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Abstract

This paper continues the development of a stochastic calculus for

two-parameter martingale. It is shown that such a calculus is complete

only if one introduces a mixed area integral in addition to the ordinary

integral and the pao types of stochastic integrals which were introduced

earlier. In particular, the mixed integral is necessary for an elucidation

and representation of weak martingales which were introduced by Cairoli

and Walsh, As a preliminary development of differentiation formulas

of the Ito type, representation of products of integrals of the various

types is derived.

Stopping times are introduced for two-parameter processes, and a

characterization of strong martingales in terms of stopping times is

given. Finally, some brief results on path-independent variation and on

two-parameter Markov processes are presented.
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0. Introduction

This paper continues recent work toward the development of a

stochastic calculus in the plane (i.e. for the case where the time

parameter is two dimensional) for continuous martingales in general

and for the two parameter Wiener process in particular.

The basic references for this work are the fundamental paper by

Cairoli and Walsh [3] and a previous paper by the present authors

[4]. The reader is referred to [3] and [4] for further references

in this field.

In order to describe the contents of this paper we give, first, an

incomplete definition for two parameter martingales, weak, 1- and 2-

martingales. Precise definitions and references will be given in the

next section. Let (8, ? ,P ) be a probability space, $ . 0 < s < srt,
s, t — — u

0 <. t < tQ,sub a-fields of J- such that ^ C J if s. < s, and
^ S- ,t '-' S«jt» J. £.

t. _< t2. In what follows assume 0 _< s. j< s« <_ s , 0 _< t1 .<_ t9 <_ tn,

and X to be ^ measurable. Then X t is a martingale if
o,t SC S,t

E(X \^ra .. ) = x ,. a 2-martingale if for all fixed s
2* 2 1* 1 sl,t»

E(Xo *• \% J = x <- a 2-martingale if for all fixed s2' Jsi>t s1,t,

E(X« 1- I&0 «- ) = Xo «- (there is some difference between the definition

of 1- and 2- martingales used in this paper and [3] as will be pointed

out in the next section). X is a weak martingale if
s, t

E{X
82,t2+ Vl "Vl "V2' ^'Vh} =°

In section 2 we show that Xg fc is a weak martingale if and only if it is

the sum of a martingale, a 1-martingale and a 2-martingale (a discrete
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version of this result appears in [1]). A one (or two) martingale X
s, t

is said to be proper if for a fixed s (resp.t) it is of bounded variation

in t (resp.s). It is shown that weak martingales satisfying certain restrictions

can be decomposed uniquely into the sum of a proper martingale, a proper

one martingale and a proper two martingale. In section 3 we introduce

a mixed area integral ^(z,z')dM du(z') where u(z) is a (possibly ran-
z

dom) function of bounded variation and M is a martingale. It is

shown that such integrals are proper 1 or 2 martingales. In some

special cases this integral reduces to the mixed integral introduced by

Cairoli and Walsh [3]. In section 4 it is shown that every proper 1

or 2 martingale of the Wiener Process satisfying a suitable differen

tiability condition can be represented as a mixed area integral.

In section 5 we consider a stochastic (Ito type) calculus in terms of

area integrals including the mixed area integrals of section 3. A

partial multiplication table representing the product of two

stochastic integrals as sum of stochastic integrals is constructed, a

complete stochastic calculus will be presented in a later report. Stopping

times are introduced in section 6 and used to give a characterization of

strong martingales of the Wiener process. We also give a characterization

of path independent martingales in this section. The possibility of

constructing two parameter Markov processes is discussed briefly in

section 7.
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1. Preliminaries and Notation

Let z= (s,t),0 <^ s <_ sn, 0 _< t <_ tfl denote points on a rectangle

in the positive quadrant of the plane, z. -< z„ will denote s- _< s_

and t_ < t0. R will denote the rectangle {z: 0 < z -< z }. Let
1 I zQ Q

(&> 3 »(r ) De a probability space and {J »z e R }. be a family of
z0

3sub a-fields of (JT such that [3]:

F^ z4 z' implies ^ C^,

F«) *+ contains all the null sets of jr

F) for all z, "^ = H ^ ,sf >s, V > t.

F.) for each z, "+- and^J are conditionally independent given ~jz, where

^z =^s,tQ' az =C?sQ,t '

Definition: A process {M , z € r } is a martingale if (1) M is
Z Z rj Z Z

adapted (2) for each z, M is integrable, (3) for each z < z', E(M.|^ ) = M .
z z z z

Let z = (s,t), z' = (sf,t'), the condition s < s1, t < t* will be

denoted by z ^{ z'. If z tf z\ (z,z'] will denote the rectangle

(s,s'] x(t,tf] and if Xz is a random process, X(z,zf] will denote

X8',t' +XS,t " XS«,t " XS,t'-
Several other notions of martingales were introduced in [3]. We

follow here these definitions with the exception of the definitions of

1- and 2-martingales which differ from those given in [3], as will be

pointed out later. In the following definitions X = {X , z € R } is

-/ Z Z°assumed, for each z G R , to be integrable and ~-f adapted.
Z0 Z

Definitions: (a) Xz is aweak martingale if E{X(z,zf]|"^ )=0 for
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(b) X isani-martingale, i = 1,2, if E{X(z,zf]|^ } = 0
Z" z

for every z <-< zf, and x is a one parameter martingale for i = 1
s, 0

and Xn is a one parameter martingale for i = 2.

(c) X is a strong martingale if it vanishes at the axes

and E{X(z,zl]|3-1V }2} =0 for every zH z\

Remark: The definition of an i-martingale given here differs from the

one given in [3] by the requirement that X be j adapted and that X ,

or X be a one parameter martingale while in [3] it was only required
o, t

Some additional notational conventions

that X be ^j adapted.
z z

(a) The letters z,C,n will be used to denote points in R whenever
20

these letters appear with or without primes. It will always be assumed

that z = (s0,tQ), 0 < s < °°, 0 < tQ < °° is a fixed point in the plane.

