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ABSTRACT

An efficient algorithm for finding multiple solutions of a system of

nonlinear algebraic equations is presented. This algorithm consists of

solving an associated system of first order nonlinear differential

equations whose independent variable may be switched from one variable

to another during each integration step. The choice of the forward Euler

predictor and Newton-Raphson corrector for integrating the differential

equations leads to an extremely efficient method for implementing this

switching-parameter algorithm. This approach involves only the recursive

solution of an associated system of linear algebraic equations and can

be easily programmed. The switching-parameter algorithm can also be used

to derive the driving-point or transfer characteristic curve of multivalued

resistive nonlinear networks.
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I. INTRODUCTION

One of the most basic yet unsolved problems in the analysis and

design of nonlinear circuits [1] and systems [2] is that of finding the

set of all solutions of a "well-posed" system of nonlinear equations

f (x ,x ,...,x ) = 0

f2(x1,x2,...,xn) = 0 (1)

. .

f (x ,x0,...,x ) = 0
n l z n

over some compact domain D C]R . The classical Newton-Raphson algorithm

is not applicable since it generally converges only if the initial guess

is close to a solution, and no algorithm is known for choosing an

appropriate set of initial guesses [3].

Several methods for finding multiple solutions have been proposed

in the last few years, but as yet no efficient and satisfactory method

is available. The piecewise-linear method proposed by Chua [4] is capable

of finding all solutions, but it is applicable only for solving equations

of the type assocaited with circuits containing uncoupled piecewise-

linear resistors. The recent algorithm due to Chien and Kuh [5] is

applicable to an arbitrary system of piecewise-linear equations» but there

is no guarantee that all solutions will be found in a finite number of

iterations.

Another class of algorithms for finding solutions of f(x) =0

consists of numerically integrating some associated system of nonlinear

A system of equations f(x) =0 is said to be well-posed in this

paper if it possesses at least one solution and all solutions are isolated.
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ordinary differential equations in the normal form [6-10]. Among these

algorithms, only Shinohara [10], Branin [11], and Chao's [12] algorithms

have been devised specifically for finding the multiple solutions.

Shinohara and Chao's algorithms consist of numerically integrating for

a particular trajectory which coincides with the intersection of the

(n-1) surfaces defined by the first (n-1) equations f^x^x^...,

x ) = 0, i = 1,2,...,n-1. When the points on this trajectory are

substituted into the remaining n-th equation fn^xi»x2»*''»xn^ = °' a

solution to f(x) = 0 is found whenever the function f (•) changes

sign. Two difficulties may be identified with this approach: first,

an initial point on a particular trajectory must first be found, say by

a Newton-Raphson algorithm. This preliminary step could itself be

rather time consuming, and second, the solution may lie on more than one

distinct trajectory, in which case, only those solutions associated with

one particular trajectory will be found.

Although the trajectories associated with Shinohara and Chao's

methods are identical, Chao's method is actually a modified version of

Branin's method wherein each solution to f(x) =0 is also a singular

point of the associated differential equations. Since an infinite amount

of time is required in theory for a trajectory to arrive at a singular point,

each solution can only be determined approximately — after some finite

integration time interval whose length could vary widely depending on

how fast the trajectory approaches the singular point. Unlike Shinohara

2
Although the differential equations associated with Shinohara and Chao's

algorithm are different, the respective trajectories being sought are
identical. Although theoretically more elegant, Shinohara's method is
much more time consuming compared to Chao's method because it requires the
evaluation of the determinants of "n" (n-1) x (n-1) matrices per
integration step and is therefore inefficient when "n" is large.
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and Chao, Branin's method does not require any prior initial guess and is

therefore self-starting. However, Branin's emthod is rather inefficient

because each time step requires the computation of the determinant of

"n" n x n matrices. Moreover, extraneous singular points which could

be mistaken for solutions are usually generated.

In this paper, we propose yet another approach — the switching-

parameter algorithm — for finding multiple solutions by integrating

an associated system of differential equations. Though not flawless,

our algorithm is numerically efficient and is applicable to a relatively

large class of equations. It is also particularly suited for finding

multivalued driving-point and transfer characteristic curves of resistive

nonlinear circuits. A detailed derivation and implementation of this

algorithm will be given in Sections II and III. An analysis of the

properties of this algorithm will be presented in Section IV and some

applications of this algorithm to the analysis of resistive nonlinear

networks having multiple solutions will be given in Section V. Finally,

some difficulties that could arise with this algorithm will be described

in the concluding Section VI.
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II. THE SWITCHING PARAMETER APPROACH

Consider a system of "n" well-posed algebraic equations

f(x) =0 (2)

in n unknowns x= [xn ,x0,... ,x ]t9 where f(-): m11-»-mn is a
l z n ~

i 1C function. Suppose we introduce a parameter p e1R and define an

augmented system of "n" equations

f(x,p) = 0 (3)

in (n+1) unknowns [x,p] = [x ,x ,...,xn>p] such that Eq. (3) possesses

the following three properties:

(1) At some initial value p * p , a solution x of Eq. (3) is

known, a priori; i.e.,

f(xQ,P0) =0 (4)

(2) At some value p $ pQ, Eq. (3) reduces identically to Eq. (2);

namely,

f(x,p*) « f(x) -0 (5)

(3) For each p€ 1R1, f(x,p) « 0 is awell-posed system of equations.

There exist many methods for constructing an augmented equation with

the preceding properties. In the case of nonlinear circuits containing

passive resistive elements — such as resistors, diodes and transistors

and a battery (or several batteries with identical terminal voltage E),

we can simply choose p = E, and observe that the solution voltages are

equal to zero when E = 0.
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In the general case, we can always define the augmented system [7]

f(x,p) = f(x) + (p-1) f(xQ) =0 (6)

/\

where xfl is any initial guess. Observe that f(x,0) = f(x) - f(xQ)

has an obvious solution at x=xQ, and |(x,l) ° £(*)• Hence Eq. (6)
*

satisfies Eqs. (4) and (5) with pQ =0 and p = 1. Needless to say,

there exist many other augmented systems having similar properties.

