

Copyright © 1975, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

ADAPTIVE RECOGNIZERS

by

William Sakoda

Memorandum No. ERL-M500

February 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

ADAPTIVE RECOGNIZERS

William Sakoda

Contents

Page

1. Introduction 1

2. Adaptive Recognizers 2

2.1 Preliminary Notation 2

2.2 Definition of the Model 2

2.3 Recursively Indexed Families of Languages 4

2.4 Summary of Results 6

3. Proofs 9

3.1 Theorem 1: Characterization Theorem for Adaptive
Recognizers 9

3.2 Theorem 2: The Role of the Equivalence Problem . . 12

4. Connections With Other Models of Inductive Inference . 17

t
ADAPTIVE RECOGNIZERS

William Sakoda

Computer Science Division
Department of Electrical Engineering and Computer Science

and the Electronics Research Laboratory
University of California, Berkeley 94720

February 1975

1. Introduction

There are numerous interesting families of formal languages

(e.g. regular, context-free) for which the problem of identification

in the limit admits a trivial solution by enumeration. Since enumera

tion is computationally inefficient, one is led to ask whether the task

of identifying such families may be accomplished moire efficiently .

The purpose of this report is to present some preliminary results in

this area.

We begin by defining a class of inductive inference machines,

the adaptive recognizers, which are suitable for analyzing the complexity

of inferring such languages. After characterizing the classes of

languages which can be inferred by adaptive recognizers, we will show

that undecidability of the equivalence problem for a particular family

of languages is sufficient to rule out the existence of an efficient

adaptive recognizer for that family. We will then have the following

as a corollary: Let r be any adaptive recognizer which can identify

all context-free languages. Then the amount of data consumed by r

before correctly identifying the language generated by an arbitrary

context-free grammar G is not bounded above by any recursive function

of G.

This research sponsored by National Science Foundation grant
DCR72-03725-A02.

2. Adaptive Recognizers

2.1 Preliminary Notation

We will use the symbol IN to denote the set of natural numbers;

that is, IN = {0,1,2,...}. An object will be said to be an integer

if and only if it is a member of IN, A language is a subset of !¥.

We assume familiarity with some concepts from elementary recursive

function theory. Our notation for recursive functions will follow that

in [6].

2.2 Definition of the Model

Adaptive recognizers are machines which attempt to identify lan

guages on the basis of finite samples from the languages. They differ

from the usual rule inference models [1,4] in their mode of identifi

cation: an adaptive recognizer demonstrates its identification of a

language by performing as a recognizer for that language.

Before proceeding, some notation for manipuating sequences will

be useful.

2.2.1 Definition

(1) Let x1,x2,...,x be integers, with n >_ 0. Then

<XX,X2»" " ,xn> denotes an integer which encodes the ordered sequence

with elements x1,x2>...,xn, according to some fixed encoding. ^

We will usually use vectored variables to range over such sequence

numbers. For

and

s = <X-,...,x >
1 n

we let

t = <y ,..,,y > ,
1 m

-*• -*•

s«t = <x1,...,xn,y1,...,ym> .

(2) Let n e H. Let x-,...,x e]N. Let b-,.,. ,b e {0,1}.
in in

Then s = «x-,b1>,<x2,b2>,,.. ,<x ,b » is a sample from language L

if and only if, for each 1 <_ i _< n,

The set {x. | l£i£n} is the base of the sample s. The size of

sample s, denoted sz(s), is defined to be max({0}u{x | l£i£n}).

The length of sample s is the cardinality of the base of s.

(3) S = {s| (3 language L) such that s is a sample from L}. S is

the set of all samples. Note that S is recursive.

We can now indicate the difference between adaptive recognizers

and the usual rule-inference machines. Let s be a sample from language

L . A rule-inference machine would use s to attempt to produce a name

(say, a partial recursive index) for L . An adaptive recognizer uses

s to attempt to function as a recognizer for L . Thus, given s and

an integer x, an adaptive recognizer generates a guess as to whether

x is in the language L .

2.2.2 Definition

An adaptive recognizer is a function r: S *H •*• {0,1} such that:

(a) r is partial recursive, with dom(r) = S *U;

and (b) (permutation independence): If s, t are samples and s is

3

a permutation of t, then r(s,x) = r(t,x), for all x e IN.

The restriction of permutation independence is made to force r to

base its guesses entirely on the membership information contained in

sample s, and not on the order in which this information appears in s,

2.2.3 Definition

s e S is an r-primer for language L if, for any sample e from

the language L and any x el,

0 if x $ L
r(s»e,x) =

'1 if x e L .

r is said to recognize (equivalently, identify) L if there exists an

r-primer for L. Rr is by definition the set of languages recognized

by r.

