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Abstract

The term fuzzy logic is used in this paper to describe an imprecise

logical system, FL, in which the truth-values are fuzzy subsets of the unit

interval with linguistic labels such as true, false, not true, very true,

quite true, not very true and not very false, etc. The truth-value set,

•J, of FL is assumed to be generated by a context-free grammar, with a semantic

rule providing a means of computing the meaning of each linguistic true-

value in "J as a fuzzy subset of [0,1].

Since <J is not closed under the operations of negation, conjunction,

disjunction and implication, the result of an operation on truth-values in tJ

requires, in general, a linguistic approximation by a truth-value in u. As

a consequence, the truth tables and the rules of inference in fuzzy logic are

(i) inexact and (ii) dependent on the meaning associated with the primary

truth-value true as well as the modifiers very, quite, more or less, etc.

Approximate reasoning is viewed as a process of approximate solution

of a system of relational assignment equations. This process is formulated

as a compositional rule of inference which subsumes modus ponens as a special

case. A characteristic feature of approximate reasoning is the fuzziness and

nonuniqueness of consequents of fuzzy premisses. Simple examples of approxi

mate reasoning are: (a) Most men are vain; Socrates is a man; therefore, it

is very likely that Socrates is vain, (b) x is small; x and y are approximately

equal; therefore y is more or less small, where italicized words are labels

of fuzzy sets.
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1. Introduction

It is a truism that much of human reasoning is approximate rather

than precise in nature. As a case in point, we reason in approximate

terms when we decide on how to cross a traffic intersection, which route

to take to a desired destination, how much to bet in poker and what

approach to use in proving a theorem. Indeed, it could be argued, rather

convincingly, that only a small fraction of our thinking could be categorized

as precise in either logical or quantitative terms.

Perhaps the simplest way of characterizing fuzzy logic is to say that

it is a logic of approximate reasoning. As such, it is a logic whose

distinguishing features are (i) fuzzy truth-values expressed in linguistic

terms, e.g., true, very true, more or less true, rather true, not true,

false, not very true and not very false, etc.; (ii) imprecise truth tables;

and (iii) rules of inference whose validity is approximate rather than

exact. In these respects, fuzzy logic differs significantly from standard

logical systems ranging from the classical Aristotelian logic [1] to

inductive logics [2] and many-valued logics with set-valued truth-values [3].

An elementary example of approximate reasoning in fuzzy logic is the

following variation on a familiar Aristotelian syllogism.

or

A. : Most men are vain (1«1)

A : Socrates is a man

A~ : It is likely that Socrates is vain

A' : It is very likely that Socrates is vain
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In this example, both A- and A' are admissible approximate consequents

of k^ and k^, with the degree of approximation depending on the definitions

of the terms most, likely and very as fuzzy subsets of their respective

universes of discourse. For example, assume that most and likely are

defined as fuzzy subsets of the unit interval by compatibility functions

of the form shown in Fig. 1, and let very be defined as a modifier which

squares the compatibility function of its operand. Then A' is a better

approximation than A. to the exact consequent of A- and A« provided very

likely, as a fuzzy subset of [0,1], is a better approximation than likely

to the fuzzy subset most. This is assumed to be the case in Fig. 1.

Additional examples of approximate reasoning in fuzzy logic are the

following, (u. and u_ are numbers.)

A. : u- is small (1.2)

A. : u- and u~ are approximately equal

A_ : u« is more or less small

A. : (u_ is small) is very true (1.3)

A~ : (u- and u„ are approximately equal) is very true

A~ : (u« is more or less small) is true

The italicized words in these examples represent labels of fuzzy sets.

Thus, a fuzzy proposition of the form "u. is small," represents the assign-

If U is a universe of discourse and F is a fuzzy subset of U, then the
compatibility function (or, equivalently, membership function) of F is a
mapping uF : U -*• [0,1] which associates with each u € u its compatibility
(or grade of membership) uF(u), o <_ yF(u) <. 1, [4].
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ment of a fuzzy set (or, equivalently, a unary fuzzy relation) labeled

small as a value of u-. Similarly, the fuzzy proposition "u. and u« are

approximately equal," represents the assignment of a binary fuzzy relation

approximately equal to the ordered pair (u-,u«). And, the nested fuzzy

proposition "(u1 is small) is very true," represents the assignment of a

fuzzy truth-value very true to the fuzzy proposition (u- is small).