(b) z. A. z2 will denote that s- < s« and t« < t-, and z -A. z.

will denote the point (s-,t2).

(c) z1 V z« will denote the point (max(s1,s2) ,max(t^,t2))•

(d) The function h(z,zf) is defined as

h(z,zf) = 1 if z A zf

= 0 otherwise

(e) Unless otherwise specified, if the time parameter in the integrand

is C then the integration is over R or R x R , i.e.,
z z z

ifc dM

R
z

*(C,C')dMcdM?l =J^(CC^dM^,
R xR

z z
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and if the time parameter in the integrand is z then the integration

is over R or R x R , namely.

zo ?o zo

i|/(z)dM =
z

f
iKz)dM

R
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2. The Decomposition of Weak Martingales

Recall, that throughout this paper a 1-martingale M"^ and a 2-martingale
z

2
M are as defined by Cairoli and Walsh [ 3 ] with the additional assump-

z

1 2 *--/' 1 2
tions that M and M be . T measurable and M _ and M_ ^ be one

z z Jz s,0 0,t

parameter martingales.

Proposition 2-1 X is a weak martingale on R if and only if it is
zn

12 1 2
expressible as X t= M + M where M is a 1-martingale, M is a 2-

z z z z z

martingale.

Proof: Every 1- or 2-martingale is by definition a weak martingale.

Let

Note

"s.t-^^tl^

that E(X IG£ ) = E(X I^ ) by assumption (F-4) on the
s0 s so s 0

conditional independence property of the o-fields. Therefore M is a
s, t

1-martingale.

Let Y =X -M* then for h>0, (s,t+h) < zn,
Z Z Z \J

E<Xs,t+h +Xs,t " E(Xs0.t+hl ^s.t+h) " E%tl ^s,t>l ^S>t}

EfXS,t+h +Xs>t-Xs0,t+h-Xs0>tl^s,t}

= 0

2
since X is a weak martingale. Therefore Y = M is a 2-raartingale.

s» *- z z
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1 o

Remarks: (a) Note that if X is right continuous, so are M and M . (b)

If the a-fields ^n<x> or ~£ are trivial and Xn .= 0, then M* t=M1 n
U, °° °°, 0 0, 0 0, t s, 0

2
- Mq t - 0. (c) The decomposition of proposition 1 is not unique. How

ever, if X = M + M and also X = N1 + N2 then M1 - N1 and M2 - N2
z z z zzz zz zz

are both 1 and 2-martingales. Therefore, by the converse to proposition

1.1 of [1] (see the proof of proposition 1.1 of [3]) M1 - N1 = N2 - M2
z z z z

is a martingale.

Definition A weak martingale X will be said to be regular on R if
z0

for every fixed t> X as a function of s is a one-parameter semimartingale
s, c

(namely the sum of a martingale and a function of bounded variation) and

for every fixed s, X as a function of t is a one-parameter semi-
s, t

martingale, for almost all w.

1 2
Definition A 1-martingale M (2-martingale M ) is said to be proper

u z

1 2
if, for almost all w M (M J is of bounded variation in the t

st s,t

direction for all fixed s £ [0,sQ] (in the s direction for all fixed

t).

Proposition 2-2 Let M be a 1-martingale on R , if M is of
z zQ sQ,t

bounded variation as a function of t then M is proper on R
s,t

0

Proof: Let A(t) = M . then

<t =E(X(t)l3Sjt) =E(A(t)| ^ )

M
s,t

- M

i+1
s,t £E{I|X(ti+1)-A(tl)| ^s>t >

and, taking the supremum over both sides, it follows that M is of
s, t

bounded variation in the t direction for all s.
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Proposition 2-3 Let M be a regular and continuous 1 martingale then

IIP IP
M = M ' + M where M ' is a proper 1-martingale and M is a martin-

z z z z z

gale. If M = 0 then the decomposition is unique.

Proof: Let M _ = A(t) + m(t) where A(t) is of bounded variation
sn,t

and continuous and m(t) is a one parameter martingale. Let

Xz =E(A(t)|^s>t)

Vz =E(m(t )l^s>t)

Then X is a proper 1-martingale, Y is a martingale and M = Xz + Y .

Theorem 2t4 Every regular and continuous weak martingale X can be

decomposed as

IP 2 P
X = M * + M ' + M

z z z z

IP 2 P
where M ' is a proper 1-martingale, M ' is a proper 2-martingale and

M is a martingale. Moreover, if X n = Xrt = 0, then the decomposition
z b s,0 0,t

is unique.

Proof: The result follows directly from propositions 1 and 3.

1,P
Let M ' be a proper and continuous martingale on R and

Z Z -s.

l,p °
M ' = X(t). S|nce A(t) ig of bounded variation, we can write

0,t

+ — + —
A(t) » A(0) + A (t) - A (t) where A (t) and A (t) are nondecreasing

nonnegative and A (0) = A (0) = 0. From now on we will assume that

A(0) = 0. Let
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M^-E(A-(t)|^Sft)

1+ 1- 1 p 1+ 1—
Then M and M are both proper 1-martingales and M ' = M + M .

z z z z z

+ 1+
Since A (t) is nonnegative and nondecreasing, M is nonnegative and

sup |M I = sup |M I
z r • s,t '