Since primers are samples, they inherit the notion of size defined

for samples in 2.2.1(2). The size of a smallest r-primer for a parti

cular language L is a useful measure of the amount of data required

by r to identify L.

2.3 Recursively Indexed Families of Languages

Our interest in adaptive recognizers arises from their close

connection with recursively indexed families of languages. Intuitively,

we want the recursively indexed families to encompass exactly the

classes of languages which can be identified in the limit by enumeration.

2.3.1 Definition

A family F of languages is said to be recursively indexed if there

is a recursive ty:]N •*• U which enumerates at least one index for the

characteristic function of each language in F, and only such indices.

Whenever ^ is arecursive indexing, we let L^ ={x eu| <J>. (.=1}.
Thus, L is that language for which <J>. (. is the characteristic

function.

2.3.2 Examples of Recursively Indexed Families

(i) The class of languages having primitive recursive characteristic

functions is recursively indexed.

(ii) By establishing a suitable identification between]N and

(0,1) , the notion of recursive indexing may be extended to families

of subsets of (0,1)*.^2)

Assuming that such an identification has been established, we can

then say that the families of regular, context-free, and context-sensi-

tive subsets of (0,1) are each recursively indexed. In each of

these families, a recursive indexing can be obtained by using the fact

that there is a recursive enumeration G ,G-,G«,... of Godel numbers

for the class of grammars in question, such that the predicate x e L(G.)

is decidable uniformly in x and i.

(iii) More generally, if L is a recursive subset of (0,1)*, the

family of subsets of (0,1)* in the principal AFL generated by L can

be recursively indexed.

2.4 Summary of Results

Our first result is a characterization of the families of languages

which can be identified by an adaptive recognizer.

Theorem 1. Let F be a family of languages. Then the following

are equivalent.

1) There is an adaptive recognizer which can identify at least

every language in F.

2) F is contained in a recursively indexed family.

(3)3) Every language in F is h-easy ' for some fixed recursive

h: U +M.

The second result yields a condition on a recursively indexed family

F which is sufficient to rule out the existence of an efficient adaptive

recognizer identifying every language in F. Some notation is necessary

before proceeding.

2.4.1 Definition

Let iJj be a recursive indexing. The equivalence problem for ty

is that function e: MxE -»- {0,1} which is defined by

f0 , L* *I*
e(i,j) = < , ,

I1' Li =Lj-

The equivalence problem for ty is decidable just in case e is

recursive.

Theorem 2'. Let \\>:]N -*-U recursively index family F, and

suppose the equivalence problem for ty is undecidable. Let r be any

adaptive recognizer which identifies at least the language in F. Let

[|X.. (I be the size of a smallest r-primer for L?. Then Hl?H is not
i i i

bounded above any any recursive function m(i).

Note that if the restriction that adaptive recognizers be permu

tation independent is removed, the theorem fails rather dramatically:

for any recursive indexing i|>, there is a non-permutation-independent

r such that [|LU| = 1 for every i! An algorithm for such an r is:

"On input («x1,b->,.. .>,x), output 1 if xeL^ , 0 otherwise."

Then <<i>(()1j./4'\ (i)>> is an r-primer for L^j.

Corollary - Application to the Context-Free Languages

We remarked in 2.3.2 that the notion of recursive indexing could

JL

be extended to languages which are subsets of (0,1) by establishing

an identification between (0,1)* and U; note (2) indicates a suitable

bijection A: (0,l)*lt-» !N. This identification also allows results

about adaptive recognizers to be extended to such languages. We will

outline this technique.

JL S\

The following conventions are useful. For x e (0,1) , we let x

denote the image of x under the map A. For A £ (0,1)*,

A = {x| xeA}. Finally, CFL = {£| L is a context free subset of (0,1)*},

We can now restate the preceding definitions using this notation.

It should be emphasized that we are literally repeating what was said

before, using a slightly different notation.

Let n > 0; let xlf...,x e (0,1)*; and let bn,...,b e {0,1}.
— In » ' » 1' n

Then s = «x-,b_>,<x2,b2>,... ,<x ,b » is a sample from language

L C (0,1)* if for each 1 < i < n,

S, the set of all samples, is by definition is| s is a sample from

some L C (0,1)*}.

Sample s is an r-primer for L C (0,1) if for every sample e

from L and every x e (0,1)*,

r(s,e,x) =
0 , x ^ L

11 , x e L .

One modification is in order. If s = «x-,b.>,... ,<x ,b » is a
1' 1 n n

sample from L C (0,1)*, it is more natural to define the size of s

-*• _, /\ ,-»-.
to be the length of the longest string appearing in s. Thus, sz(s)

is by definition max({ 0} U{length(x±)|l<i£n}).