As will be seen in Sec. 3, the above examples may be viewed as

special instances of a model of reasoning in which the process of inference

involves the solution of a system of relational assignment equations. Thus,

in terms of this model, approximate reasoning may be viewed as the

determination of an approximate solution of a system of relational assign

ment equations in which the assigned relations are generally, but not

necessarily, fuzzy rather than nonfuzzy subsets of a universe of discourse.

In what follows, we shall outline in greater detail some of the main

ideas which form the basis for fuzzy logic and approximate reasoning. Our

presentation will be informal in nature.

2. Fuzzy Logic

A fuzzy logic, FL, may be viewed, in part, as a fuzzy extension of a

nonfuzzy multi-valued logic which constitutes a base logic for FL. For our %

purposes, it will be convenient to use as a base logic for FL the standard

Lukasiewicz logic L- (abbreviated from LA . ) in which the truth-values
2

are real numbers in the interval [0,1] and

v(-. p) 4 1 - v(p) (2.1)

v(p V q) A max (v(p), v(q)) (2.2)

2
The symbol A stands for "is defined to be," or "denotes."
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v(p A q) = min (v(p), v(q)) (2.3)

v(p •» q) = min (1, 1 - u(p) + v(q)) (2.4)

where v(p) denotes the truth-value of a proposition p, -.is the negation,

A is the conjunction, v is the disjunction and => is the implication. In

what follows, however, it will be more convenient to denote the negation,

conjunction and disjunction by not, and and or, respectively, reserving

the symbols -i* A and V to denote operations on truth-values, with A A min

and V A max.

The truth-value set of FL

The truth-value set of FL is assumed to be a countable setUof the

form

J = {true, false, not true, very true, not very true, more or (2.5)

less true, rather true, not very true and not very false,...}

Each element of this set represents a fuzzy subset of the truth-value

set of L-, i.e., [0,1]. Thus, the meaning of a linguistic truth-value, x,

in (J is assumed to be a fuzzy subset of [0,1].

More specifically, let y : [0,1] •> [0,1] denote the compatibility

(or membership) function of t. Then the meaning of x, as a fuzzy subset

of [0,1], is expressed by

.1

t = I y„(v)/v (2.6)"fv
where the integral sign denotes the union of fuzzy singletons y (v)/v,

with y (v)/v signifying that the compatibility of the numerical truth-

value v with the linguistic truth-value x is y (v), or, equivalently, that

the grade of membership of v in the fuzzy set labeled x is y (v).
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If the support of x is a finite subset (v^...,^) of [0,1], x

may be expressed as

x = y-i/v.. +...+ y /v (2.7)
11 n n.

or more simply as

x = y_v. +...+ y v (2.8)
11 n n

when no confusion between y. and v. in a term of the form y.v. can arise.
i i i i

Note that + in (2.7) plays the role of the union rather than the arithmetic

sum.

As a simple illustration, suppose that the meaning of true is defined

by

ytrue(v) =0 for o <_ v <_ a (2.9)

2| t \ for a<v<^

where a is a point in [0,1].

Then, we may write

a+1

(Hi)

-'-'(HI)' '"2 a+1 , , 1~2~ 1 v 1 1

true A r 2(i^)W (i-*(t^)v «•">
a a+1

2

If v- B0, v, a 0.1, ..., v_- = 1, then true might be defined by, say,

true = 0.3/0.6 + 0.5/0.7 + 0.7/0.8 + 0.9/0.9 + 1/1 (2.11)

3
The support of a fuzzy subset, A, of U is the set of points in U at which

y. (u) > 0. The crossover points of A are the points of U at which yA(u) - 0.5.
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In terms of the meaning of true, the truth-value false may be defined

as

.1

false A 1 utrueO--v)/v (2.12)
0

while not true is given by

fnot true = I (1 - Ptrue(v))/v (2.13)
0

Thus, as a fuzzy set, not true is the complement of true whereas false is

the truth-value of the proposition not p, if true is the truth-value of p.