0-<z-<z 0<s<s

Since M is a one parameter martingale, we have by the one parameter
s,c0

maximal inequality

ECsupl^l)"* <-a-)«« sup ElM^J",
z q s'c0

<(^I)qE(A+(to))<> , q>1

Therefore, by the Minkowsky inequality

}'*. ,..l.P,.a a .y*.+. -.a V*
E (sup|M^P|)q <̂ L- (E a+(tQ))q +E (A (tQ))q)

i/q .
<2-\ E (Ai"(t)+A"(t))q
— q-1 0 0

To summarize, we have

1 P
Theorem 2-4 If M ' is a proper and continuous 1-martingale, then

E(sup |Ml'P|)1 < (l<L.)<lE(var(M1"P))<l
~£=d z •. — q-i zZ^R

z

0
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IP + -
where Var(M ' ) = A + A is the variation of A(t), and similarly for

zo co 'o
a proper and continuous 2-martingale

E(sup |M2,P|)q <(-\)E(Var(M2,P))q
zER z q'1 z0

Z0
where

2,P = _,»n = +M

and

' = p(s) = p (s) - p (s)s,tQ

Var (M2,P .)' = P+(s) + p (s).

Let X be a regular and continuous weak martingale such that Xn = X n = 0,
z " u,t s,u

Let q > 1

i/q
Hxil = [EMq +E(Var M1,P)q + E(Var M2,P)q]

q Z0 Z0 z0

Let X. (Zq ) be the class of regular and continuous weak martingales such

that Xn ^ = X n = 0 and Ilxll < «,.
0,t s,0 q

Theorem 2-5 ^q(zQ), q>1with this norm is a Banach space.

Proof: We have to show that Xq(z ) is complete.

Let X be a Cauchy sequence. Then by taking a subsequence we can get

I|xn+1 .xn„ < 2-n
z z q —

then by the maximal inequality and the Borel Cantelli lemma, Xn con

verges uniformly in z -< zn to a process X and if Xn = Mn + M1,P,n + M2,P,n
u z z z z z

then the components converge to a martingale, a proper 1-raartingale and

a proper 2-martingale respectively.
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3. Mixed Area Integrals

In [4] we introduced a stochastic integral over K.. x JR.
+ +

^(z,z,)dW(z)dW(z*) (see also [3]). It seems that for the full devel

opment of a stochastic calculus in the plane still another integral is

necessary. This integral will be of the form U(z,z,)dW(z,)dz where

z X z^z1A z) and will be a proper 1 martingale (2 martingale). A

related integral has been introduced by Cairoli and Walsh in [3] and

termed a mixed integral. The relation between the mixed integral of

Cairoli and Walsh and the mixed area integral so defined in this section

will be pointed out later.

Let u_, z e R be a continuous random function of bounded variation

adapted toj-^, and let y(A) be the signed measure induced on the Borel

sets A of Rz by y^ Let |u|(A) denote the variation of the y measure,
0 +

namely, y(A) = y (A) - y (A) is the Jordan decomposition of y and

Ju|(A) = y (A) + y (A). We assume that the total variation of u is

bounded by a constant yQ <~>1#e#> |U|(R )<Uq a#s#

Let Mz be a continuous martingale and let A= (z-.z'], B = (z«,z']

be rectangles such that if z G B and zf e A, then z^ z*

ff

to1»

«2

B

z« z,vz«
2

1 ^

1 „ ?
-

h
' A

zl

— ^

-3.1-



Define, now, the process

X = otM(AOR )y(B^R ) (3.1)
z z z

where a is 4 measurable. Then
>J Z-VZ«

a) X is a continuous proper 1-martingale
z

b) The variation of X is a•|M(A)| •[|d u(BOR .)|<|M(A)|•|y|
z J t Sq, u

Let

i|»(z,zf) = a if z G B, z' 6 A

= 0 otherwise

and define

||i|;(C,C,)dMcidyc =̂ (3.2)

where X is as defined by (3.1).
z

To simplify notation assume z = (1,1). Fix an integer n and

introduce a grid on R

Z0

z±j =(2"ni,2"nj)

where i,j are integers 0 < i,j < 2n. Define the rectangle

A.= (zii'zi+i i+i^ Let Xa ^ denote the indicator function of A±^

Define

*u,m(z'z,) =%(z)\/z,) if z^Zk*
= 0 otherwise

-3.2-
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and a is bounded and 74 v/ measurable. A function ij>(z,zf) is said
^ z. .vz. „

±2 kJl
to be a simple function if it is a finite sum of functions of the form

tf>.. ,.(zjZ1) for some n. The extension of (3-2) to simple functions
iJ, Kit

is obvious, and the resulting X is a proper 1-martingale.
z

Let il> be a simple function and for A.. = (z. .,z.,. .,. ],let
ij ij l+l, j+1

M(A..) = z., - .. n + z.. - z... . - z.., ,
ij' i+l,j+l ij i+lj ij+1

Then

\\]%M^)m^h
If M is a strong martingale then we have

EX = E
z

0

= E

JSL.i-j' ^J^i,j,,^p(Aij)y(Ai,j,)M2(A^)
>{;(z,z,)*(n,z,)dy dy d[Ml,

n z z

R xR XR
z„ z^ z
0 0 0

J= E ( ^(z,zf)dy )2d[M]^t
z z

R R
z z

0 0

(3.3)

(3.4)

1 *-rl
where [M] is the unique Jr predictable process such that

z st

•<M2 - [M] ,J-gt|is amartingale in sfor tfixed, and the passage from

(3.3) to (3.4) follows from Proposition 1.7 of [3].