We are now prepared to apply Theorem 2' to the context-free languages,

Let i|; be that recursive indexing of CFL which is induced by the stan

dard Godel numbering of the context-free grammars over the terminal

iji •s. th
alphabet {0,1}; i.e. lT = L(G), where G is the i standard

context-free grammar. Since it is undecidable, given CFGfs G and G ,

whether L(G.) = L(G.), it follows that the equivalence problem for iJj

is undecidable. Theorem 2' then supports the following result: Let r

be any adaptive recognizer which can identify at least CFL. Let IIG H

denote the smallest r-primer (in the sense of sz) for L(G). Then

there is no algorithm which, given an arbitrary G., will compute an

upper bound on ftG.ft.

3. Proofs

3.1 Characterization Theorem for Adaptive Recognizers

The following lemma records an important property of recursively

indexed families. Indeed, the definition of recursive indexing was

chosen specifically to ensure that this property held.

3,1.1 Lemma

Let ip be a recursive indexing. Then there exists, uniformly

effectively in \\), a recursive characteristic function for the relation

Xx,i[x e L.].
l

Proof. By definition of lJ, <l>i/.\ is the characteristic function

for L.. Therefore Ax,i[<J>. ,.. (x)] is the required characteristic

function.

This lemma will be used implicitly in subsequent constructions.

Theorem 1. Let F be a family of languages. Then the following

are equivalent.

(1) FCr for some adaptive recognizer r.

(2) FCG for some recursively indexed family 6.

(3) Every language in F is h-easy for some fixed recursive

h:]N +1N.

The proof that (2) -*- (1) involves a construction which will be of

use later. We record it below.

3.1.2 Lemma

Let family F of languages be recursively indexed by i|/. Then

there exists, uniformly effectively in i|j, an adaptive recognizer r

with the following properties:

(1) r recognizes exactly F.

(2) For each j £l, the following non-effective procedure leads

to a primer, p(j), for L..

(i) Pick i least such that L: = L?.
i 3

(ii) For each k< i, pick an x, such that x, eL^ <-> x, £ L.,

(iii) Let p(j) be a sample from L. with base {x, | l£k<i}.

Proof. We will construct the required r.

On input (s,m), r will try to find an s-consistent hypothesis

L e F, and output 0 if m J L, 1 otherwise. Since F is recur

sively indexed, this search may be carried out in an orderly fashion by

testing L ,l!j,... for s-consistency. The danger of never finding an

s-consistent L^ may be handled by bounding the number of LJ tested

by the length £ of the sample s.

Thus, if L ,...,LJ_ are all s-inconsistent, we set

Jo, miL*
r(",° "|l ,.«L* .

If, on the other hand, one of L ,...,Ln,, is s-consistent, we
o xH-1

pick the least n such that L^ is s-consistent, setting

,* , f° • - *LSr(s,m) = <
1 , m e Lr .

I n

10

It's clear that r is defined on all of SxE and satisfies permu

tation independence. Since for any s, (Ax[r(s,x)]) = xT for some

L e F, we have Rr C F. Finally, to verify property (2) of the lemma,

let j el, and let p(j) be a sample from L. with base

{xjj l£k<i} supplied by the construction indicated in (2). We need

to show that (Ax[r(p(j)-e,x)]) =x ,,, for any sample e from 1$. To
LT J

do this, it will certainly suffice to show that, when given p(j)#e

as input, r selects L. as its hypothesis. But the information con

tained in p(j) is sufficient to cause all L^, k<j to be rejected;

the length of p(j) is sufficient to allow the search to reach at least

to L*j; and L^ cannot be rejected, since it is certainly consistent

with p(j)«e. Thus p(j) is a primer for L?, and (2) has been

verified. (2) now implies that R 3 F, which fact, combined with the

reverse containment proved earlier, yields R = F.

Proof of Theorem 1. The equivalence of (2) and (3) is easily veri

fied. We will show that (1) and (2) are equivalent.

(1) ->• (2). Let r be an arbitrary adaptive recognizer. We will

construct a ty which recursively indexes a superset of R .

Roughly speaking, what we are trying to do is establish an effec

tive correspondence between the integers and the languages in R . This

can be accomplished by exploiting a natural correspondence between S

and R . The latter correspondence is the following. To each s e S,

associate X* = {ra el| r(s,m)=l}. This association is sufficiently
s

effective since, given s, we can find an algorithm for xY : on inPut
s

y, the algorithm simply evaluates r(s,y). To see that this scheme

does indeed manage to assign some s e S to every L e R , note that

11

if L e R , there is an r-primer, p, for L. Then clearly L = X*.

