
 

 

 

 

 

 

 

 

 

Copyright © 1975, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



AN INTERPRETER FOR DECLARATIVE QUERY LANGUAGES

by

Wanyen Chang

Memorandum No. ERL-M498

9 January 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



AN INTERPRETER FOR DECLARATIVE QUERY LANGUAGES

Wanyen Chang

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

ABSTRACT

Users of a declarative query language can do retrieval and update

without specifying the logical search path for their data, thereby

achieving logical data independence, i.e. the data model of a data

base can be modified while application programs and users in general

are not affected by the change. This Report deals only with the

case where the data model is a set of logically related relations.

Logical data independence is achieved by letting users treat the data

base as a single relation for retrieval and update. An Interpreter is

designed to translate the user query into statement based on the re

lational model, by defining the appropriate search path. The ideas

involved are illustrated using SQUARE as a sample query language.

However, it is believed that the translation mechanism reported here is

general enough to apply to any query language based on relational model

that requires a user to specify the logical search path for the desired

data.

Research sponsored by Naval Electronics Systems Command Contract N00039-
75-C-0034



Section I Introduction

Data Independence & Relational Model

A common architecture for large shared data base systems is shown

in Fig. 1. The advantage of this type of system architecture is that

users are insulated from changes of the physical data organization,

sometimes referred to as Physical Data Independence. In systems of

this type, the logical data organization serves at least two functions:

(1) To help users understand the content of the data base,

(2) To be a common structure against which files may be defined

by application programmers and queries may be simply

expressed by casual users.

Relational Model is a data structure in which data files in a

data base are viewed as relations (usually represented by a special

type of Table — two dimensional array). It has been shown that as a

logical data organization it is superior to other structures, especially

with respect to the two abovementioned functions. For a detailed

account of the advantages of relational model over other structures,

readers are referred to Ref. [1].

Although the relational approach is capable of supporting physical

data independence, changes in the model itself may affect the functioning

of application programs and users in general. To illustrate this point,

let us consider the following query directed to the sample data base,

shown in Fig. 2(a):

Find the project titles of the projects managed by Frank Foo.

[21 .
Expressed in Query Language SQUARE, it reads:

-2-



TITLER2PROJ//R1MGR ('Frank Fo°' >

Expressed in Query Language ALPHA,*3^ it reads:

RANGE Rl X

R2 Y

GET W Y.TITLE: 3X((X.MGR=Frank Foo) &
(X.PROJ#=Y.PROJ//))

In general, a relation specifies a mapping between any two com

ponent attributes. Tn the sample data base, the mapping from MGR to

PROJ//, specified by Rl is a simple data mapping, i.e., a function.

However, the reverse mapping is complex, i.e., a one-many correspondence.

We will write MGR -^- PROJ# and PROJ# -^— MGR to denote these facts. Now

suppose the two data mappings become

MGR -£- PROJ// , PR0J# _JL
MGR.

The data base will change to that as shown in Fig. 2(b). The changes

in the data mappings may be induced by a policy change in the real

world. In this case, a manager may now manage more than one project,

but aproject is managed by exactly one manager. The same query, again

expressed in SQUARE and in ALPHA, now takes on a different look:

(SQUARE) TITLER2MGR ('Frank Foo')

(ALPHA) GET WY.TITLE : Y.MGR = FRANK FOO.

Thus, application programs involving relations R1/R2 may have to be

modified or rewritten, whenever the definitions of the two relations

are modified. At this point, we might notice that the cost associated

with the remodeling is not a logical consequence of the relational

-3-



model, rather it is due to the fact that the two query languages

require their users to spell out the search paths for retrieving the

desired data based on the relational model. As the model changes in

time, the search paths may have to do so accordingly, thus breaking

the so-called logical data independence. In this report, the user-

defined search path is referred to as logical search path, since the

system may take a different route to access the data.

Continuing the example, if the query languages allow the use of

data base names in the statements, the above query could be expressed

as

TITLE0WFrank Foo'>

in the modified version of SQUARE, and as

RANGE DN X

GET W X.TITLE : X.MGR=Frank Foo

in the modified version of ALPHA, where in both expressions DN stands

for the data base name. It is easy to verify that the last two

expressions are valid before and after the changes of the sample data

base.