The variation of X Q, 0 <_ 6 _< tn is upper bounded by

Var(Xve,0<6< tQ) <EM^.) •|g *±j^Mfc^)| (3.5)

Setting |y;lCA±J> = /TyT- AW we have by the Schwarz inequality
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E(Var(Xe , 0<6<tn))
V 0'

•<:?{Z) iu.i(Atj) •r m<v<e ♦«ktM<Aw))2} (3-6)
And since M is a square integrable strong martingale, we have by 1.7 of

[3]

E(Var(Xg B*0<B<tQ)y

ij J k£ J

y0E ip2(z,z')d|y|(z)d[M]^t
R xR

z0 z0

(3.7)

(3.8)

Consider now the special case where y(z) is a product measure

y(s,t) = y^ (s)y^ (t). For simplicity we will assume that y is a

positive measure, y(1*(d±) will denote y(1)(2~n(i+l)) -y(1)(2"ni) and
(2)

similarly for y (d.). In this case we can write instead of (3.5)

Var(X ,6 0<9jct )<£y(2)(d,)| £ f,.kl,U(1)(d )M(Ak )|
s0 0 j J i,k* 13k* K

Setting y(2) =$® J^ yields

;(Var X)2 <• e|X) $2)(d.) J2\£2)(*A£]

<y<2)E J([ <Ko,T,z')dy(1)(o)) d[M]^,dy
0 0

(2)
(x) (3.9)

(2)If y is not positive, then (3.9) holds with yC '(t) replaced by |y |(t)
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The requirement that M be a strong martingale was needed to pass
z

from (3.7) to (3.8); in the following particular case this is not

necessary.

Let iKz,zf) = h^z'Mzvz1) where h(z,zr) = 1 whenever z X z1 and

zero otherwise. Then

♦ij.ki^/k.j •1(±<k) •I(^> (3.10)

where I( ) denotes the indicator function. Substituting (3.10) in (3.3)

and summing over %we have

X =ZIu(Ai )2 \i(M(k+l,j)-M(k,j)) (3.11)
0 ij J k>i KJ

Setting \i = J\i \/\i we have

2
EX

z
<Ve|]£|u|<^ )£ \i(M(k+l,j)-M(k,j))2j

0 Olij 3 k>i K3 J

R

Z0

where [M]z is as in (3.4) chosen to be measurable in (s,t). Integration

by parts with respect to s yields

^O^VJ IWltd.Mi.tdtl"l<-'t>-. (3.12)
0 0

Furthermore

(xs0e'^V*S IwKAy)! E ^ki(M(k+i,j)-M(k,j))
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Therefore by the same arguments as those leading from (3.11) to (3.12)

we have

E(Var X 0<6<tn)2 <
s ,6 -0 -

^0 0

v{r j^t^MiA^1^^} (3-i3>
In addition to (3.10) assume, now, that y is a product measure

namely y(s,t) = y^ '(s)y( '(t). For simplicity assume that i/1' and y^

are positive measures, then

vSi^^vwwj
Let

•j"?^S*w<Vi.j-Mk.j))
then Var(x .o<e<t ><Z42) kjI

0 J J

Setting yj2>=^v^T

E(Var X)2 <y(2)(t )E(£y(2)a2)

Now, a. can also be written as

aj " Z<\i<\+i,f\,pZ »?>

Therefore

E(Var X)2j< P(2)(tQ)
t« t
?0 ?0

(y(1)(s))ir d [M]^ d,y(2)(t) (3.14)
S,w s s,I. t

0 0

-3.6-



Let B be the class of all processes {lKCC*), CC1 *{ zQ} satisfying

1) ty is predictable as defined in section 2 of [3]

2) tKCC1) - 0 unless X A V

( ( 2 13) E \ $ (£>C')d|y|d[M] < °° or, if y is a product measure,
; J J ' z z

R xr

z0 z0

the right-hand side of (3.9) is finite, and let M be a square

integrable strong martingale.

Since simple functions are dense in B , the mixed area integral

wiJidydM can be extended by continuity to all ij> in B . In view of Theorem

3 of section 2 the integral will be a continuous proper 1 martingale

satisfying (3.4) and (3.8). Similarly, let B, be the class of all
D

*(C.C') -'h-(C.C')ir(C C') satisfying

1) tt(C) is F predictable

/f0?0 2 1 ]
2) E< . it tds^ tdt^(s,tM <co»or ^ P is a product measure,

^0 0 J

the right-hand side of(3.9)is finite,

and let M^ be a square integrable martingale then the mixed surface

integral can be extended to B, . To summarize,

Theorem 3-1 1) Let M be a continuous strong square integrable martin-

gale and > £ B.. then

(a) iKCC^dy(c)dM ±s a proper square integrable continuous

1-martingale

(b) the integral is linear in ^

2

<c) EXg, is as given by (3.4) and E(Var X 6, 0<8<t)2 satisfies the

upper bound (3.8), and if y is a product measure, (3.9) holds.
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2) Let M be a continuous square integrable martingale and u £ B, then
z b

(a) and (b) hold with iK^C1) = h(5,Cf) v(&V)> EX2 and E(Var X n, 0<6<t)2
z s, o

satisfy the bounds (3.12) and (3.13) respectively. If y is a product

measure then (3.14) is satisfied.

Remarks (a) The definition of the mixed area integral can be extended

in an obvious way to the case where instead of

||ii»2(z,zl)d|y|(z)dEM]^f <»

we require that a.s.

||i|;2(z,z,)d|y|(z)d[M]^ <« (3.15)

And the resulting integral may be termed a "local-martingale.M A similar

remark for the case where the boundedness of the expectations in (3.9),

(3.13) and (3.14) is replaced by a.s. boundedness and also to the

stochastic integrals UdM and UdM dM ,. These extensions will be used

without further reference in the following sections. The related stop

ping times are introduced in section 6.

(b) The stochastic integral of the second type [4] was

generalized in. 13'] to ^(z.z^dM dM , where M is a sttrong martingale.

By an argument similar to the one given here [U(c,C,)dM dM ,can be

defined for martingales which are not strong provided that ^(z,zf)

depends on the corner z V z1 only, i.e., i|>(z,z') = ^r(zVz,)h(z,z,).