In the case of (2.11), this implies that

false A -i true =* 1/0 + 0.9/0.1 + 0.7/0.2 + 0.5/0.3 + 0.3/0.4 (2.14)

and

not true A true* - 1/(0 + 0.1 + 0.2 + 0.3 + 0.4 + 0.5) + (2.15)

0.7/0.6 + 0.5/0.7 + 0.3/0.8 + 0.1/0.9

where —i stands for negation and ' denotes the complement (see footnote 5).

More generally, the truth-value set of FL is characterized by two rules

(i) a syntactic rule, which we shall assume to have the form of a context-

free grammar G such that

<3T=L(G) (2.16)

that is, 9J is the language generated by G; and (ii) a semantic rule, which

is an algorithmic procedure for computing the meaning of the elements of O.

Generally, we shall assume that ^contains one or more primary terms (e.g.,

true) whose meaning is specified a priori and which form the basis for the

computation of the meaning of the other terms in cj. The truth-values in

^are referred to as linguistic truth-values in order to differentiate
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them from the numerical truth-values of L..

Example 2.17. As a simple illustration, suppose that XJis of the form

jj - {true, false, not true, very true, very very true, (2.18)

not very true, not true and not false, true and

(not false or not true), ... }

It can readily be verified that <J can be generated by a context-free

grammar G whose production system is given by

T •* A C •> D (2.19)

T^Tor A C + E

A -*• B D •* very D

A •*• A and B E -*• very E

B -*• C D •> true

B + not C E -* false

C ->- (T)

In this grammar, T, A, B, C, D and E are nonterminals; and true, false,

very, not, and, or, (,) are terminals. Thus, a typical derivation yields

T =* A =• A and B «* B and B => not C and B =* not E and B (2.20)

=* not very E and B =» not very false and B =* not very false

and not C =» not very false and not D =* not very false and

not very D ** not very false and not very true.

If the syntactic rule for generating the elements of Jis expressed

as a context-free grammar, then the corresponding semantic rule may be

conveniently expressed by a system of productions and relations in which

each production in G is associated with a relation between the fuzzy

subsets representing the meaning of the terminals and nonterminals [5].

4
This technique is related to Knuthfs method of synthesized attributes [6].
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For example, the production A •* A and B induces the relation

*L ^ \ ° BR (2.21)

where A^, A^, and B represent the meaning of A and B as fuzzy subsets of [0,1]

(the subscripts L and R serve to differentiate between the symbols on the

left- and right-hand sides of a production), and H denotes the inter

section. Thus, in effect, (2.21) defines the meaning of the connective

and.

With this understanding, the dual system con

be written as

T -*• A : TL = \

T -* T or A : TL = TRUAE
A -* B ! *L" BR

A •+ A and B : *L = *RnBR
B •+ C = BL = CR

B •* not C = BL = CR

C + (T) = CL = TR

C + D ! CL = DR

C •* E ! CL = \

D + very D = DL = <v2
E -> very E : EL = <ER>2
D -> true : DL = true

E -»• false : EL = false

(2.22)

If A and B are fuzzy subsets of U = {u} with respective compatibility
functions ma and yB, then the complement, A1, of A is defined by v^'(u) =
1 - WA(U); tne intersection of A and B, AOB, is defined by yAOB(u) =
yA(u) A yB(u); the union of A and B (denoted by AMB or A+B) is defined by
^A+B^) = V&W V yB(u); the product of A and B is defined by yAB(u) =
pa(u)^b(u>; and ACt ls defined by ViA«(u) = (PA(u))Ct*. If AQtJ and BCV> then
the cartesian product of A and B, A*B, is defined by yAxfi^UjV^ =
yA(u) A yB(v) [7],[8].
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This dual system is employed in the following manner to compute the

meaning of a composite truth-value in XJ»

1. The truth-value in question, e.g., not very true and not very

false, is parsed by the use of an appropriate parsing algorithm for G [9],

yielding a syntax tree such as shown in Fig. 2. The leaves of this

syntax tree are (a) primary terms whose meaning is specified a priori;

(b) names of modifiers, connectives and negation; and (c) markers such as

parentheses which serve as aids to parsing.