Since the augmented system has one more unknown than there are

equations, there exists in general a continuum of points which satisfies

Eq. (3). Since our equations are assumed to be well-posed, all solutions

of Eq. (3) are assumed to be isolated for all values of p. Geometrically,

the solutions of the augmented system can be interpreted as shown in

Fig. 1as a collection of space curves in the (x^ - x2 - ... -xr- p)

space. In this hypothetical example there are two initial vectors

x(1^ and x*2* lying within the compact subset D(pQ) of the hyper-

plane p= p0. The corresponding solutions are located at the intersections

of these space curves with the hyperplane p = p ; namely,

x*(1), x*(2),...,x*(6) within the compact subset D(p). It follows

from this observation that any algorithm which is capable of tracing

these space curves efficiently can be used to find the multiple solutions

of Eq. (2). Observe also that if there is more than one disconnected

solution branch, such as the two branches shown in Fig. 1, then only those

solutions lying on that particular branch which passes through the given

initial guess xQ will be found. Although no algorithm is yet available
for finding all solution branches, we will show via an example in

section V that solutions lying on distinct branches of solution curves
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can often be found by choosing several uniformly spaced initial guesses

x(l) x^ ,9yS on the boundary of some prescribed compact domain

D C]Rn. The main contribution of this paper is to propose an efficient

algorithm for tracing the solution curve associated with the augmented

system.

Let r(x ) denote a solution curve of Eq. (3) passing through some

prescribed initial guess xQ. Such a space curve can always be represented

by a system of parametric equations

xl =xi^s^
x2 = x2(s)

x = x (s)
n n

P = P(s)

(7)

where s is some suitable parameter. For example, we can always choose

s to be the arc-length measured from the initial guess x^. This

choice, however, would require an enormous amount of computation if n

is large. To overcome this objection, we could choose another parameter

which exhibits a one-to-one correspondence with the arc-length over some

appropriately chosen interval, but which is computationally more efficient,

For example, we could partition the solution curve into several connected

segments, each segment being parametrized separately. In particular, we

could project the solution curve onto each of the axes x. ,x2>... ,xn> and

p, and then parametrize each segment with the projection map onto some

appropriately chosen axis. To be specific, let T and I* denote two

adjacent segments of the solution curve and let (x,p) denote the

coordinates of the end point of T , or the beginning point of Tfc.
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Then a simple parameter to choose for tracing T is s = +(x,-x.),

for some i, or s = +(p-p), so long as the value of x., or p, is

restricted to lie within the projected interval for segment T . The

sign is chosen in such a way that the solution curve is continuously

traced along the same direction. For example, consider the solution

curve in the p - vs. - x plane in Fig. 2, where the initial guess is

located at (x ,pft) and where the solutions are located at

Q1: (x*(1),p*), Q2: (x*(2),p*) and Q3: (x*(3),p*). The projection
of this solution curve onto the x-axis is given by the interval [x ,x ],

a g

while that onto the p-axis is given by the interval tPc»PeJ' Hence,

we can partition the solution curve into four segments and choose our

parameter s as follows:

segment 1: s = (x-x,) for x, £ x < xf

segment 2: s = -(p-pf) for pfa < p < pf

segment 3: s = -(x-x. ) for x^ < x < x^

segment 4: s = -(p-p ) for pfe < s < p±

Observe that [xb»xf] C [xfl,x ], [Ph>Pf] c [Pc>PeJ» [xi,xh] C [xa,xg]'

and [Pb,P±] c [Pc»Pe^-

Needless to say, there is an infinite number of ways to partition

the solution curve. However, to avoid going outside the projected interval

on each axis, a good strategy will be to choose the parameter s at

each point on the solution curve to be that variable x e ix^x,^,... xn»PJ

which changes most rapidly. For example, at point (e) on the curve, we

choose s = (x-x ) since |Ax| > |Ap| about a small neighborhood of

point (e). On the other hand, we choose s= (P~Pg) at Point (&)
since |Ap|> |Ax| about a small neighborhood of point (g). If we

-8-



adopt this strategy for each point on the solution curve, then we are

guaranteed that

,dx I
|-^H <1, i=1,2 n (8)

and

If111 <9>

where the equality sign is attained only if s = +(x -x ), or

s = +(p-p), where x or p is associated with the beginning point of

the segment in question. To determine the precise rate of change of x.

and p with respect to the parameter s, let us differentiate both sides

of f.(x,p) = 0 with respect to s:
i -

n 3f.(x,p) dx. 3f.(x,p) .

^-^st* -iat-f =°'i =1'2 n <10)

Now at any point (x,p) on the solution curve, choose s = +(x.-x, )

such that Eqs. (8) and (9) are satisfied. In other words, choose the

index "k" such that the solution curve at (x,p) changes most rapidly

in the direction of the coordinate axis x. . The plus or the minus sign

will be chosen later in the integration process to assure that the

solution curve is always traced in the same direction. Substituting

dx,/ds = +1 into Eq. (10) and rearranging terms, we obtain the following

system of associated differential equations:
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The inverse matrix in Eq. (11) is well-defined in view of Eq. (8) and (9).