(c) In [3] Cairoli and Walsh introduced the mixed integral

I 8

|f^(s,t)9sMs>tdt
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We now show that the mixed area integral of this seption includes the

mixed integral of [3] when tt is J predictable. Let y(t) = st.

Approximate i// by simple functions. It follows that the area integral

irdzdM f can be expressed as

Tr(zVzf)dzdM , =
z

R *R

zo zo

)o sr0

(0%

0 0

S7r(s,t)3 M dt
s st

and conversely if E ir2(s,t)dtd [M]1 ^ < °°
s s,t

then

0 0

^o sfo
TT(s,t)9 M dt =

s s,t
^T TT(zVz')dzdM ,
s z

0 0

and the integrand tt(zvz')/s' is admissible by (3.14). Note that

tt(zvz,)/si is also a corner function since we integrate over z v z*

and z^/z' = (s',t).

(d) Let X =
z

iKCC^dyrdMrl then, in view of (3.4), X = 0
C £ z

for all z € R does not imply that i^(C,C!) = 0 in R x R . In
z0 Z0

particular, for £ = (ct,t), dy = dadi, if

<KS,C') =sin M^l ^(OMCC1)

then X = 0 for all z in R . For any iKCC1) define
z zn

ra

<KS,Cf) = jt iKa,T;C!)da

and ip(c> C') = *(C»C') " *U»c')

and similarly

1 fT
*(&t') - 7 iKca'.T1) dx1

-3.9-



Then

J*(c»C,> dcdW^, =0

) dW d^1 = 0

We can also define ii>(C»Cf)> ^(CjC1), etc,since the bar and ~ operations

on the ? and f variables commute. Note that if»(C»C') = Tr(aT,x) (a corner

function) and
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4. The Representation of Some Weak Martingales of the Wiener Process

Let X G^ be aproper 1-martingale of the Wiener Process and
z zQ

assume that almost all the sample functions of x(t) = X are
Sq ,t

absolutely continuous with respect to some fixed (nonrandom) positive

finite measure, i.e.,

Ht) = p(e)dv(e) (4.1)

0

Furthermore, we will assume that

t

El p2(e)dv(8) < °° (4.2)•/•
0 • •

It will be shown in this section that 1-martingales satisfying the above

conditions can be represented as mixed area integrals. The Wiener

processassumption is not used in the following proposition but will be

needed later.

Proposition 4-1 Let {f.} be a complete orthogonal set with respect to

the v measure on [0,t ] (i.e. I f (t *)f•(t,)dv(tl) =6..). Under the above

0

conditions on X^ there exists a sequence of martingales M. (z) such that

for z «< zQ

N t

I
i

in i.

E(Xz/ ^ Ifi(9)Mi(s'0)dV9>2 N^° (A-3>
0

Proof

t

•f E(P6l?s>t) dvf
0

-4.1-



Let

a. =

1 J

fc
p(t)fjL(t)dvt

Therefore a. are ~+ measurable andi ^zQ
N t

E<\ "£ »1 jfi(9)dve)2
1 0

t N ;
=e(J (p(0) -2 aif±(e))dvey

A 1

t N

<kjE(p(e) -53 aifi(e))2dve
0 -1

which converges to zero by dominated convergence.

Let M±(z) -.ECo^l^). Then

EM2(z) < Ea2

Since E(Xj 3^) =*t and E^^) =Xs>t

N t

•••

1

.< E(xt -2 ai ffi(e)dvQ):
0

(4.4)

And if In the above inequality we condition with respect to J

(instead of ~j~ ) we obtain (4.3).
ve
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Theorem 4-2 Under the above conditions on X , X can be written as
z z

=j iKC,C')dy(OdW?,
R XR

z z

(4.5)

where dy(z) = ds dv(t).

Proof Let M (z) be the martingales of Proposition 4-1. Then, by

the corollary to Theorem (6-1) of [4]

i(z) =J^OdW^ + ĵ (CC^dW^dW^,M

and by (4.4)

00

E^̂ M2(zQ) =e£ j (j,2(c)dc +e£{ j•̂ (COdCdf
R * R RR R

20 zo

Let Ma ±(z) = L(c)dW ,and approximate <J> and fby simple functions

It follows that

t

Jfi<6>Ma>1<8.e>dv<e) ={{^^(c^^dy^,

where £ = (a,9), dy = dadv(6),

and

f^(6)
*a,i(C'C,) =h(C.C,> ^r- ^(C1)

Now, by the orthogonality of f (8)

f f / V 2 N+K
J J ' mfi(6)*i(C,) ) d\K' <VE f ^(OdC
RxrN * Ni1R x R

z z

0 0
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N

where K- is independent of N and K. Therefore, by (4.6) ^f (8)<1> (£')
1 i *

00

converges to a function (f> (9, £f). Set

#1(c,c,).---jF* (e,c')

then

N t

X) ffi(8)Maji(s,9)dv(9) -^Jtafe.cMdy^dW^

Similarly, let

«b,1(«).--ff*1<c.c,)»c«c.
j

and approximate f and ij> by simple functions. It follows that

jfi(8)Mb)i(s,9)dv(9) =jf*b>ite.C,>#c<W 1

where y is as before and

f,(9)

Vi(C'C,)=~a
9)/f \— (J i|;i(c,n)dwn;

R
Cvc1 N

(4.7)

(cf. Theorem 2-6 of [1].) The convergence of —7 2l/o*1^ .to a function
/ o" 1 . b,1

¥ follows as in the previous case. Hente, by Proposition (4-1)

Xz =jf (*(^') +*(C»C,))dycdWct

which is the desired result.
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5. Ito-type Formulas

In the one parameter case the differentiation formula of Ito and

its extension to local martingales express functions of semlmartlngales

as semimartingales. The stochastic integrals of [4], the extension

of [3] and the mixed area integral of section 3 make available analogous

results for the two parameter case. In the simplest case we have in

mind the following: Let W be a Wiener process and suppose that f is four
•_•.-• z

times continuously differentiable on R then

Proposition 5-1

f(Wz) =f(0) +J f»(Wc)dWc +JJf"(wCVCf)dwcdwCl

+\ JJfm (wCVCt)dwcdct +\ JJf" (wcVc,)d^dwCl

+J{{f,,"(%5»)d^f +| | f"<VdC <5-X>

Remarks: (1) The integral before the last can be written as

t s

i)° f• stf,,H(W Jdsdt
st

0 0

Equation (5.1) is similar to Eq. (6.22) of [3], however the last term

in Eq. (6.22) is not an area integral.