2. Starting from the bottom, the primary terms are assigned their

meaning and, using the equations of (2.22), the meaning of nonterminals

connected to the leaves is computed. Then, the subtrees which have these

nonterminals as their roots are deleted, leaving the nonterminals in

question as the leaves of the pruned tree. This process is repeated until

the meaning of the term associated with the root of the syntax tree is

derived.

In applying this procedure to the syntax tree shown in Fig. 2, we

first assign to true and false the meaning expressed by (2.6) and (2.12).

Then, we obtain in succession

D? « true (2.23)

E-- = false

2 2
D, » D = true

2 2
Ei0 = En = false

It should be noted that in the case of truth-values of the form (2.18),
this process is similar to the familiar procedure for evaluating Boolean
and arithmetic expressions.
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C5 a D6 " true2
c9 "Eio =Mse2
B4 "c5 =(true2)'
B8 "c9 =(false2)'
A3 =B4 =(true2)»
A2 =A3 nBg -(true2)f H(false2)•

and finally,

2 2
not very true and not very false = (true )f n (false)f (2.24)

2
where y 9 = (y ) and likewise for y _. (See footnote 5.)

«-»..,*/ true _ _ 2
true false

It should be noted that the truth-values in (2.18) involve just one

modifier, very, whose meaning is characterized by (2.22). As defined by

(2.22), very has the effect of squaring the compatibility function of its

operand. This simple approximation should not be viewed, of course, as

an accurate representation of the complex and rather varied ways in

which very modifies the meaning of its operands in a natural language

discourse.

In addition to very, the more important of the modifiers which may be

of use in generating the linguistic truth-values in (Jare: more or less,

rather, quite, essentially, completely, somewhat, and slightly. As in the

case of very, the meaning of such modifiers may be defined - as a first

approximation - in terms of a set of standardized operations on the fuzzy

sets representing their operands. Better approximations, however, would

require the use of algorithmic techniques in which a definition is expressed

as a fuzzy recognition algorithm which has the form of a branching question-

A more detailed discussion of. linguistic modifiers and hedges may be
found in [10],[11] and [4].
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naire [12].

What is the rationale for using the linguistic truth-values of FL In

preference to the numerical truth-values of L-? At first glance, it may

appear that we are moving in a wrong direction, since it is certainly

easier to manipulate the real numbers in [0,1] than the fuzzy subsets of

[0,1]. The answer is two-fold. First, the truth-value set of L- is a

continuum whereas that of FL is a countable set. More importantly, in

most applications to approximate reasoning, a small finite subset of the

truth-values of FL would, in general, be sufficient because each truth-

value of FL represents a fuzzy subset rather than a single element of

[0,1]. Thus, we gain by trading the large number of simple truth-values

of L- for the small number of less simple truth-values of FL.

The second and related point is that approximate reasoning deals, for

the most part, with propositions which are fuzzy rather than precise, e.g.,

"Vera is highly intelligent," Douglas is very inventive," Berkeley is close

to San Francisco," "It is very likely that Jean-Paul will succeed," etc.

Clearly, the fuzzy truth-values of FL are more commensurate with the fuzzi-

ness of such propositions than the numerical truth-values of L-.

Operations on linguistic truth-values

So far, we have focused our attention on the structure of the truth-

value set of FL. We turn next to some of the basic questions relating to

the manipulation of linguistic truth-values which are labels of fuzzy

subsets of [0,1].

To extend the definitions of negation, conjunction, disjunction and

implications in L- to those of FL, it is convenient to employ an extension
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Q

principle for fuzzy sets which may be stated as follows [4].

Let f be a mapping from V to W and let A be a fuzzy subset of V

expressed as

=JyA(v)/vA= J PA(v)/v (2.25)
V

or, in the finite case, as

A = y-v +...+ y v (2.26)
ii n n

where y. is the compatibility function of A, with yA(v) and y. denoting,

respectively, the compatibilities of v and v., 1 = 1, ..., n, with A.

Then, the Image of A under f is a fuzzy subset, f(A), of W defined

by

-JyA(v)/f(v)f(A) = J yA(v)/f(v) (2.27)
W

or, in the case of (2.26),

f(A) - y f(v.) +...+ u f(v ) (2.28)
linn

where w = f(v) is the image of v under f. In effect, (2.27) and (2.28)

extend the domain of definition of f from points in V to fuzzy subsets

of V.