(See Proposition 1 of Sec. IV.) Observe that Eq. (11) is the differential

equation governing the solution curve of Eq. (3). Consequently, the

trajectory through the initial guess (?0,p0) is precisely the solution

curve of Eq. (3). It must be emphasized that since the parameter

s = +(x.-x, ) could change from point to point on the solution curve, the

k-th column in the matrix may change position from one integration step

to another. In other words, Eq. (11) actually represents (n+l) "distinct"

systems of equations.
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III. PRACTICAL IMPLEMENTATION OF THE SWITCHING-PARAMETER APPROACH

Since Eq. (11) could conceivably switch from one system to another

after each integration step, a single-step integration algorithm is

preferred over the more efficient multi-step algorithms [13]. The

approach to be described in this section uses the Forward Euler algorithm

to predict an initial guess near the solution curve. The Newton-Raphson

algorithm is then used as a corrector to zero in to an accurate solution

point. Two Newton iterations per time step have been found to be more

than adequate for this purpose. This Forward Euler Predictor-Newton Raphson

Corrector algorithm can be streamlined and implemented very efficiently

by solving an alternate but equivalent form of Eq. (11). To derive this

equation, observe that along the solution curve, Eqs. (3) and (10) may be

combined into one equation; namely,

dj(x,p) = r3|(x,p) 3f(x,p)1
-~3S L 35c 3p J

Hs"

da
ds

=-c?(x,p) (12)

where c is an arbitrary positive constant.

Solving Eq. (12) for f(-), we have

f(x(s),p(s)> =f(x(J\p(3))e-cs (13)

where f(x^ ,P ** ) could be interpreted as an error vector at the

j-th integration time step. Observe that adding the term -cf(x,p)

in Eq. (12) has the desirable effect of damping out the local

truncation error. Consequently, instead of integrating Eq. (11), let

us focus on Eq. (12). As it stands, Eq. (12) consists of a system of

"n" equations in (n+1) variables. To these, however, we add the equation
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dxk *\
sgn ^ IT = x (14)

where s = + (x,-x,) is chosen by the same recipe as before. Eqs. (12)

and (14) can be expanded as follows:

3f. df df df
X ... X ... X

dx„ dx, dx 3x

df. 3f9 3f9 3f9
b • • • A • • • £m

dx, dx,

df d£
n

dx, dx.
n .

3f
i

dx.
n .

dx

3f
l

dx

n

0 ...sgn(-ji). .. 0

-cf^x.p)

**2 -cf2(x,p)

<
3p ds

9f2
3p

dx2

ds

• •

=

3f
n

3p

dx
n

ds

0
dp

-cfn(x,p)

(15)

Now applying the Forward Euler algorithm to Eq. (15) with a step size

h, we obtain

df. df df.
X . . .

dx. dx,
x *

*Ji Hi
3x, dx,

3x,

3?.

3f 3f 3f
n n ... n ..

3xx 3x2 3Xk

dx dp
n

3*2 a£g
dx dp

n

A A

df df
n n

dx dp
n

dxk
..sgn(-—)...0 0

as

x(J+1) x(^
Xl ~X1

x(j+1) x(j)
x2 x2

x(j+i).xo)
n n

p<J+1>-p<J>

= -he

f,<x<J>.p«>>

f(x«>,P«>)
n —

_ 1
c

(16)

3fi 3fi m m
where -r— and •—• are evaluated at x «= xu' and p = p J .

Since c is an arbitrary constant, let us choose c = — and rewrite
h

Eq. (16) as follows:
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J(x(3),p(J))
xa+i)_x(j)

p«+1>_p(i)
=-i(x(j),P(j))

ds
sgn(- ) [X,(j+1)-X.(j)] =hi+ir l\ \ J(j+Dx. =x, J

k k

(17)

(18)

where J(x J ,p ** ) is an n x (n+1) submatrix made up of the first

n rows of the matrix shown in Eq. (16). Observe that the expression

dx.

sgn(-
ds

k k

_„(j+l)/.+1x) in Eq. (18) must be evaluated at \=\
k

-_<J>

and

not at x=x^J' in order to ensure that the solution curve will always

be traced in the correct direction; i.e., no portion of the solution

curve already traced will be retraced. It follows from Eq.(18) that

h=|Ax^+1^|, where x^ is that variable which exhibits the maximum
variation during the preceding integration step; i.e.,

(j) .(j)|Ax£j)| =max{|Ax<j)|, |Ax^ |, ..., |Ax^|, |Ap^|}(19)

where *<*> &x^> -x^ and Ap<*> &P™ -p^.
i x i

Observe that Eqs. (17) and (18) consist of a system of (n+1) linear

equations in (n+1) unknowns x(j+1), p^+1). Solving this system by

Gaussian elimination, or by any other efficient linear equation solver,

we obtain the value of x(j+1) and p(j+1) as predicted by the Forward

Euler algorithm. To reduce the local truncation error, we correct this

predicted value by setting x£J =x£ >h in Eq, (3) and solve for the
(j+D (j+D (j+D 0+1> Jj+D n(J+1)

remaining variables x_J ,x2 >* **»xk-i »xk+l »•"» n

using the Newton-Raphson algorithm with the predicted value as the
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initial guess. Observe, however, that this procedure is equivalent to

that of solving Eqs. (17) and (18) with h = 0! Hence, our Forward

Euler Predictor-Newton-Raphson Corrector algorithm can be efficiently

implemented on the same set of linear equations. We can now summarize

our algorithm as follows:

Step 0. Choose an appropriate step size h. Set x = x. and

p^ ' = p . Set x, ' = p so that the last row of the matrix in Eq. (16)
K K0 k H

is given by J^ =[O,..^,!]*. Set |Ax£0)| =h.
Comment. For the examples in this paper, the typical values of h vary

from 0.05 to 0.1.

Step 1. Set j = 0.

Step 2. Solve Eqs. (17) and (18) for x^+1^ and p^+1\ If there

is aunique solution ,find Ax^ such that |Ax/J |=max {|Ax!""J |,

... |Ax |, |Ap|} and go to Step 3. If there is no solution, find

the index k so that columns 1,2,... k-l,k+l,... ,n+l of J J are

linearly independent. The column "k" can be detected without any

extra computation by examining the row-echelon matrix resulting from the

Gaussian elimination of the Eqs. (17)-(18). Switch from the parameter

x. to X.** corresponding to the new column "k" and go to Step 4,

Comment. The switching procedure can be mechanized by substituting

(1+1) ^\x£ into the expression sgn(—:— f+iO from Eq. (18) and
8 w1

solving once again the up-dated Eqs. (17)-(18) for x "* and p ** .