Proof: The proof follows by a simple modification of the proof of

Eq. (6.22) in [3] as follows. Instead of using (6.21) of [3] to

eliminate f" in (6.20), use it to substitute for f" and (5.1) follows

directly. In (5.1) f(W ) is expressed as the sum of a martingale,

proper 1 and 2 martingales and a function of bounded variation.

The proof of (5.1) via the one parameter Ito formula, the Green
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formula of [3] and then again the one parameter Ito formula can be

applied to more general cases but does not seem to be sufficient for

a general differentiation formula. The detailed development of a

general formula will be given in a separate paper. Only some

special cases of a multiplication table are given here.

Proposition 5-2 A partial multiplication table: Let

if}(z) - .J*±(Odc , ij1}00 - J ♦1(c)dwc

xi2)(z) = JJ*i<5»*'>dw

where <j>2(z)dz <°° and ty (z,z')dzdzf <« a.s.

Then

(a) I<0) (O^W - ( I^CO +jWdC +JI^0)(C) *2(OdWc

+\\ ♦1(C)«2(C,)h(C.C,)dCdWcl

+\\ *2(e)<i>1(^;,)h(c,^;,)dWcdc,

i
jf *ia)*2(C,)h(c,C,)dWcdWcl

|U2(0«l»1(C,)h(C,C,)dWcdWct

(b) I^1)(z)I^1)(z) - j nv./*2vw-* • j -i x-y2 '̂—C

+I T^I)(r,)<j»1(OdWr
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(c) I<0)(z)I<2)<z) - (2)1^ /(C)(|)1(C)dC + ' ^(^^^(CC'JdWdW,

( ^1(n,c')dWn)((,1(c)dCdwcl
W

• + ((( ^(c^dw^^a^dw^1
*W

fhzn?(d) ir/(z)ir/(z) = fl^2)(C)^(OdWr + ^(CVO^dJ.OdWdW^,

(e) l^(z)lf>(z) =

J1VW^C

{{({ ^1(r»,C,)dWn)(J)1(OdWcdWct
R

cvc'

( *1(C,n)dwn) <j,1(c,)dwcdwc,
R

cvc1

ff
^(cc'H^Odw^'

^(C.C'Hj/OdcdW ,

^(CC'X* (CC^dcdC'

j i^CcVO^CcOdw dw ,

+JJ ^(CVC^^Ccc^dW^,

(j *i<c,n)dWn)( ^(r^c^dwjdw^dw^
cvc1

R
cvc1

{{([ ^2(c,n)dwn )(J ^(n, cf)dwn)dwcdwc ,
w>'

R
r.vt'

l//1(c,c,)( *2<5.n)dW jdCdW^,
R

cvv
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+\ *2ti,z')( ^(c.iDdw^jdww^,
R

CVC1

+JJV '̂̂ J" *2(^f)dWn)dVC'
w'

*2< '̂>( ♦j/COdwJdW dc*

Proof: The proofs of (a) and (b) follow along the same lines as the

proof of (5.1). We therefore omit the details. We will give the proof

of (e), the proofs of (c) and (d) follow along the same lines. Turning

to the proof of (e), we assume for simplicity that iK = i/>„ = ^(z,,z2)

where ^(z1,z«) = 0 if z A z„ is not satisfied, the proof for \\>- ^ ^

is exactly the same.

Let z = (1,1), fix n (an integer) and introduce the grid

z.. = (2~ni,2~nj]. Denote

A..(W) = W(z.. z. ,. .,J
ijv ij, i+l,j+lJ

Assume first that ^(z,z') is bounded on R and a simple function with

z0
respect to the grid. Let

*ij,U=*(zij'Zkil)

Define [z] as follows: if z^ (z±-*z±+i -+i^ then ^z^

Under these assumptions

= z..

(I(zP •E*u.u*vj>,vt''ii<mt*<*»t'i'WLvi'm (5-2)
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where the summation is over all i,j,k,£,i',jf,k',£', recall however

that if h(z,z') = 0 then iKz,zf) - 0.

Divide now the summation of (5.2) into the following partial

summations:

(1)

i',j'
-» i

«. k,l

U->

(3)
A

i,j
*

, k,A

i',j'

1 >

(5)

rk,JL
I

—>

(4)

case (1) (i,j) V (k,it)» (i,,jl) V (k',r)

and case (l1) where the unprimed letters become primed and the primed

become unprimed.

case (2) ((i,j)) V (k, I)) A ((i» ,j ') V (k» ,*'))

and case (21) where the primed and unprimed letters are interchanged as
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in the previous case.

