i all dummy vertices, and all queue vertices up to and including the

one of minimum value satisfying p; and to combine the remaining

elements into a single leftist binary tree with a single dummy vertex.

An implementation for MIN(i,p) is presented below, in Algol-like

notation. In the program, SEARCH is a recursively programmed proce

dure which explores a binary tree to find the minimal queue vertices

satisfying property p.

21

procedure MIN(i,p);

begin

procedure SEARCH(x);

if q(x)Ap(x) then add tree rooted at x to circ;

else

begin

if leftson(x) ^ 0 then SEARCH(leftson(x));

if rightson(x) $ 0 then SEARCH(rightson(x));

end;

circ := the empty list;

let r be the root of tree i;

SEARCH(r);

while |circ| >1 do

begin

delete first two trees j and k from circ;

MERGE(j,k);

add new tree j to end of circ;

end

tree left on circ is new tree i;

let r be the root of this tree;

MIN := queue element associated with r;

q(r) := false;

end MIN;

22

Suppose MIN is applied to queue i, initially containing k

vertices of which I are dummies, and that m queue elements are deleted

by MIN. The running time of MIN is 0(m+£+l) plus the time required for m

tests of condition p plus the time required to merge m+£+l or fewer trees

formed from the remaining k-£-m elements.

During the merging process, the original trees (together containing

all the remaining elements) are merged in pairs, leaving no more than

I—2—1 trees containing all the elements. These trees in turn are

merged in pairs, and the process continues until one tree is left.

Let b = |log(m+£+l)"|. A bound on the total merge time is

rb 2W 2H
I max{ I log(n +1) J n. £k-£, n._>0 for all j}

1=0 j=l 3 A 1- i

The maximum inside the outer sum is achieved when all the terms in

the inner sum are equal, so the merge time is

b
,b-i. k-SL1J02 l08(#i+l)J " °(<»**>iog££+i» .

Note that A, the initial number of dummy vertices in tree i,

is at most one plus twice the number of queues merged into queue i

between MIN(i,p) instructions. (Here we count all queues merged into

queue i through a sequence of QUNION instructions with no inter

vening MIN instruction.) In the use of priority queues in this paper,

only one MIN instruction is performed on each queue, after which the

queue is merged into another queue. Thus in this case £ is at most

one plus twice the number of queues merged directly into queue i.

23

To carry out INIT(i,L), we interpret each element of L as a

leftist binary tree consisting of a single vertex. We place these trees

into a circular queue and merge them as in MIN. The bound above reduces

to 0(|l|) in this case.

Another queue operation (not necessary to the minimum spanning tree

algorithm) can be implemented with only a small change in the data

structure.

ADD(a,i) adds a constant a to the value of every element in

queue i.

Time required: 0(1).

To implement this operation, we use a trick described in [1]. We

do not store the current value c(v) for each vertex v but instead use two

parameters d(v) and f(v). The meaning of these parameters is as follows.

* *
Let u •> v denote that u is an ancestor of v in a tree (v -*• v for

all v by convention). Then at all times during the execution of the

priority queue operations, c(v) = f(v) + £ d(u) for each queue
*

. u •** v
vertex v.

Using this modified data structure, we can carry out ADD(a,i) by

adding a to d(r), if r is the root of tree i. ADD clearly

requires 0(1) time. We modify QUNION to set f(v) := d(v) := 0

for the newly created dummy vertex v. We modify SEARCH and MERGE

to reset f and d values, for each vertex v examined, as follows:

f(v) := f(v)+d(v);

d(leftson(v)) := d(leftson(v))+d(v) ;

d(rightson(v)) := d(rightson(v))+d(v) ;

d(v) := 0;

24

Thus, as SEARCH and MERGE work their way up through a tree, they

adjust the parameters of the vertices v examined so that d(v) = 0.

(This implies that every vertex examined has c(v) = f(v).) Then the

other parts of SEARCH and MERGE will preserve the desired relation

ship c(v) = f(v) + I d(u) even though they modify the tree. These
*

u -»- v

steps only increase the running times of SEARCH and MERGE by a

constant factor.

We modify INIT to set f(v) := c(v), d(v) := 0, for each

vertex v in the newly created tree. This increases the running time

of INIT by only a constant factor.

25

I

Figure 1: Merging two leftist binary trees.

References

[I] A. Aho, J. Hopcroft, and J. Ullman, "On finding lowest common
ancestors in trees," SIAM J. Comput., to appear.

[2] C. Berge and A. Ghouila-Houri, Programming, Games, and Transpor
tation Networks, Wiley (1965), 179.

[3] M. Blum, R. Floyd, V. Pratt, R. Rivest and R. Tarjan, "Time bounds
for selection," J. Computer and Sys. Sci., vol. 7, no. 4 (1973),
448-461.

[4] E.W. Dijkstra, "A note on two problems in connection with graphs,"
Numerische Mathematik, vol. 1 (1959), 269-271.

[5] J. Hopcroft and R. Tarjan, "Efficient planarity testing," J. ACM,
vol. 21, no. 4 (1974), 549-568.

[6] J. Hopcroft and J. Ullman, "Set-merging algorithms," SIAM J. Comput.,
vol. 2, no. 4 (1973), 294-303.

[7] J. Hopcroft and J. Wong, "Linear time algorithm for isomorphism
of planar graphs," Proceedings of Sixth Annual ACM Symposium on
Theory of Computing (1974), 172-184.

[8] A. Kerschenbaum and R. Van Slyke, "Computing minimum spanning trees
efficiently," Proceedings of the 25th Annual Conference of the ACM
(1972), 518-527*: ~"~

[9] D. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching, Addison-Wesley, Reading, Mass. (1973), 150-152.

[10] J.B. Kruskal, Jr., "On the shortest spanning subtree of a graph
and the traveling salesman problem," Proc. Amer. Math. Soc, vol. 7
(1956), 48-50.

[II] R.C. Prim, "Shortest connection networks and some generalizations,"
Bell System Tech. J. (1957), 1389-1401.

[12] R. Tarjan, "Depth-first search and linear graph algorithms," SIAM
J. Comput., vol. 1, no. 2 (1972), 146-160.

[13] R. Tarjan, "Efficiency of a good but not linear set union algorithm,"
J. ACM, to appear.

[14] W.T. Tutte, Connectivity in Graphs, Toronto University Press,
Toronto (1967), 82.

[15] A. Yao, "An 0(|E|log log|v|) algorithm for finding minimum spanning
trees," Inf. Proc. Letters, to appear.

26

	Copyright notice 1975
	ERL-501