Step 3. If |Ax^j+1)| =lAx^l, go to Step 4.

3
This algorithm is formulated under the assumption that the hypothesis

of Proposition 1 in Section IV is satisfied. Hence, Eqs. (17) and (18)
always have unique solutions except possibly when j^O, i.e. when the algo
rithm is initialized by arbitrarily setting x, \0)» p.
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If |Ax^+1)| * [Ax^^l, switch from the parameter x^ to x£j+1)
and go to Step 4.

Comment. The values of x J and p J obtained from Steps 2 and

3 are the predicted values of x and p at the (j+1) th integration

step via the Forward Euler algorithm. The next steps will be to apply

the Newton-Raphson corrector.

Step 4. Set h=0 in Eq. (18). Substitute *^ ,P ** into Eq. (17)
(i+l)f (1+1)'

and solve for the first corrected value xXJ ,p J . Observe that

(x^4"1^^4"1^) represents the corrected value of (x(j+1) ,p(j+1))

after one Newton-Raphson iteration.

Step 5. Repeat Step 4with x<^+1> =x«+1>' and p(^+1) =P<J+1)'
(i+1)" (i+1)"

and solve for the second corrected value (xVJ ,p J ). This value

is that of (x^J ,p J ) after two Newton-Raphson iterations.

Step 6. Set j = j + 1 and go to Step 2.

Comment. If necessary, Step 5 can be iterated until the local truncation

error due to the Forward Euler algorithm is negligible. In most cases,

however, two iterations are more than adequate.

The preceding algorithm is summarized in the flow chart shown in

Fig.3. We will conclude this section with an example using this algorithm.

Example 1.

4
Find the solutions of the equations

f (x ,x ,x3) =asinOra^ sin(bx3) - x2 =0

* These equations are taken from Chao [12] where nine solutions have
been found.
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f2(x1,x2,x3) = c- dx3 + ex sin(fx3) - x1 =0

f3(x ,x ,x ) = g+ hx2 sindoc^ - x3 = 0

where a = 2, b = 0.4tt, c = 2.5, d = 1, e = 0.75, f = 2tt, g = 1, h = 0.8,

and k = 2tt. Recasting these equations into the form of Eq. (6) and using

the switching parameter algorithm with x = (0,0,0) as the initial

guess, we obtain the solution curve shown in Fig. 4. The nine points

on this curve with p = 1 are the solutions. They are of course

identical to those obtained earlier by Chao [12]. However, our algorithm

is not only more efficient, but it also does not require the difficult

task of finding an initial guess. In other words, our algorithm is

self-starting.
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IV. PROPERTIES OF THE SWITCHING ALGORITHM

The switching-parameter algorithm presented in the preceding section

has been derived via a geometric and heuristic approach. Our objective

in this section is to carry out a mathematical analysis of this algorithm.

Our first proposition gives us a sufficient condition which guarantees

that our associated differential equation is well-defined.

Proposition 1.

If the rank of the n x (n+1) Jacobian matrix of the vector-valued

function f(x,p) from Eq. (3) is equal to n along the solution curve

of the associated differential equation (11), then Step 2 of the preceding

algorithm always gives a unique solution (x ,p ).

Proof.

Along the solution curve of Eq. (11), Eq. (17) reduces to

3xx 3x2

dx, dx«

df d£
n n . .

dxx dx2

df

A*

df

dx^

1 . . !fi. .

^2 ... 112 ^2 (j+1) (j)
dxk dx dp x2 "x2

2 .

df df
. . n ...

*r± 3xk

dxk0 . . .sgn(-r--). . .

3fl 3fl
dx

n
3p

A.

3f2
dx

n
•

A.

3f2
3P

•

9?2
dx

n

•

A

3f2
3p

0 0

(j+l)_x(j)
Xl Xl

x«+1)-x«>
n n

p^+1>-p(^

(20)

(0)We initialize the algorithm by setting x£ = p. If the above matrix

is nonsingular, aunique solution (x^ ,p^ ') exists. If the matrix is

singular but there exists a solution, then it is unique because xfc = xfc + h
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is fixed. If there exists no solution, then since J/ is of rank n,

there is an index k such that the n columns {J. ^i=1» i^ k of the

n x (n+1) Jacobian matrix constitute a linearly independent set. Hence,

by switching parameter from x/'=ptox/=X£ and letting x^ =

X£ + h, the values of all x^ % i=1,2,...n+1, i^k and pv are then

uniquely determined. When j > 1, then since the rank of the Jacobian

matrix is n, the solution [Ax,Ap] (j+1)A [x(j+1)- x(j), p(j+1)- p(j)] of the

first n equations in Eq. (20) is a tangent vector to the curve y_ in the

(n+1)-dimensional space defined by f±(x,p) = 0, i = l,2,...n. The last

equation in Eq. (20) represents ahyperplane <3j defined by x, =xfcJ + h.

The set of solutions of Eq. (20) is the intersection >y of y. and ijS.

In particular, Eq. (20) has a unique solution if and only if .y contains

asingle point. Since |Axfc| =|x£J+1 -x£j)| =max{ |Ax]L|,...|AxJ ,|Ap|}#),
the k-th component of the tangent vector to Q at [x ,p^'] £ 0. This

implies that the tangent vector does not lie on the hyperplane and hence or

contains only one point and therefore Eq. (20) has a unique solution. D

Observe that the hypothesis of Proposition 1 may be satisfied even for

a function f(x) whose Jacobian does not have a full rank along the solution

curve. This because the Jacobian matrix of f(x) is only one of "n" distinct

A.

nxn submatrices associated with the augmented function f(x,p).

Our next proposition gives us a bound on the local truncation error

e(i+l) A|J<3+« . (J+D, (21)

where

-O+D 4 [iU+D.iCJ+i) jXj+i^o+Djt (22)

and
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(j+1) A r (j+1) (j+1) (j+1) rt(j+l),t= [x£~ ,X2 , •.. ,x
n

,P ] (23)

denote respectively the exact and the computed values of x ,x_,...,x

and p at the (j+l)-th time step.