More generally, let * denote a mapping (or a relation) from the

cartesian product U x V to W. Thus, expressed in infix form, we have

w = u*v, u^U, v e V, w^w (2.29)

where w is the image of u and v under *.

Q

In the context of operations on linguistic truth-values, this principle
may be viewed as an extension to fuzzy-set-valued logics of the expansion
techniques used In quasi-truth-functional systems [3].
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or

Let A and B be fuzzy subsets of U and V, respectively, expressed as

« J yA(u)/uA« J y.(u)/u (2.30)
U

-JB= 1yB(v)/v (2.31)

A =» ynu. +...+ y u (2.32)
11 mm

B = V-V- +...+ v v /n OON
11 n n (2.33)

Then, the image of A*B under * is a fuzzy subset, A*B, of W defined

by

A*B = I(yA(u) AyB(v))/(u,v) (2.34)
UxV

or, in the case of (2.32) and (2.33),

A*B =/] (y± Av )/u±*v , i»l,...,m, j=l,...,n (2.35)
i,j

provided u and v are noninteractive [4] in the sense that the assignment

of a value to u does not affect the values that may be assigned to v, and

vice-versa. A convenient feature of (2.35) is that the expression for

A*B may be obtained quite readily through term by term multiplication of

(2.32) and (2.33), and employing the identities

(V±n±) * (vjVj) = (y^v^/u^ (2.36)

and

Vk + Vk • <ak v 6k)wk (2-37)

for combination and simplification.
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To apply the extension principle to the definition of negation, con

junction, disjunction and implication in FL, it is expedient to use (2.8),

since it is easy to extend the resulting definitions to the case where the

truth-values are of the form (2.6).

Specifically, let p and q be fuzzy propositions whose truth-values

are fuzzy sets of the form

v(p) = y^ +...+ ymvm (2.38)

v(q) = v^ +...+ vnvn (2.39)

For example, p might be "Eugenia is very kind," with the truth-value of

p being very true, while q might be "Fania was very healthy," with the

truth-value of q being more or less true.

Applying (2.28) to (2.38), the expression for the truth-value of the

proposition not p is found to be

v(not p) = y-./d-v..) +...+ y /(1-v ) (2.40)
ii mm

For example, if true is defined by (2.11) and v(p) = very true, then

very true = 0.09/0.6 + 0.25/0.7 + 0.49/0.8 + 0.81/0.9 + 1/1 (2.41)

and

v(not p) = 0.09/0.4 + 0.25/0.3 + 0.49/0.2 + 0.81/0.1 + 1/0 (2.42)

which in view of (2.14) may be expressed as

v(not p) = very false (2.43)

In this example, the truth-value of not p is an element of ~J . In

general, however, this will not be the case, so that a fuzzy truth-value,

<J>, obtained as a result of application of (2J28) or (2.35) would normally

have to be approximated by a linguistic truth-value, <(>*, which is in XJ.
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The relation between $* and <J> will be expressed as

<{>* = LA[<J>] (2.44)

where LA is an abbreviation for linguistic approximation. Note that a

9
linguistic approximation to a given <f> will not, in general, be unique.

At present, there is no simple or general technique for finding a

"good" linguistic approximation to a given fuzzy subset of V. In most

cases, such an approximation has to be found by ad hoc procedures, without

a precisely defined criterion of the "goodness" of approximation. In view

of this, the standards of precision in computations involving linguistic

truth-values are, in general, rather low. This, however, is entirely con

sistent with the imprecise nature of fuzzy logic and its role in approximate

reasoning.

Turning to the definitions of conjunction, disjunction and implication

in FL, we obtain on application of (2.35) to (2.2), (2.3) and (2.4)

v(p and q) = LA[v(p) A v(q)] (2.45)

= LA[(y-u +...+ v u ) A (v v- +...+ v v )]
11 mm ii nn

=LA[£ (y± Av^A^ AVj]

v(p or q) = LA[v(p) V v(q)] (2.46)

= LA[(y-u- +...+ u u ) V (V..V- +...+ v v )]
11 mm ii nn

• LAtZ (P* A v.)/u V v ]
i,j 3 3

9
It should be noted that the inexactness of the truth tables of FL is a

consequence of the application of linguistic approximation to expressions
of the form v(p) * v(q), where * is the tabulated operation on the linguistic
truth-values of fuzzy propositions p and q.