The Problem

In general, a query statement consists of two parts: the

Qualification, and the Target list. In the above example, we see that

the qualification part of the query in both languages may be considered

as a mixture of the logical specification of the desired data and its

-4-



search path, the latter being model dependent. In the modified ver

sions, however, the qualification part becomes a pure logical

specification, therefore model independent. We also note that in the

modified versions, users are, at least implicitly, viewing the data

base as a single relation. The question then is that given the pure

logical specification of some data, how does the system construct the

appropriate search path for it? In other words, how is the system

going to translate a query against a single relation into a query

against a relational model (a set of relations)? That part of a

relational data base system that is responsible for this task is re

ferred to as the Interpreter. The report is concerned with the design

and implementation of the Interpreter. To simplify the presentation,

the interpretation mechanism is illustrated via a sample data base,

and SQUARE is arbitrarily chosen as the target language. For con

venience, the modified version of SQUARE will be referred to as

DELTA. However, it will be evident that the ideas presented in this

report are also applicable to other query languages based on

Relational Model which require users to define logical search paths.

-5-



Section II The Interpreter

The plan for this section is as follows: First, the interpretation

process of a sample query is shown. The sample data base then under

goes several changes, and it is shown how these changes can be absorbed

through corresponding adjustments of the interpreter to make the input

expressions remain correct. During the course of illustration, certain

conditions on data bases and requirements on the system are explained

and summarized into assumptions, so that the scope of the validity of

the results presented in this report may be clearly understood.

The Sample Data Base

Case 1 of the sample data base is shown in Fig. 3(a). The key

of each relation is underlined. The data mappings among the three

attributes: DEPT, ITEM, and FLOOR, as defined by the data base, is

explicitly shown in Fig. 3(b). The usual terminology for relational

model is used here. An attribute which is a component of a key is

referred to as prime attribute; otherwise it is non-prime. In relation

EMP, NAME is a prime, DEPT, MGR, etc. are non-prime.

By the definition of a key, the value of a key uniquely determines,

at any instant in time, the value of any attribute in the same relation.

And we may state the fact by saying that each attribute in a relation is

functionally dependent on the key. The value of a non-prime attribute

may be functionally dependent on part of the key or other non-prime.

In Fig. 4, the attribute ADDRESS in Rl is dependent on the attribute

SUPPLIER, which is only part of the key, and attribute BUDGET in R2 is

dependent on the attribute DEPT, which is a non-prime. In either case,

-6-



the attribute in question is said to be transitively dependent on the

key. A relation in Third Normal Form, or TNF for short, is defined

as a simple relation where every non-prime is non-transitively

dependent on the key. Thus, the five relations in the sample data

base are TNF's. For a full account of relational model, readers are

referred to E. F. Coddfs papers, [4], [5].

Two relations having common attributes may be combined by the

operation JOIN, defined below. Let a, 3, Y be attribute lists, such

that a n 3 = y. Let R be a relation over a, s over 3. The JOIN of

R and S over y Is then defined by

R * S = {(a,y,b) | (a,y) G R and (r,b) ^ s;

or a = % (y,b) e S;

or b = % (a,y) e R;}

where * means 'undefined.1 An example of JOIN is shown in Fig. 5.

Note that this definition is a generalization of the Natural Join,

[41
defined by E. F. Codd. In general, JOIN is non-associative. For

instance, three relations Rl, R2 and R3 shown in Fig. 6 can be joined

in two different orders, yielding different results.

Theoretically, a data base could be just any arbitrary set of

TNF's. However, to enable a distinction between two data bases, it

is reasonable to assume that the TNF*s in a data base are logically

related. We thus make the following assumption:

Assumption 1. The JOIN of all the TNFfs in a data base defines a

unique relation with distinct attribute names.

In fact, Assumption 1 asserts more than just the existence of logical

-7-



relationships among the set of TNF's in a data base. As JOIN is non-

associative, the set of TNF's may be joined to yield several different

realtions. By a unique relation, it is meant that a data base must

contain information such that a specific relation may be chosen from

the set of all possible relations that may be obtained by a JOIN

operation. The reason for this will be clear later on.

To make sure that TNF's in a data base can only join on prime

attributes and that the resultant relation does have distinct attribute

names, we have

Assumption 2. An attribute can be a non-prime in at most one TNF in

a data base.

We note that the sample data base does satisfy the above two

assumptions.

The Intrepretation Mechanism

Now consider the query: Find those items sold on the second

floor of the department store.