Proposition 2.

A, A. *• A,

If the parametric equations x_(s),x2(s),...,x (s), and p(s) of

the solution curve have continuous second derivatives, and if the rank

of the n x (n+1) Jacobian matrix of the vector-valued function f(x,p)

from Eq. (3) is equal to n along the solution curve of Eq. (17), then

the local truncation error £ J associated with the Forward Euler

Predictor in Eq. (17) is bounded by

e(^+1)<|M,

where

mA /? rdVS\2 , ,d2S(.K2
M = / I sup ( 5—) + sup ( 2^ »

V i=l ds ds

(24)

where the supremum "sup" is taken over all values of s in the interval

;(j} <s<s(j) +h, if sgn (-^)

or in the interval

s(j) -h<s< s(j), if sgn (•

Proof.

ds

(j)} >°

(25)

k k

) < 0

J

Since x (s),x (s),...,x (s), and p(s) have continuous second
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derivatives, we can apply Taylor's theorem with remainder [14] to each

component of the vecto:

the point y^(s^'):

A. A /V A. A, A. £

component of the vector y(s) = [x (s),x2(s),...,xn(s),p(s)] , about

dy4 (s)
~(j+D " j. i

ds

h2 d2yj(s)
h + T 2

(j) ds
s=s J

^

,*vwhere s(j) <s± <s(a) +h, if sgn (-jjj5) >0

(j) -h<i. <s(j), if sgn (r% <0.
J

We can recast Eq. (26) into the following vector form

2 d2g(s);o+i) . ;(j) +&<s>
ds (j) 2 . 2

s=s J ds

(26)

s=s
i »

(27)

(28)
s=s

where s = s is used to denote that s - s. in y (s), i = 1,2,...

n+1. Now premultiply both sides of Eq. (28) by the Jacobian matrix

J(y(j)) of f(x,p) = f(y), we obtain

-U>s=s

,2/v+si3(ya))d2iai
(29)

ds
s=s .

a.(A) */*(l)
Now since y J is, by hypothesis, the exact solution, f(y ) = 0

and Eq. (15) simplifies to

a. „ dy(s) q

Substituting Eq. (30) into Eq. (29), we obtain

3(y%[y<^-y«>] -A +̂ 3(y<3>) fJ«
2 Xxi

-21-
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Zv

(31)
ds

s=s



where J(y) is computed from Eq. (17) with y J = y . Assuming

that the preceding value y^' ±s exact, then r*(y ** ) = 0, and Eq. (17)

simplifies to:

3<9(J))[y(j+1)-?(j)] =& (32)

Subtracting Eq. (32) from Eq. (31), we obtain

2 Z*i

ds2 s=s

a. <*(-i)
Since J(y ) is non-singular (proposition 1), we have

(33)

(34)-(j+D (J+D h2 d2y(s)
Z ~Z " 2 2

ds
s=s

;. 02(J+1)_y«+1)|l <^M. (35)

when M is as defined in Eq. (24)* ^

Our next proposition applies only to the case where the augmented

system is chosen as in Eq. (6) which we rewrite as

f(x,p;xn) = f(x) + (p-1) f(xn) = 0, (36)

in order to emphasize that Eq. (36) actually represents a continuum of

distinct equations, each one identified by an arbitrary initial vector

x . In other words, even though the solution curve of Eq. (36) will vary

with the choice of x , they must all pass through the solutions of

f(x) = 0 at p = 1. Our next proposition asserts that these solution

curves in fact cannot intersect anywhere else!
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Proposition 3.

Let x' and x" be any two initial vectors which are independent

in the sense that f(x') ^ ^(Xq), where k is an arbitrary constant.

Let T(x') and T(x") denote the respective solution curves plotted in

the x-space with p *as a parameter. Then any intersection x between

T(x') and T(x") must necessarily be a solution of f(x) = 0.

Proof.

We will prove this proposition by contradiction. Suppose r(x^) and

T(x") intersect at some point x e]Rn such that f(x) ^ 0. Then

f(x,p»;xj) = f(x) + (p'-l) f(xj) =0, PW 1 (37)

and

f(x,p";x|;) =f(x) + (p"-l) f(xJJ) = 0, p" ^1 (38)

Subtracting Eq. (38) from Eq. (37), we obtain

(p'-l) f<x') - (p"-l) f<xg) =0 (39)

or

f/xt\ = (P' "1? f(x») (40)
^V (p'-l) -lV

But this contradicts our hypothesis that J(x') ^ kf(xj). •

Observe that proposition 3 does not assert that each solution curve

must necessarily pass through all solutions of f(x) =0. It only asserts

that each point of intersection between two solution curves is also a

solution of f(x) = 0. In fact, as will be shown in the next section,
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it is possible for a solution curve T(xQ) to pass through only some

of the solutions of f(x) = 0. This will occur, for example, when the

solution curve f(x,p; x.) = 0 consists of several disconnected branches,

such as the ones depicted in Fig. 1. However, it is also often possible

to choose some initial vector x- such that the corresponding solution

curve consists of only one contiguous branch. Hence, even though our

algorithm will not guarantee that all solutions of f(x) = 0 will be

found for an arbitrary choice of x , a useful strategy that will

usually succeed in finding most, if not all, solutions is simply to

repeat the algorithm with several different initial vectors chosen

around the boundary of the compact set D where the solutions are

being sought. Moreover, on the strength of proposition 3, we know all

solution curves must intersect at solutions of f(x) = 0 and hence no

extraneous solutions will ever be encountered. To illustrate this

strategy, consider the hypothetical example shown in Fig. 5, where the

solutions of f(x) =0 are to be found inside the compact domain D.