We may end up indexing a proper superset of F, as unless s is a

primer, there is no reason to expect that X-*- e R .

To finish up, let s: 1*»—» S be a recursive bijection between IN

and S. Then an appropriate algorithm for if; is: "On input x, output

the index of an algorithm which computes Ay[r(s(x),y)]". Then ib is

a recursive indexing, since r is 0-1 valued and convergent on S *U.

ib indexes at least R , since if L e R and p is an r-primer for

L, then ip(s (p)) is an index for the characteristic function of L.

(2) -*• (1). If G is recursively indexed, Lemma 3.1.2 supplies an

r which recognizes exactly G.

3.2 The Role of the Equivalence Problem

We now turn to a proof of the second result. Roughly stated, this

result is that undecidability of the equivalence problem for a recursive

indexing ib implies that for any adaptive recognizer, r, which iden

tifies at least all the Lj\ it is difficult to generate r-primers

for ib. Our method for measuring said difficulty will be to test for

the existence of an effective procedure which, given an arbitrary

integer i, will produce an r-primer for L^.

3.2.1 Definition

Let ib be a recursive indexing of family F, and let r be an

adaptive recognizer identifying at least F. Then p:]N -*-]N is a

generator of r-primers for \b if, for all ieU, p(i) is an

r-primer for L_T.

12

We will prove a slightly stronger version of Theorem 21 of Section 2.4,

namely:

Theorem 2. Let ib be a recursive indexing of F.

(a) Let r be an adaptive recognizer identifying at least F,

and let p: IN + U be a generator of r-primers for ib. Then the equiva-

(4)lence problem for \b is recursive in p.

(b) There is an adaptive recognizer, r, such that

(i) r recognizes exactly F; and

(ii) there is a generator of r-primers for iJj which is recur

sive in the equivalence problem for \b.

The following lemma is the basis for our proof of part (a) of the

theorem.

3.2.2 Lemma

Primers for distinct languages are inconsistent. That is, let L,

L1 be languages recognized by adaptive recognizer r. Let q be an

r-primer for L. Let qf be an r-primer for Lf. If L ^ L1, then

either

(*) q is not a sample from L1; or

(*') q' is not a sample from L.

Proof. Suppose the lemma is false. Then for some L ^L1, both

(*) and (*') fail. We will use this to get a contradiction.

Pick an x e]N witnessing the fact that L ^ L1 (say, x e L

x £ L'; the other case will follow by symmetry). Then

13

(1) 1 = r(q-qf,x) (q1 is a sample from L since (**) is false;

-»- ->

therefore guess r(q,q,,x) must be correct,

•>

since q is a primer for L.)

(2) = r(qf,q,x) (permutation independence)

(3) =0 (Argue as in line 1, exchanging primed and

unprimed variables everywhere.)

Contradiction, as required.

Corollary to Lemma (criterion for language equivalence). Let the

notation be as in the lemma. Then

L = Lf <—> (q is a sample from L' and q' is a sample from L) .

Proof of Corollary. •*• is obvious.

•*- is the contrapositive of the implication of the lemma.

Armed with this corollary, its now easy to prove the theorem.

Proof of Theorem 2.

(a) To decide recursively in p, given integers i, j, whether

L. = L., proceed as follows:

(1) Using the oracle for p, compute

q = p(i)

q' = P(j) •

(2) By the corollary to the lemma,

LI = L.<r-> (q is a sample from L. and q1 is a sample from LT; .
ij i j

Thus, if we could effectively test whether the right-hand side of the

14

equivalence held, we would be done. It is clear that if we had a method

for evaluating the characteristic functions of L. and L., this test

could be performed. Such a method is indeed available, since

Ax[r(q,x)] = X ^
l:

and

Ax[r(q\x)] =x^

(b) Let r be the adaptive recognizer supplied by Lemma 3.1.2.

Property (1) of the lemma implies that requirement (i) of the theorem is

satisfied. Given an oracle for the equivalence problem for t|>, the

non-effective procedure (2) of the lemma for generating r-primers for

ij; becomes effective, thus establishing claim (ii) of the theorem.

Corollary to Theorem 2 (Theorem 21 of Section 2.3). Let ib: U ->:N

recursively index family F, and suppose the equivalence problem for i[>

is undecidable. Let r be any adaptive recognizer which identifies at

least the languages in F. Let IlL:!! be the size of a smallest r-primer

for LT. Then IlL^II is not bounded above by any recursive function

m(i).