Expressed in SQUARE, it reads

ITEMSALESDEPTLOCFLOOR <'2'>

Expressed in DELTA, it becomes

DN
ITEM FLOOR = 2

where DN is the name of the sample data base (or the department store).

To translate into SQUARE a DELTA statement of the form DN ,
t s

where s is the source (or given) attribute and t is the terminal (or

target) attribute, the Interpreter uses two data files — the Connection

-8-



Graph (C-graph) and the Node Index, and a tranlation algorithm — the

T-algorithm.

(1) C-graph: The purpose of the graph is to show all the logical

search paths that are valid in the system. Given a data base, a C-

graph may be constructed with the following rules:

1. Each prime attribute is represented by a node, referred to as first-

level nodes.

2. If a first-level node is not a simple key, it is marked as fictitious,

otherwise, it is marked as real.

3. Keys of length I >_ 2 are represented by nodes of 9, -level.

4. Two nodes K and K«, where K. n K = <J>, are connected by an arc,

if and only if, either K- -*• K , or K •*• K , i.e;, one is functionally

dependent on the other.

5. Two nodes K- and K , where K_ 3 K , are connected by an arc, if

and only if, there exists no key K, such that K 3 K 3 K?.

6. Arcs in C-graph are associated with attributes common to the tables

(TNF's) corresponding to the two terminal nodes.

The C-graph for the sample data base is shown in Fig. 7. Obviously,

a real node in a C-graph represents a TNF in the corresponding data

base. A fictitious node, on the other hand, serves two functions:

(i) to ensure that the C-graph of a data base is always a connected

graph under the construction rules; (ii) to act as a starting node in

the construction of a logical search path, when the source attribute

is a prime which appears in more than one TNF

Rules 4 and 5 are so designed that certain types of cycles in C-

graph may be avoided. To fully appreciate the underlying idea, let

us consider another data base shown in Fig. 8(a). The logical links

-9-



among the five TNF's can be represented by a graph shown in Fig. 8(b).

Given certain information about a part, we may find the data of the

related suppliers in two ways: (i) through the TNF (s//.p#), or (ii)

through the TNF (s#.p#.w//). To ensure a consistent answer, it is

necessary for the system to see that the projections of the two TNR's

on attributes s# and p// be identical. The above consideration leads

to the following two assumptions:

Assumption 3. Projections of the TNF's on the same set of prime

attributes yield identical relations, i.e.

K il K 12 *' * Kin'

where K are prime in every T..

Assumption 4. A compound key may be partially defined.

Based on these assumptions, the cycles shown in Fig. 8(b) may be

eliminated by Rules 4 and 5. The resulting C-graph is shown in Fig.

8(c). Using the C-graph and the Node Index discussed below, proper

logical search paths can be constructed for given DELTA statements.

(2) Node Index: The purpose of a Node Index is to map the given

source and terminal attributes onto C-graph. The Node Index for the

sample data base is shown in Fig. 9. Since a prime may appear in

several TNF's, these TNF's are linked by a list. The head of the list

is a first-level node. The rest of the nodes in the list are in order

of their level number, the one with the highest level number being the

next to the head. When an attribute is identified as a non-prime, the

value in the third column of the Node Index indicates the location of

the corresponding node in the C-graph. When it is a prime, the value

is a pointer pointing to the head of a node list. The Node Index may

-10-



be a sorted array. Since, at any point in time, all the attribute

names are known to the system, address calculation may also be used.

(3) T-algorithm: Given the two data structures — C-graph and

Node Index, the Translation algorithm is quite obvious. The T-algorithm

for the input form DN is shown in Fig. 10. When s and t are both

prime, the T-algorithm first check to see if they are part of a com

pound key. If they are, then both s and t are mapped onto the same

node, otherwise a path connecting the two nodes must be constructed

by using the Labelling Algorithm in Graph Theory (see Appendix A).

Assuming no information regarding the access frequency of each TNF

is available, the check is probably most efficiently done if the

node list of each prime attribute is ordered by level number, as sug

gested in the construction of the Node Index.