Suppose we choose an initial point at the center of each boundary. A

hypothetical solution curve T(x') is shown passing through solutions

©,®,©>® and ®, whereas that of r(x|J) is shown passing through

solutions ©,©,©,©,©,©,©,© and ®. Another hypothetical

solution curve T(x"f) is shown passing through solutions ©,©,©

and ©, whereas that of r(x"") is shown passing through solutions

© ,© ,® ,© »© »© and © . Observe that the union of all intersection

points of the two solution curves r(xjj) and r(xJJ") gives us a total

of 9 solutions. There is of course no guarantee that all solutions

will be found with this strategy. However, since our switching-parameter
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algorithm is very efficient, we could often afford to repeat the algorithm

with several initial points. The motivation being that each new solution

curve might give rise to additional points of intersection.
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V. SOLVING RESISTIVE NETWORKS WITH MULTIPLE SOLUTIONS VIA THE SWITCHING-

PARAMETER ALGORITHM

We will now apply the switching-parameter algorithm to solve two

basic problems associated with resistive networks having multiple solutions

[1]; namely, the problem of finding the operating points, and the problem

of finding driving-point or transfer characteristic curves. In both

cases, we are concerned with networks containing non-monotonic voltage-

controlled and current-controlled resistors. Since nodal analysis is no

longer applicable for this class of networks, let us choose the more

general tableau formulation given in [13]; namely,

1 -AC 0 V E \*>v 0

K
-V

0 5i V
~n

- g(V,I)
A f3(v,i) = 0

0 0 A I AJ f (I) 0

where

(41)

V is a b x 1 vector of branch voltages

E is a b x 1 vector of voltage sources

I is a b x 1 vector of branch currents

J is a b x 1 vector of current sources

V is an (n-1) x 1 vector of node-to-datum voltages
~n

A is the associated (n-1) x b reduced-incidence matrix, where b

is the number of branches and n is the number of nodes.

K and K are b x b matrices for specifying the constitutive
~v ~i

relation of the linear elements

g(V,I) is a b x 1 vector whose j-th component is either a nonlinear

function if the corresponding element is a nonlinear resistor, or

-26-



is equal to zero, if otherwise.

Observe that the first and third equations f (V,V ) = 0 and f_(D = 0
—a ~ ~n " " j ~ ~

are actually linear equations representing KVL and KCL, respectively.

The second equation fQ(V,I) « 0 represents the elements constitutive

relations and is in a form which includes both voltage- and current-

controlled resistors. We will define two augmented systems of equations,

one is better suited for finding the operating points, while the other

is more suited for finding driving-point and transfer characteristic

curves.

A. Augmented System for Finding Operating Points

Let us introduce a parameter p as in Eq. (6) and recast Eq. (41)

as follows:

fr*(V'V

f$(V,j)

f (I)

+ (P-D

yY(0).Y<°»'
f8(v(0\i(0))
yi(0))

? (v,v ,p)
~a ~ ~n

~o"

fg(V,I,p) = 0

!Y(i,p) 0

(42)

where V^ ,V ' and 1^ ' denote an arbitrary initial guess. The

associated system of linear equations corresponding to Eqs. (17)-(18) is

given by:
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where the variable x^ e {V,V ,l,p} is chosen at each integration step

such that

|AxJ =max {|AV±|, |AVfl |, |AI±|f |Ap|} (45)

Solving Eqs. (43)-(44) via the switching-parameter algorithm, we obtain

all solutions lying on the solution curve corresponding to the initial

point Or°\v* ,I^°\p^). Observe that even though the dimension of

the matrix in Eq. (43) is much larger than the corresponding nodal

admittance matrix, it is extremely sparse and may be efficiently computed

using sparse-matrix techniques [13].

Example 2.

Find the operating points of the circuit shown in Fig. 6(a) where

the constitutive relations of the two tunnel diodes are shown in Figs.

6(b) and (c), respectively.

For this simple circuit, the following equations can be obtained

by inspection:

f1(V1,V2) = E- Rg^) - (Vx+V2) = 0 (46)

f2(W " 81(V1} " 82(V " ° (47)

where

81(V " 2#5 Vl " 10,5 Vl + U'8 vi (48)

g2(V2) = 0.43 V2 - 2.69 V2 + 4.56 V2 (49)

The augmented system of equations is given by
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\&VV2,P) =VW +(P_1) VVx0>»V20)) =° (50)

f2(VlfV2,p) ^f2(Vl9V2) +(p-1) f2(V^0),V^0)) =0 (51)

For illustrative purposes, the following four initial points were chosen:

1. (V<0),V<0),p(0>) = (0,0,0) 2. <V<0).V«V°>> - (3,0,0)

2. (V<°>,vf ,P(0)) -(0,3,0) 4. (V<0>,V<°>,P(0)) =(3,3,0)

The corresponding solution curves are obtained by the switching-parameter

algorithm and are shown in Fig. 6(d). Notice that these solution curves

all intersect each other at the plane p = 1 and it follows from

Proposition 3 that these points of intersection are the operating points.

The same set of operating points can be obtained by projecting the

solution curves onto the V - V2 plane as shwon in Fig. 6(e) and then

locating those points with p = 1. Observe that the first and third

solution curves pass through only 5 operating points ((l), (2),(3),©

and ®) whereas the second and fourth solution curves pass through

all 9 operating points. Also shown in Fig. 6(e) are dotted lines

indicating the points where the Jacobian matrix associated with Eqs. (48)-

(49) is singular. Notice that our algorithm is applicable even though

the solution curve passes through several points whose associated

Jacobian matrix is not of full rank.