As defined here, these operations are tacitly assumed to be noninteractive.
A more detailed discussion of interactivity of fuzzy variables may be found
in [4] and [12].
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and similarly

v(p => q) = LA[£ (y Av )/(l A (1 - (u. - v.)))] (2.47)
i,j J 1 J

As an illustration, suppose that

v(p) = true = 0.6/0.8 + 0.9/0.9 + 1/1 (2.48)

and

v(q) = not true = 1/(0 + 0.1 +...+ 0.7) + 0.4/0.8 + 0.1/0.9 (2.49)

Then

v(not p) = 0.6/0.2 + 0.9/0.1 + 1/0 (2.50)

and

v(p and q) = LA[v(p) A v(q)] (2.51)

= LA[l/(0 +...+ 0.7) + 0.4/0.8 + 0.1/0.9]

= not true

Applying the same technique to the computation of the truth-value of

the proposition very p (e.g., if p A Evan is very smart, then very p A Evan

is very very smart), we have

v(very p) - LA[v2(p)] (2.52)

2
= LA[(ytu +...+ y u ) ]

11 mm

2 2
= LA[y.u. +...+ y u ]

11 mm

and for the particular case where

v(p) = true

= 0.6/0.8 + 0.9/0.9 + 1/1 (2.53)

(2.52) yields
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v(very p) - LA[0.6/0.64 + 0.9/0.81 + 1/1] (2.54)

- more or less true (2.55)

if the modifier more or less is defined by

"more or leas A=(MA)1/2 <2,56)
where A is a fuzzy subset of U, and y. and y - . are the

J * A more or less A

compatibility functions of A and more or less A, respectively. It should

be noted that the approximation of the bracketed expression in (2.54) by

(2.55) is low in precision.

3. Approximate Reasoning

It is rather illuminating as well as convenient to view the process

of reasoning as the solution of a system of relational assignment equations.

Specifically, consider a fuzzy proposition, p, of the form

p A u is A (3.1)

or, more concretely

p A Mark is tall (3.2)

in which A is a fuzzy subset of a universe of discourse U and u is an

element of a possibly different universe V. Conventionally, p would be

interpreted as "u is a member of A," (e.g., "Mark is a member of the class

of tall men"). However, if A is a fuzzy rather than a nonfuzzy subset of

U, then it is not meaningful to assert that u is a member of A - if "is a

member of" is interpreted in its usual mathematical sense.

We can get around this difficulty by interpreting "u is A" as the

assignment of a unary fuzzy relation A as the value of a variable which

corresponds to an implied attribute of u. For example, "Mark is tall,"
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would be interpreted as the assignment equation

Height(Mark) = tall (3.3)

in which Height(Mark) is the name of a variable and tall is its assigned

linguistic value. Similarly, the proposition

p A Mark is tall and Jacob is not heavy (3.4)

is equivalent to two assignment equations

Height(Mark) = tall (3.5)

and

Weight(Jacob) ° not heavy (3.6)

in which both tall and not heavy are fuzzy subsets of the real line which

may be characterized by their respective compatibility functions y .- and

not heavy*

As a further example, consider the proposition

p A Mark is much taller than Mac (3.7)

In this case, the relational assignment equation may be expressed as

(Height(Mark), Height(Mac)) = much taller than (3.8)

in which the linguistic value on the right-hand-side represents a binary

fuzzy relation in RxR (R A real line) which is assigned to the variable

on the left-hand-side of (3.8).

More generally, let U-,...,U be a collection of isniverses of dis-
1 n

course, and let (u-,...,u ) be an n-tuple in the cartesian product

U- x...x u . By a restriction on (u-,...,u ), denoted by R(u-,...,u ),

is meant a fuzzy relation in U x...x U which defines the compatibility

with R(u,,...,u ) of values that are assigned to u.,...,u ). As a
In In

11The concept of a restriction on a fuzzy variable may be viewed as a
generalization of the concept of the range of a nonfuzzy variable. A
more detailed discussion of this concept may be found in [4].
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simple example, if u is a real number and R(u) is the fuzzy set

R(u) « 1/0 + 1/1 + 0.8/2 + 0.5/3 + 0.2/4 (3.9)

then 2 may be assigned as a value to u with compatibility 0.8.