Applying the T-algorithm to the sample query, we see that

attribute FLOOR is mapped to node DEPT, ITEM to node ITEM, using the

Node Index. The Labelling Algorithm then constructs the connecting

path between the two nodes, i.e., N(DEPT) : L(DEPT) : N(D.I) : L(ITEM) :

N(ITEM), where N stands for Node, L for Link. Converting node to TNF

names, it becomes: LOC : L(DEPT) : SALES : L(DEPT) : CLASS. Written

backwards as in SQUARE, and appending the source and the terminal

attributes to both ends, we get

tCLASSITEMSALESDEPTL0Cs

where s= FLOOR, t= ITEM. Since ITEMCLASSITEM is a redundant opera

tion, the above expression can be simplified to

item^Wt^floor

-11-



which is exactly the same as the SQUARE statement shown earlier. The

simplification rules are shown in Fig. 11. As the rules are quite

obvious, no explanation is needed.

Adjustments

Case 2 of the sample data base is shown in Fig. 12(a) and 12(b).

Specifically, the data mappings between DEPT and FLOOR now become

complex, and the mapping from ITEM to FLOOR becomes simple. As a

result, the TNF LOC may or may not exist depending on the decision

of the particular system. The change of this type may be characterized

by a non-prime moving from one TNF to another. To reflex the change,

the Node Index is modified so that attribute FLOOR is now mapped to

node ITEM, the rest being the same. Consequently, the T-algorithm

now yields the expression

ITEMCLASSFLOOR

which is the correct SQUARE statement in this case.

Case 3 of the sample data base is shown in Fig. 13(a) and 13(b).

Now the data mappings among the three attributes are all complex. In

this case, a non-prime (i.e. FLOOR) becomes a prime, and two new TNF's

(i.e. LOC and PLACE) must be formed. The C-graph also changes and

is shown in Fig. 14. Note that the C-graph now contains a cycle.

The three relations, SALES, LOC, and PLACE are said to form a

Cyclic Chain. In general, a Cyclic Chain may be defined as a set of

n relations where their keys can be ordered in such a way that

Kl n V K2 n V ••••Vl n V Kn n Kl

-12-



are all non-empty. When a set of relations form a Cyclic Chain, there

exists more than one way to join them, and the resultant relations are

likely distinct. This, of course, is due to the fact that operation

JOIN is generally non-associative. Thus, case 3 of the sample data

base violates Assumption 1.

One consequence of a data base failing to define a unique relation

is that the data base is at a state which might be termed 'information-

incomplete. ' For example, a valid question against the data base might

be, "Find the location of item A sold by the department D." Here, we are

tacitly assuming that item A might be purchased from several depart

ments. The system cannot respond to such queries, because either no

answer can be found in the data base, or more than one answer might

be given, which is clearly undesirable.

A simple way to eliminate cyclic chain is shown in Fig. 15(a).

Here, we have a new TNF called BASE, which explicitly specifies the

relationships among ITEM, DEPT, and FLOOR. In general, whenever we see

a cyclic chain in a data base, we may add a similar BASE relation to

eliminate the ambiguity created by the chain. In the current example,

the C-graph of the modified data base now becomes as that shown in

Fig. 15(b). There is no cycle in the C-graph, that is, the data base

defines a unique relation. The T-algorithm now yields

ITEMBASEFLOOR

Note that a user may express the query in SQUARE as PT.Ar.F.

However, from Assumption 3, it follows that these expressions are equivalent

-13-



Section III Conclusion

Data Bases

In addition to the four assumptions made in Section 2, we have

implicitly assumed that data bases compatible with the Interpretation

Mechanism also satisfy the following two assumptions:

Assumption 5. No functional dependence exists between any two keys

K_ and K«, where

Length (K^ = Length(K2) _> 2.

Assumption 6. C-graph of a data base contains no cycles.

The last two assumptions are made to avoid complex situations

which might occur in a C-graph. Assumption 5 is really not as severe

a restriction as it might appear to be, since very few real data bases

would violate the assumption. On the other hand, Assumption 6 does

somewhat restrict the scope of application. At the time this report

was written, a study of the possible types of cycles which may occur

in C-graph was being conducted. The results obtained so far strongly

suggest that Assumption 6 may be totally discarded.

Input Forms

The T-algorithm presented here only treats the input form DN .

For other forms, like

DN
t s =a, s2=b,

DN DNt S]_ s2

DN _ , [group qualification]
L- S3.

-14-



some modifications on the algorithm are needed. However, the principles

involved in each case are the same.