B. Augmented System for Finding Driving-Point and Transfer Characteristic

Plots

Let N be a resistive nonlinear network containing in addition to

fixed internal voltage and current sources, an input voltage V±n which
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varies from -E to E«. The problem is to derive the relationship

between the input current I and the input voltage Vin, or between

some output voltage V_ and the input voltage V . To solve this problem

using the tableau formulation, let us decompose the voltage source

vector E in Eq. (41) as follows:

where

E^

E = X(E. - Ej + p(E- + Ej
~ ~int ~1 -1 ~z

l"l

"k-1

\ ' ~int

'k-1

> E
~1

'k+1

%

(52)

E.
, E„ =

"2
(53)

where e, ,e_,... ,et n,e, ., .. .e, denote the internal voltage sources,
1 Z k—1 k+1 b '

e, = V denotes the input voltage source, and where A and p are two

scalar parameters. Observe that when X = 1, the internal sources are

set at their full values. Observe also that when A = 1 and P = 0,

we have V = -E.. Similarly, when A = 1 and p = 1, we have

V. = E_. Now, recast Eq. (41) as follows:
in 2

1 -AC 0 V

K
~v

0 5d V
-n

-

0 0 A I
"* *" *"

A(e. -Ej+p^+Ej
•vXnt ~x ~»l —*•

g(V,I)

AAJ

-31-
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Suppose we set p = 0 in Eq. '(54) and trace the solution curve via the

switching-parameter algorithm from A = 0 to A = 1. When A = 0

and p = 0, all sources, including the input voltage source, are set

to zero. If all resistors inside N are passive, which is usually the

case for most practical circuits, then the solution to Eq. (54) when

A « p = 0 is simply V = 0, V =0 and 1 = 0. Hence, by holding

p = 0, we can apply the switching-parameter algorithm to solve for the

solution curve of the system of equations

f3(V,I,A,0) =0 \ (55)

fv(I,A) = 0

which passes through the initial point Q(A =0) at (V(0),V ,A^0),p(0))

= (0,0,0,0). Let Q(A = 1) be the point on this solution curve

corresponding to A = 1. Observe that the solution at Q(A = 1)

corresponds to the case when all internal sources are set to their full

values and when the input voltage is set to V. = -E-. Now, apply the

switching-parameter algorithm once again to trace the solution curve of

the system

f (V,V ,l,p) = 0
~cx ~ ~n -"

f3(V,I,l,p) = 0

f (i,D = o

) (56)

which passes through the new initial point Q(A = 1). The resulting

e

The idea of tracing the driving-point and transfer characteristic curve
via a solution curve is analogous to that proposed by Katzenelson [14] and
Kuh and Hajj [15] for solving piecewise-linear resistive networks.
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space curve is precisely the locus of the solutions with V±n changing

from -E to E2- Hence, the I -vs.- V±n driving-point characteristic

curve, or the V„ -vs.- V, transfer characteristic curve can be easily
0 in

obtained by projecting this curve onto the I - V±n plane, or onto

the V - V plane. We will now present two examples to illustrate
0 in

this two-step algorithm.

Example 3.

Find the V„ -vs.- V. transfer characteristic curve of the
0 in

Schmitt Trigger circuit shown in Fig. 7(a) over the interval 0 < V±n <

5 volts.

Since V > 0, it suffices to choose the transistor circuit model
in —

shown in Fig. 7(b), where the diodes are characterized by the usual

exponential law [13]. Since there is only one internal voltage source,

we can simplify the preceding algorithm by letting E±nt and V^

assume the roles played by A and p, respectively. Hence, setting

first V = 0, we apply the switching-parameter algorithm with
in

E. = 0 as the initial point and trace the VQ -vs.- E±nt solution

curve as shown in Fig. 7(c). Notice that this solution curve need only

be traced up to EJ = 10 volts, the full supply voltage of the internal
int

voltage source. This curve corresponds to A = 1, p = 0 in Eq. (56).

Hence, at E. =10 volts, we found V. = 6.7 volts — the initial
int 0

point for the desired solution curve. With E set at 10 volts,

we apply the switching-parameter algorithm once again with VQ = 6.7

volts as the initial point, and obtain the V -vs.- V. solution curve

shown in Fig. 7(d). Observe that this transfer characteristic curve is

a multivalued function of V. and could not have been obtained by
-—————— in
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conventional methods. The switching-parameter algorithm essentially

chooses V. as the independent variable until V, =3.56 volts, when
in in

it switches automatically to V as the independent variable. When the

solution curve reaches V = 10 volts, the algorithm switches

automatically back to V as the independent variable.

Example 4.

Consider the circuit shown in Fig. 6(a) which we redraw as shown

in Fig. 8(a). The objective here is to derive the V -vs.- V and

the Vn -vs.- V. transfer characteristic curves over the interval
2 in

0 < VJ < 50 volts. Since this circuit has no internal sources, we
— in ~

have E. =0 and the first part of the preceding algorithm need not
-xnt ~

be carried out. Applying the switching-parameter algorithm with

(V. ,V„,VJ ) = (0,0,0), we obtain the solution curve T shown in
1 z in x

Fig. 8(b). Observe that T intersects the vertical plane through

V = 30 volts at five points; namely,®,©,©,© and ©. The

(V ,V«) coordinates of these five points coincide with those of the five

operating points found earlier in Fig. 6(e) along the solution curve

through (V ,V2) = (0,0), as they should. One limitation of this

algorithm is that if the transfer characteristic curve consists of more

than one separate branches, only that branch passing through the initial

point corresponding to p = 0 in Eq. (54) will be found. In this

particular example, the transfer characteristic curve actually consists

of two separate branches. To obtain the second branch, a point on it

must first be found. Hence, returning to example 2, we found the circuit

has nine operating points when V = 30 volts, five of them have

already been found earlier to lie on one branch of the solution curve
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r . Hence, any one of the remaining four operating points may be chosen

as the next initial point. Applying the switching-parameter algorithm

once again with operating point (?) at (V ,V2) =(2.289,1.856) as the
new initial point, we obtain the second branch T~ of the solution

curve as shown in Fig. 8(b). To obtain the V -vs.- V transfer

characteristic curve, we simply project the two solution curves T

and T onto the V - V. plane. Similarly, the V2 -vs.- V±n

transfer characteristic curve is obtained by projecting T- and T-

onto the V« - V^ plane.
£. in
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VI. CONCLUDING REMARKS