Now if p is a proposition of the form

pA (u1,...,un) is A (3.10)

where A is an n-ary fuzzy relation in D^ x...x Ufl, then (3.10) may be

interpreted as the assignment equation

R(u,,...,u ) = A (3.11)
1* n

which for simplicity may be written as

(Ul,...,un) -A (3.12)

In this sense, a collection of propositions of the form

p. A (u. ,...,u. ) is A. (3.13)
1 1 \

where (i-,...,!,) is a subsequence of the index sequence (l,...,n),

translates into a collection of assignment equations of the form

R(u. ,...,u. ) - A, i - 1,2,... (3.14)
xl \

or more simply

(u, ,...,u. ) = A.. (3.15)

For example, the propositions

p A u- is small (3.16)

and

q A u- and u. are approximately equal (3.17)

translate into the relational assignment equations

u- = small (3.18)
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and

(u-,u.) - approximately equal (3.19)

As was stated in the Introduction, the process of inference may be

viewed as the solution of a system of relational assignment equations. In

the case of (3.18) and (3.19), for example, solving these equations for u«

yields

u0 - LA[small o approximately equal] (3.20)

12
where o denotes the composition of fuzzy relations and LA stands for

linguistic approximation. Thus, if

small = 1/1 + 0.6/2 + 0.2/3 (3.21)

and

approximately equal « 1/((1,1) + (2,2) + (3,3) + (4,4)) + (3.22)

+ 0.5/((l,2) + (2,1) + (2,3) + (3,2)

+ (3,4) + (4,3))

then by expressing (3.20) as the max-min product of the relation matrices

for small and approximately equal, we obtain

u2 - LA[1/1 + 0.6/2 + 0.5/3 + 0.2/4] (3.23)

= more or less small

as a rough linguistic approximation to the bracketed fuzzy set. This

explains the way in which the consequent "u2 is more or less small," was

The composition of a unary relation A with a binary relation B is defined
by uAoB<u2) 4 vu *»a(ui) A yB(u-,u2), where A and B are fuzzy subsets of
Ui and U^^, respectively, and Vu is the supremum over "i G Vi. If A and
B are fuzzy subsets of Ujxu2 and U2XU3, respectively, then yAoB(ul»u3) A
vu9^A^ui»u2^ A V*B(u2»U3), where yA and yB are the compatibility functions
of A and B.
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inferred in the second example in the Introduction.

Stated in somewhat more general terms, the compositional rule of

Inference expressed by (3.18), (3.19) and (3.20) may be summarized as

13
follows.

*1 !
u„ is A (3.24)

A„ : u- and u„ are B

A3 : u2 is LA[A o b]

and

*i : u- and u„ are A (3.25)

A„ : u2 and u« are B

A^ : u- and u« are LA[A ° B]

where A and B are fuzzy relations expressed in linguistic terms and

LA[A ob] is a linguistic approximation to their composition.

The rationale for the compositional rule of inference can readily be

understood by viewing the composition of A and B as the projection on U2

of the intersection of B with the cylindrical extension of A. More

specifically, if R(u. ,...,u. ) is a fuzzy relation in U. x...x U , then
H Jit T. Tc

its cylindrical extension, R(u ,...,u. ), is a fuzzy relation in ^ x...x u^

defined by

R(u4 ,...,u. ) = R(u. ,...u. ) x u. x...x U
^ ^ £1 Sc jl jI

where (j-.f.jjj) is the index sequence complementary to (i.,...i,)

(E.g., if n - 6 and (i^i^i^) = (2,4,5,6), then (J1,J2) = (1,3).)