Updates

An update operation can be considered as a retrieval followed by

a rewrite operation done in the work space. Thus, the same inter

pretation mechanism is applicable. However, from the system's point

of view, updating a prime attribute is slightly more involved than

updating a non-prime. As already noted, a prime attribute may appear

in several TNF's in a data base. Thus, in updating a prime, TNF's

other than the ones on the search path may also be accessed. The task

can be accomplished by a separate module which is triggered by the

Node Index as soon as the target attribute is identified as a prime.

Extent of Logical Data Independence

In the case where logical data organization is a Relational Model,

five types of changes can be identified:

1. Adding an attribute from one TNF to another

2. Shifting an attribute from one TNF to another

3. Creating a new TNF

4. Deleting an attribute from the data base

5. Destroying an existing TNF.

It is obvious that the effect of changes of type 4 and 5 on application

programs cannot (and should not) be avoided. Therefore, in the brief

discussion of data independence below, we will ignore these two types

of changes. A user may interact with a data base system in four ways,

i.e. (i) to retrieve, (ii) to update, (iii) to insert a record and

-15-



(iv) to delete a record. From what has been presented here, we see

that retrieve and update operations can be made independent of logical

data organization. Since the other two types of operations are on a

record-by-record basis, something would have to be done to improve

their degree of data independence. We will not get into that here.

As far as the Interpretation mechanism is concerned, it will be useful

in systems where users doing retrieval and update greatly out-number

those doing insertion and deletion, i.e., wherever the system architec

ture as shown in Fig. 16 is appropriate.

-16-



ACKNOWLEDGEMENT

The author is deeply indebted to Professor L. A. Zadeh for his

support and guidance throughout this work. He would also like to

thank Professor M. R. Stonebraker for helpful discussions.

-17-



REFERENCES

1. C. J. Date, E. F. Codd, "The Relational and Network Approach:

Comparison of the Application Programming Interfaces," IBM

RJ 1401 (#21706) June 6, 1974.

2. R. F. Boyce, et al., "Specifying Queries as Relational Expressions:

SQUARE," IBM RJ 1291 (#20240) Oct. 16, 1973.

3. E. F. Codd, "A Data Base Sublanguage Founded on the Relational

Calculus," IBM RJ 893 (#15716) July 26, 1971.

4. E. F. Codd, "A Relational Model of Data for Large Shared Data Banks,"

CACM, Vol. 13, No. 6, June, 1970.

5. E. F. Codd, "Further Normalization of the Data Base Relational

Model," IBM RJ 909 (#15857) Aug. 31, 1971.

-18-



APPENDIX A

Labelling Algorithm

This algorithm is also known as Fundamental Algorithm in Graph

Theory. At each stage of the algorithm, each node exists in one of

3 states

unlabelled (indicated by blank)

labelled but not scanned (indicated by 0)

labelled and scanned (indicated by X)

Algorithm :

(1) Initially s is labelled (0) and each other node is unlabelled.

(2) If every node is either X or blank, stop; the X nodes are those

reachable from s. Otherwise, choose a 0 node u. Change u to an

X node. Change each blank node v such that u and v are connected

by an arc to a 0 node. (This process is called scanning u.) Go

to 2.

The Labelling Algorithm is used to find all the nodes reachable from

a node s in a given graph. For our purpose, a second stop condition

may be added to the algorithm, namely,

IF node t is labelled, THEN stop.

To indicate the path, it is only necessary to change the labelling

method to the following:

Suppose L is the label of node u.

*
This particular version is taken from R. M. Karp's class notes on
Network Flow.

-19-



In scanning u, label a blank node V which is connected to u by

L.V (a string of symbols).

When the algorithm stops, the label of node t now gives the path from

s to t.

-20-



USER

LANGUAGE

LOGICAL

DATA

ORGANIZATION

<]•

PHYSICAL

1 h DATA

J ACCESS ^

METHODS
ORGANIZATION

FIG. 1 DATA BASE SYSTEM ARCHITECTURE

Rl (MGR, AGE, SAL, PROJ#)

R2 (PROJ#, TITLE, TYPE)

(a)

Rl (MGR, AGE, SAL)

R2 (PROJfl, TITLE, TYPE, MGR)

(b)

FIG. 2 SAMPLE DATA BASE



EMP(NAME, DEPT, MGR, SAL, ...)

SALES(DEPT, ITEM, VOL 1, ...)

SUPPLY(SUPPLIER, ITEM, VOL2, ...)