Proof of Corollary. Suppose, to the contrary, that there is a

recursive m(i) which bounds llL^II from above. We will use this to

get a contradiction.

The point is that using m, we can construct a recursive generator,

p, of r-primers for ty: On input i, p simply outputs a sample from

L1? with base {x| x£m(i)}. We must verify that p(i) is a primer for

15

L.. Since m(i) is an upper bound on the integers appearing in the base

ib -*- ib
of some r-primer for LJ, there is an r-primer q for L\ and a

-*• ib ->•-+•
sample f from L\ such that p(i) is a permutation of q of Then

r(p(i)°e,x) = r(q.o(f.°e),x) (permutation independence)

0 • x*Li - ib
, (since q. is an r-primer for L.) .

1 , x e LT 1 1

This being true for arbitrary iel, p is a recursive generator of

r-primers for ty.

Now by part (a) of Theorem 2, the equivalence problem for ip is

recursive in p. But as p is recursive, this means that the equiva

lence problem for ip is recursive outright, contradicting the undeci-

bability of the equivalence problem for ip.

16

4. Connections With Other Models of Inductive Inference

We will conclude by indicating a connection with a rule-inference

model.

4.1 Definition

(1) A rule inference machine is a function M: S ->-]N such that

(i) M is partial recursive with dom(M) = S; and

(ii) for all s e S, ^w/^x is 0-1 valued and defined everywhere.

Thus, <)) ,.^ is always the characteristic function of some subset

of U.

(2) Rule inference machine M is permutation-independent if for

any s, t e 5 such that s is a permutation of t, ^/-N = <JW'£v
-»- -*-

(3) Let L Cm and let s be a sample from L. s is an

M-primer for matching L if for every sample e from L, ^v*/-*-.-^ = XT •

M is said to match L if and only if there is an M-primer for matching

L. The notion of a generator of M-primers is defined in the obvious

way.

The following proposition establishes the connection between adap

tive recognizers and permutation-independent rule-inference machines.

4.2 Proposition

(a) Let M be a permutation independent rule-inference machine.

Then there is an adaptive recognizer r such that for any L C]N and

any sample s from L, s is an M-primer for matching L if and only

-»•

if s is an r-primer for L.

17

(b) Conversely, let r be any adaptive recognizer. Then there is

a permutation independent rule inference machine M such that for any

L Cu and any sample s from L, s is an r-primer for L if and

only if s is an M-primer for matching L.

Proof, (a) r(s,x) =<b^^ (x) is suitable.

(b) On input s, M outputs the index of the following program:

"On input x, output the value r(s,x)."

Thus, Theorems 1 and 2 may be applied to permutation-independent

rule-inference machines by replacing:

"adaptive recognizer" by "permutation-independent
rule-inference machine"

"r" by "M"

"r-primer" by "M-primer" .

18

Footnotes

(1) For example, the following is suitable. Let p denote the

th n (x--+1)1i prime. Let < > = 1 and, for n > 1, let <x-,...,x > = II p,
~~ In . -ri

(2) The following map a: (0,1)* h—»IN works. Let < be a

total ordering of (0,1)* in order of increasing length of strings,

ties between strings of equal length being broken by a lexicographic

ordering. For x e (0,1)*, let A(x) be the number of strings preced

ing x in the < ordering.

(3) Total recursive function <J> is h-easy if $ (x) £ h(x) for

almost all x e IN, where $ (x) denotes the running time of <J>. on

input x. See [2,5] for details.

(4) For f, g: IN -*• IN, f is recursive in g if, given an "oracle"

for computing the function g, f may be computed effectively. See [6]

for details.

(5) The notion of matching is due to Feldman [3].

19

References

[1] L. Blum and M. Blum, "Inductive Inference: A Recursion Theoretic

Approach," Memorandum ERL-M386, Electronics Research Laboratory,

University of California, Berkeley, March 1973.

[2] M. Blum, "A Machine-independent Theory of the Complexity of

Recursive Functions," J. ACM 14 (2), April 1967, pp. 322-336.

[3] J.A, Feldman, "Some Decidability Results on Grammatical Inference

and Complexity," Artificial Intelligence Memorandum 93.1, Computer

Science Department, Stanford University, May 1970.

[4] E. Mark Gold, "Language Identification in the Limit," Information

and Control 10, pp. 447-474.

[5] J. Hartmanis and J.E. Hopcroft, "An Overview of the Theory of

Computational Complexity," J. ACM 18 (3), July 1971, pp. 444-475.

[6] H. Rogers, Jr., Theory of Recursive Functions and Effective

Computability, McGraw-Hill, New York, 1967.

20

	Copyright notice 1975
	ERL-500