(3.26)

13As pointed out in [4], modus ponens may be viewed as a special case of (3.24).
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Now suppose that we have translated a given set of propositions into

a system of relational assignment equations each of which is of the form

(u ,..., u ) = R (3.27)
rl s

where R is a fuzzy relation in U x...x u . To solve this system for,
1 s

say, (u ,u. ), we form the intersection of the cylindrical extensions
Jl Jo

14
of the R and project the resulting relation on U. x...x u. . Thus, in

r 31 *l
symbols,

(u ,...,u, ) = Proj OR (3.28)
h h DJ1X#"X\r r

which subsumes (3.24) and (3.25) as special cases. In this sense, as stated

in the Introduction, the process of inference may be viewed as the solution

of a system of relational assignment equations.

In the foregoing discussion, we have limited our attention to

propositions of the form "u is A." How, then, could we treat nested

propositions of the form

px A (u is k±) is x (3.29)

e.g., (Lisa is young) is very true, where A. is a fuzzy subset of U and t

is a linguistic truth-value?

In can readily be shown [12] that a proposition of the form (3.29)

implies

p2 A u is A2 (3.30)

If R is a fuzzy relation in Ux x...x Un, then its projection on Uj1 x...x
Uj is a fuzzy relation in Uj *»»»xja defined by

"Proj SonUj x... xU, (u3l ttJi> " S'' •' >uik "^"l*'' '^
•Mm X*

where (i^,...,!^) and (Jl»-*»»jji) are complementary index sequences, and
Vu ,...,u is the supremum over (ui ,...,ui ) £ U.|- x...x Ui^.

"1 k
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where A. is given by the composition

*2 =\ °T
-1in which yA is the compatibility function of A and y. is its inverse

1 ^L
(Fig. 3). It is this relation between p„ and p. that in conjunction with

the compositional rule of inference provides the basis for the approximate

inference

(U], is A) is t (3.31)

(u- and u« are B) is t«

(u2 is C) is t3

where A,B,C are fuzzy relations; t-,t2 and t^ are linguistic truth-values;

and C and t« satisfy the approximate equality

y"1 ox3 = (y"1 oxx) o(y"1 ot2) (3.32)

between the fuzzy set y ° To» on tne one hand, and the composition of

yA o t-, and yR o t«, on the other.

An illustration of (3.31) is provided by the last example in the

Introduction.

4. Concluding Remarks

In spirit as well as in substance, fuzzy logic and approximate

reasoning represent a rather sharp departure from the traditional

approaches to logic and the mathematization of human reasoning. Thus, in

essence, fuzzy logic may be viewed as an attempt at accomodation with the

pervasive reality of fuzziness and vagueness in human cognition. In this

sense, fuzzy logic represents a retreat from what may well be an

unrealizable objective, namely, the construction of a rigorous mathematical
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foundation for human reasoning and rational behavior.

In our brief discussion of fuzzy logic and approximate reasoning in

the present paper, we have not considered many interesting as well as

significant issues. Among these are inferences that are fuzzy-probabilistic

in nature; the concept of a fuzzy "proof" of a fuzzy assertion; modal logics

with linguistic truth-values and fuzzy modal operators of the form ±t is

quite possible that, it is very necessary that, etc.; and methods of trans

lating a given complex fuzzy proposition into a system of relational

assignment equations - a problem which is related to the case-grammar

approach to deep structure and conceptual dependency [24]-[26].
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Figure Captions

Fig. 1. Compatibility functions (not to scale) of most, likely, very

likely, unlikely, few and very unlikely. Note that unlikely

and likely are symmetric with respect to u = 0.5; very likely

is the square of likely; and very unlikely is the square of

unlikely.

Fig. 2. Syntax tree for the linguistic truth-value not very true and not

very false.

Fig. 3. The compatibility function associated with the nested proposition

p A (Lisa is young) is very true, where y = y o very- J * *- >young2 ^youngj^ *-
true.
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Fig. 1. Compatibility functions (not to scale) of most, likely,
very likely, unlikely, few and very unlikely. Note that

unlikely and likely are symmetric with respect to
u = 0.5; very likely is the square of likely; and very
unlikely is the square of unlikely.
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Fig. 2. Syntax tree for the linguistic truth-value not very true
and not very false.
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Fig. 3. The compatibility function associated with the nested

proposition p A (Lisa is young) is very true, where
-1

y = yyoung? young- o very true.
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