LOC(DEPT, FLOOR)

CLASS(ITEM, TYPE

(a) SAMPLE DATA BASE OF A DEPARTMENT STORE

ITEM

/ \
DEPT > FLOOR

s

(b) DATA MAPPINGS

FIG. 3 CASE 1 OF THE SAMPLE DATA BASE

Rl (SUPPLIER, PART, ADDRESS)

R2 (EMP#, NAME, DEPT, BUDGET)

FIG. 4 TWO RELATIONS NOT IN THIRD NORMAL FORM



R Dl D2
a 0

b
1

h D3
i XX

i YY

2 zz

FIG. 5 EXAMPLE OF JOIN

R , Dl 1D2 °3
a 0 | A
b 1 XX

1 b 1 YY

1 ^

I
2 ZZ



R, D

A 0

B 0

C 0

A 1

B 1

C 1

A 2

(R1®R2)®R3

0

0

0

0

0

0

1

1

1

1

1

1

2

F I

0 a

1 3

2 Y

0 Y

1 a

A

B

C

A

B

C

A

B

C

A

B

C

A

R. I D

a A

3 B

Y A

3 A

3 C

Rj® (R2® R3) F I D

0 a A

1 a A

1 3 A

1 3 B

1 3 C

0 Y A

2 Y A

0 - B

0 ^

C

,

FIG. 6 NON-ASSOCIATIVITY OF JOIN



FIG. 7 C-GRAPH OF THE SAMPLE DATA BASE

SUPPLIER (S#, SN, ADDR)

PART (£#, PN, QNT)

WAREHOUSE (W#, WN, SIZE, LOC)

SP (S#, p#, VOL1, PRICE)

SPW (S#, p#, W#, VOL2)

(a)

(b) (c)

FIG. 8 ANOTHER DATA BASE AND ITS C-GRAPH



P/N NODE/POINTER

FIG. 9 NODE INDEX



INPUT FORM: DN

s = SOURCE NODE

t = TERMINAL NODE

1. IF s and t are both prime, then

IF (s,t) is a higher-level node,

THEN go to 4

ELSE go to 2.

2. Map s and t to C-graph, by using the node index.

3. Find the connecting path between s and t, by applying the

Labelling Algorithm to C-graph.

4. Convert nodes and arcs on the path to relation and attribute names,

5. Simplify the expression,and output instruction.

FIG. 10 T-ALGORITHM



1. Z Y X -*• Z X
t U V S t V s

if u 3

2. ZYX + ZY
t u v s t u s

if v = s.

3. Z Y X •*• Y X
t u V s t V s

if t = u.

4. Z Y X -*- 2 X
t U V s t u s

if u C V.

FIG. 11 SIMPLIFICATION RULES



EMP (NAME, DEPT, ...)

SALES (DEPT, ITEM, V0L1)

SUPPLY (SUPPLIER, ITEM, VOL2)

LOC (DEPT) ?

CLASS (ITEM, FLOOR, TYPE)

(a)

ITEM

c/ \ s

DEPT<—^FLOOR
c

(b)

FIG. 12 CASE 2 OF THE SAMPLE DATA BASE



EMP (NAME, DEPT, ...)

SALES (DEPT, ITEM, VOLl)

SUPPLY (SUPPLIER, ITEM, VOL2)

LOC (DEPT, FLOOR)

CLASS (ITEM, TYPE

PLACE (ITEM, FLOOR)

(a)

ITEM

DEPT^->FLOOR

(b)

FIG. 13 CASE 3 OF THE SAMPLE DATA BASE



FIG. 14 C-GRAPH FOR CASE 3



EMP (NAME, DEPT, ...)

SALES (DEPT, ITEM, VOLl)

SUPPLY (SUPPLIER, ITEM. VOL2)

CLASS (ITEM, TYPE)

LOC (DEPT, FLOOR)

PLACE (ITEM, FLOOR)

BASE (ITEM, DEPT, FLOOR)

(a) Case 3 modified

(b) C-graph

FIG. 15 ELIMINATION OF CYCLIC CHAIN



INSERT
&

DELETE

RETRIEVE

&

UPDATE

<•
RELATIONAL QL

r.„__. , SINGLE\ n_

.<55^(»L«Mj<}^->
INTERNAL

FORMS

\> RELATIONAL'

MODEL

IN

TNF's .

FIG. 16 PROPOSED SYSTEM ARCHITECTURE

ACCESS

METHOD

PHYSICAL

DATA

ORG.


	Copyright notice 1975
	ERL-498