case (3) k = k\ I t l\ (i,j) * (i\j')

and case (3') j = j1, i ^ i', (k,£) t (k1,*1)

case (4) (i,j) = (i',j'), (k,£) i (k',0

and case (4') (k,4) = (k\£f), (i,j) * (i',j')

case (5) (i,j) = (i',j') and (k,£) = (k',£»)

case (1) Fixing i,j,k,£ and summing over all il,jf,k,,£' such that

(i'»jf) V (k1,^1) is smaller than (i,j)V (k1 ,£')» and then summing over

the unprimed indices, the partial sum for case (1) can be written as

I([z2VzJ])*(z2>zJ)dWz dWz, (5.3)

where the integration is over R x R [z] is as defined earlier and

zo zo

K?) = w*(C,C')dW dW ,

Keeping ty unchanged (namely, simple with respect to the original

partition) and introducing a refinement of the partition, (5.3) con

verges to

n
I(zVz')<|/(z,z')dW dW t

The same result holds for case (l1) and thus we get the second and

third terms of part (e) of the proposition.

case (2) In this case we have the sum
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( if/(z,n)dWn)(| *(n,z')dWn^ dWzdWz,
[zvz'] [zvzf]

which for fixed t|* and refining the partition converges to the fourth

term of (e), similarly case (2*) leads to the fifth term in (e).

case (3) The expectation of this term is zero, we want to show that

its variance tends to zero as the partition is refined n -*• °°. In case

(3) we consider

•♦ij.k^i'j'ki^uW^kt^^i'j'W^-^ (5.4)

where k = kf, If V, (i,j) ^ (i1,^) and assume V < I (the result for

I < V will follow by exactly the same arguments). Multiply (5.4) with

*iL.Js A*iTk*AM(W)V°AiT'WVW

and take expectations

i,j

• . •. •

4t jt t i k, x,
1 »J

»

k,£»

1 >

-5.7-
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Stace K^flOl^ V^ )•0

and •(41Wl^ljV^,2 )=Atj -2"2n
We can eliminate from the product terms with expectation zero. What

remain are terms which satisfy all the following conditions

k = k1 = k = k'

i = i, I = A, l'

(if,j»)«(i,a)

= v, j = i

(i,j) = (i,l)

iM'

i'.J

.. (k,a) - (k,i)

(k,a») = (k.A1)

Therefore the expectation of the square of (5.4) is

(5.5)

S*ijk£*i'j'u' +i'rw,A«Ak»*k»'AiM,cl0v*i,<H) (5,6)

where the summation is under the restrictions of the last two lines of

(5.5) and A =Afc£ =Ak£, =2"2n. Let A^, =d£ •2~n then (5.6) can be
rewritten as .
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i*»jf J ^ ^

The term in curly brackets has finite variance, therefore (5.7) and

consequently (5.4) tend to zero as n -*- ».

Case (4) follows as in cases 1, 2, 3 and 5 and yields the last two

entries in (e) and (4T) yields the two entries before the two last

entries. We omit the details.

Case (5)

+I>WA« <w)Ak>> " AijV (5-8)
ijkd

where A^ = A^ =2 n. The first term above is

<J>2(z,z')dzdz'

which is the first term in (e). It remains to show that the second

term in (5.8) converges to zero. Let B denote the second term of (5.8)

then. Since a$ - yS = (a-y)(R-6) + y(B-6) + 6(a-y) , we have

B=I>2(A2j(W)- Aij)(A2£(W)-Akp

+Z>2(Akt(W> - Aij>Aij (5.9)

+J2*2(t2-w - a..)a „" IJ ij' k£
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Note that the expectation of each of the terms is zero. We will show

that the variance of each of the terms approaches zero as n -> «,. Con

sider the first term above. Squaring and taking expectations, we see

that all terms vanish except

to

E

I
ijkS.

2 2 4 2 2
For x Gaussian with Ex = 0 and Ex = o , we have Ex = 3(a ) .

Since if> is bounded, the sum above is upper bounded by

\2

{E*4(4(w)-v2<Aij(w)-A«)2}

K£2A?,A?. <K, •2"4n •CEO'ij°k£ - 1 ii 1J
ijkA

Therefore the first term in (5.9) tends to zero. The other two terms

tend to zero by the same argument.

We have therefore established (e) of Proposition (5-2) for ^ and

i|> simple functions. Keeping i|» simple, we can extend the result by continuity

ip2(z,zf)dzdz! <» a.s. and then to a general ij^.
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6. A Characterization of Strong Martingales of the Wiener Process

It was shown by Cairoli and Walsh [3] that a martingale M of the
z

Wiener Process W is a strong martingale if and only if it is a type-

one integral, i.e., M = U>dW . A characterization in terms of stopping

times will be given here.

Definitions:

1. T(z,w) is a stopping time if

(a) T(z,w) is a measurable and adapted random process.

(b) for almost all w, T(z,oj) as a function of z is nonincreasing

(z>-z,=>T < T *) and takes only the values zero or one.
z — z J

2. T(z,id) is a predictable stopping time if it is a stopping time

and a predictable process.

3. Let Yz be a martingale (or a function of bounded variation) and

let T be a predictable stopping time. Then Z m (Y stopped at
z/vT

T) is defined as

r
T(c,&))dY(C,o>)

ZAT

R
z

More generally, let Yz be any adapted process such that

T dY
C C

R
z

is defined and adapted, then Y is defined in the same way.

In order to point out the difference between stopping in the one

parameter and the two parameter cases, let T be defined as

T(z) =0if s•••> | and t>-|
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= 1 otherwise

then if (s,t) is in the region where T = 0,M ,, , r„
(s,t)AT =Ml 1+ (Ms,rMi 1> +

2'2 2 2*2
(M -M ) therefore in the stopped region M .m is M, , plus the

± +- —»— zAT 1,1 r
2'Z 22 22

of two one parameter martingales.

Proposition 6-1 Let M be a square integrable martingale, T a

predictable stopping time and let

X =
z

where a.s,

4> dM

4»2d [M] <»
z z

Also if M is a strong martingale, let

Y
z
= JiKCC^dM^,

where a.s.