A new algorithm for obtaining the multiple solutions of a system of

nonlinear algebraic equations has been presented. This algorithm consists

of tracing the solution curves of an associated system of differential

equations whose independent variable may switch from one variable to

another during each integration step. The switching occurs whenever the

solution curve changes direction, thereby requiring the choice of a new

independent variable. This switching operation is implemented

automatically at each integration step by choosing that variable

x e {x ,x ,...,x ,p} which varies most rapidly during the preceding

integration step as the independent variable. Although any numerical

integration method may presumably be used to trace the solution curve,

it is shown that the choice of the Forward Euler predictor and Newton-

Raphson corrector leads to an extremely efficient algorithm which can

be easily programmed. In fact, the algorithm consists of simply solving,

recursively, a system of linear algebraic equations given by Eqs. (17)-

(18) (with appropriate parameter up-dating) three times per integration

step: The first time corresponds to that of integrating the associated

system of differential equations by the Forward Euler method with a

pre-set step size h; the next two times correspond to a correction of

this predicted value by two Newton-Raphson iterations and are implemented

by simply solving Eqs. (17)-(18) with h = 0. A uniform step size has

so far been used in this study. It is conceivable that a variable step

size may be advantageous provided that an efficient method for estimating

the local truncation error can be developed [13],

The switching-parameter algorithm can also be used effectively to
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obtain at least one branch of a multivalued driving-point or transfer

characteristic curve of a resistive nonlinear network. In the special

case where the associated characteristic curve is a single-valued

function of an input voltage V. , we can simply choose V as the
in in

independent variable and no parameter switching is necessary. In

particular, if we write the associated nonlinear equation by

f(x,y) = 0 (57)

where y = V. and x £ ]R denote the remaining network variables,
in ~

then the driving-point or transfer-characteristic curve can be obtained

by simply integrating the associated system of differential equations

dx /3f\"Y8f\
t"\^) (dy-j (58)

In this case, it may be more efficient to choose a multi-step implicit

algorithm — such as Adams-Moulton or Gear's algorithm [13].

The switching-parameter algorithm presented in this paper can of

course be used to trace the solution curve of any "well-posed" system

of "n" equations in (n+1) unknowns. In particular, this algorithm may

be applied to trace the solution curve associated with Shinohara's [10]

or Chao's [12] method since in either case the solution curve associated

with the first (n-1) equations in n unknowns must be found.

The switching-parameter algorithm does have two serious problems.

The first problem has already been encountered in Example 4, where the

solution curve consists of more than one separate branch. In this case,

only the branch passing through the initial point will be found. This
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problem also occurs in all other known algorithms for finding multiple

solutions and no panacea seems to be forthcoming. The second problem

corresponds to the case when a solution tends toward a limit cycle in

9 n

U. , or toward a periodic orbit in 1R , which fails to intersect with

the hyperplane p = p* in Fig. 1. This situation may arise when the

rank of the n x (n+1) Jacobian matrix of f(x,p) is less than n

along the solution curve. Although this problem can sometimes be

overcome by choosing another initial point so that the associated

solution curve will intersect the p = p* hyperplane, no systematic

method is yet available for choosing such initial points.

In conclusion, the classical problem of finding the set of all

multiple solutions remains unsolved. The switching-parameter algorithm

represents by far the most efficient method for finding some, if not all,

of the solutions.
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FIGURE CAPTIONS

Fig. 1. A geometrical interpretation showing two space curves passing

through the initial points x!: and xlj at p= p and

intersecting the hyperplane p = p* at six solution points

x*^)X*(2),...,x*<«.

Fig. 2. A typical space curve may be partitioned into the union of

several segments, each one parametrized by a separate parameter.

Fig. 3. The flow chart for implementing the switching-parameter algorithm,

Fig. 4. An example showing a solution curve containing nine solutions,

each one identified by the parameter value p = 1.

Fig. 5. An example showing four hypothetical solution curves originating

from four uniformly-spaced initial points. The union of all

intersecting points constitute the solutions.

Fig. 6. A nonlinear circuit having nine distinct solutions obtained by

the switching-parameter algorithm.

Fig. 7. A Schmitt-Trigger circuit and its multivalued VQ -vs.- V

transfer characteristic curve.

Fig. 8. A nonlinear circuit exhibiting two separate solution curves.
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Fig. 1. A geometrical interpretation showing two space curves passing

at pthrough the initial points x* ' and x^ ' pQ and

intersecting the hyperplane p = p* at six solution points
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Fig. 2. A typical space curve may be partitioned into the union of

several segments, each one parametrized by a separate parameter.
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FiR» 3. The flow chart for implementing the switching-parameter algorithm.



Mxi»x2»x3) = a sin(bx,)sin(bx3) -x2 =0

f2(x,,x2 ,x3) = c-dx3 +ex2sin(fx3)-x, =0

f3(x, ,x2,x3) = g+hx2sin (kx,) - x3= 0

The parameters are:

a=2 , b =0.4?r1 c=2.5, d=l
e =0.75, f=2ir, g=l , h=0.8, k =2ir

The solutions are :

© (1.500, 1.809, 1.000)

® (0.991, 1.741, 0.926)

® (0.951, 1.378, 0.663)

® (1.575, 1.198, 0.566)

® (1.879, 0.861, 0.524)

® (2.027, l.lll , 1.152 )

© (2.048, 1.075, 1.257 )

® (1.451, 1.874, 1.454)

® (1.054, 1.849, 1.494)

Fie. 4. An example showing a solution curve containing nine solutions,

each one identified by the parameter value p = 1.
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Fig. 5. An example showing four hypothetical solution curves originating

from four uniformly-spaced initial points. The union of all

intersecting points constitute the solutions.
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Fig. 6. A nonlinear circuit having nine distinct solutions obtained by

the switching=parameter algorithm.
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