Then

Ij ^2(z,z')d [M]„d [M]_t <u>
z ' z

X m = T d> dM
zaT I. CVC C

R
z

-6.2-
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YzAT =Jj T^ Cf)KC,C!)dMdM,
R XR
z z

The proof follows directly from the simple function approximation of

* and * and is therefore omitted. A similar result holds for mixed

surface integrals.

In the next theorem we consider the Wiener process case; in this

case every stopping time is predictable. Let ~Z be the o-fields

generated by the Wiener process W , c < z and let T be a stopping time

and let J- be the a-fields generated by W , C < z. Let T (z,w)

0 _i A < °° , be a one parameter collection of stopping times such that

for almost all <u, T (z,oj) j> T (z,u>) whenever X <. X . We will call
A« A-. 12

such a collection an increasing collection of stopping times. Let M

be a martingale of the Wiener process and let zn be fixed. We will

denote

z

XX *V;

Theorem 6-2 Let M be a square integrable martingale of the Wiener

process, then M , z < z is a strong martingale if and only if (X,, jf, } is

a martingale for all increasing families of stopping times.

Proof: If M is a strong martingale then M = d> dW [3] and
z 6 6 z J yc C

R
z

h = V'Vc
R

Z0
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f
(T -T )<j, dW

R * A
zo

approximating T and <j> by simple functions and proceeding as in the

one parameter case show that X is a martingale in the A parameter,
A

Conversely, let a < 3 and define

A = {z: s + t £ a}

B - {z: a < s + t <" 6}

Let T (z,w) = 1 if z ^ A

= 0 otherwise

T2(z,ai) = 1 if z£ AU B

= 0 otherwise

Let M
z •II ♦ (CC^dW dW f

then X. - X.
A_ Arll (T2(CV?f) - T^CVtMWS/e^dW dw f

R xR
z z

0 0

Divide the above integral into five integrals. I, is the above

integral over £ V c' e A hence this integral is zero. I is the

above integral over C E A, C* ^ b, (and e V £f G B), I is the above

integral over c' G A, CE B, 1^ is over £V <;' G B, C£ A, C' e A, I

is over C1 *= B, C e B. It is easy to see, by simple function approxima

tion that E(I |^- ) =0 for all i with the exception of i = 4. Consider

now E(I, IJT )• If X is to be a martingale, we must, therefore, have
H 1

a.s.
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e{{ |fe')V«, Itl-o
zGA/z'GA.zVz'GB l x 1J

And, through simple function approximation we must have a.s,

E{*(2'Z')I^T1}dW2^1dWZ-ATl =°
where the region of integration is the same as the previous integral.

Thus jj(E{i//| ^ })2d(zAT1)d(z,AT1) =0,

and

EOKcOlu/- ) = 0 a.s.
1

For CV C' fixed let a/>(£ V Cf),by the continuity of the ^jf a-fields
A

iKC.C') = lim E{i|;(c,C,)|^ }=0

which completes the proof.

Remark: The "if" part of the previous theorem holds for the general case

where M is a strong martingale. That is: If M is a strong square

integrable martingale and T is a predictable and monotone class, then

X = M A is a one parameter martingale.
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7- Martingales with Path Independent Variation

A square integrable martingale is said to be of path independent

variation (or path independent) in R if for any z < z and any two
z0 °

nondecreasing paths with initial point 0 and final point z the

increasing functions on the two paths attain the same value at z [4].

Theorem 7-1 M is of path independent variation if and only if
z

2
(M ) is the sum of a martingale and a nondecreasing function.

z

Proof: In Section 3 of [4] it was shown that M is a two parameter

martingale if and only if it is a one parameter martingale on every

nondecreasing path. Nov let M be of path independent variation and

let A be the variation of M on any nondecreasing path from (0,0) to
z z

2
z. Then (M ) - A is a one parameter martingale on every nondecreasing

z z

2
path and hence (M ) - A is a two parameter martingale. The converse

follows by the same argument.
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8. A Remark on Diffusion Processes in the Plane

In [2], Cairoli considered stochastic differential equations of

the form

\ =xo +Jp<Vdr> +{q(x?)dwc (7.i)
R R
z z

and, after defining Markov processes in the plane, showed that the

solution to (7.1) is a two parameter Markov process. In an analogous

way we can consider stochastic equations of the form

Xz •Xo +IP(Vd? +j«(VdWc +/f rl(XCvC')dW^WC

+\\ r2(XW')d\df-,+ |f Wc'^V <7'2>

The problem arises whether there are solutions (7.2) which are

Markov. Proposition 5-1 of Section 5 gives immediately an affirmative

answer since if f(a), » < a < » is a well behaved real valued invertible

function and if X is a solution to (7.1), thenY = f(X ) is also
z t z

Markov. However Y satisfies an equation of type (7.2) but not of

type (7.1). It seems reasonable to conjecture that under suitable

conditions the pair (W ,X ) is a (vector valued) two parameter Markov
z' z

process.

-8.1-



REFERENCES

[1] R. Cairoli: Decomposition de processus a indices doubles.

Seminaire de Probability V, Lecture notes in mathematics 372.

Springer-Verlag, Berlin 1971, pp. 37-57

[2] R. Cairoli: Sur une equation differtielle stochastique. Compte

Rendus Acad. Sc, Paris 274 (June 12, 1972) Ser A, 1739-1742.

[3] R. Cairoli and J. B. Walsh: Stochastic integrals in the plane.

To be published in Acta Matematica (1975).

[4] E. Wong and M. Zakai: Martingales and stochastic integrals for

processes with a multidimensional parameter. Z. fur Wahrschein-

lichkeitstheorie verw. Gebiete, 29, 109-122 (1974).


	Copyright notice 1975
	ERL-496

