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Abstract

A simple formulation is given for the notion of feedback between

two stationary stochastic processes in terms of the canonical

representation of the joint process. The definition presented here has

consequences in filtering thoery and provides statistical criteria

concerning the identification of systems which may contain feedback.
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1. Introduction

In economic, social and biological modelling it is often of interest

to inquire whether a feedback mechanism exists between those processes

labeled as outputs and those labeled as inputs. There are two principal

reasons for this. First, the theory of most system identification

techniques, such as least squares or maximum likelihood, require that

the observed input processes be statistically independent of the

unobserved random processes appearing in the observed output process.

Second, it is often of scientific and behavioural interest to know

whether some sort of feedback is present in a system. For example, the

existence of feedback between money supply and national income has long

been debated by econometricians.and a similar question arises in the

relationship between unemployment and gross domestic product. In the

area of biology one may pose the statistical problems of detecting feed

back relationships between blood sugar and insulin levels and between

stimulus and response processes in the nervous system.

The issues introduced above have long been discussed in the time

series literature in terms of the notion of causality. Wiener [1]

suggested that one time series should be called causal to a second if

knowledge of the first series reduced the mean square prediction error of

the second series. Granger and others [2,3] have elaborated upon this

approach. According to these authors feedback is said to be present

when each of two series is causal to the other. In Section 2 of this

paper we introduce an alternative definition of feedback to this one.

We should remark here that none of the features of stochastic processes

which we isolate will be termed "causality." The reason for this
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is that we believe the concept of causality belongs properly to the realm

of experimental science, while the notions we introduce are meaningful

for stochastic processes viewed simply as mathematical objects, and for

situations where the experimenter is limited to merely recording selected

observations. This is the case, for example, in econometrics and astronomy.

Of course, despite our disclaimer, the reader is free to decide in the

end that we have merely introduced yet another notion of causality.

It is worth mentioning in the context of this discussion that

definitions of causality have been suggested which appear to fit the

experimental situation more closely than those of Wiener and Granger.

Gersch [4,5], for instance, has proposed a notion of causality between

three or more time series that has applications in neurobiology.

The contents of this paper are broadly as follows: in Section 2 we

introduce a precise definition of feedback between an ordered pair of

multivariate processes in terms of the canonical representation of the

joint process with respect to its innovations. This section begins with

a discussion which gives strong motivation for our definition of feedback

and closes with a list of properties following from that definition. In

Section 3 we show there is a relationship between the feedback properties

of a process and the causal structure of an associated optimal Wiener

filter. Finally, in Section 4, these ideas are applied in system identi

fication. Two examples are presented. In the second two statistical tests

support the conclusion that the gross domestic product —unemplojmient

relation is feedback free.

We believe this is the first work to propose and use multivariate

testing procedures on the feedback problem. Much of the material
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presented here first appeared during 1972 in Chan [6]. Independently

Sims [7] formulated a definition of causality which also involves the

joint input-output process. He presented an argument that his formulation

is equivalent to Granger's. Using univariate statistical procedures

Sims examines the money-income relationship and concludes that while there

is no feedback from income to money supply there is feedback from money

to income. Goodhart et al. [8] have recently applied Sims methods to the

U.K. economy obtaining the opposite results to those of Sims. Finally

Wall [9] has proposed that a specific canonical structure for the joint

input-output process should correspond to a unidirectional causal relation

between input and output. Wall's criterion turns out to be identical to

our own. He concludes from a careful statistical analysis of data for

the United Kingdom from 1955 to 1971 that bidirectional causality or,

in our terms, feedback exists between the ordered pair of processes

money supply and income.
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2. Definition and Properties of Feedback

We begin this section by a discussion which will motivate our

definition of feedback.

1. Let y and u be p and q component stationary stochastic processes

respectively and let {K^,1>^0}, {L^,1^0}, {M^,1^0} and {N^,1^0} be square

summable sequences of qxp, qxq, pxq, pxp matrices respectively. Further

let V and w be respectively p and q component, zero mean, Independent

Identically distributed (l.l.d.) processes which are possibly correlated.

Then the following equations are often taken to represent the dynamical

behaviour of a feedback system:

Yf = £ K.u . + S L.v (2.1a)
1=0 ^ ^ ^ 1=0 ^ ^ ^

u. = E My + E Nw (2.1b)
^ 1=0 1=0

Equation (2.1a) gives the relationship between the observed Input process

u, the unobserved process v, which Is generally known as the output

disturbance, and the output of the djmamlcal system y. Equation (2.1b)

Is Interpreted as describing the behaviour of a feedback loop since It

gives the relationship between the output y, unobserved disturbance w and

the Input process u. Akalke [10] and Bohlln [11] define the absence of

feedback for a system of the form (2.1a) as the Independence of the

processes u and v. This Is reasonable since Intuition associates a

lack of feedback from the observed process y to the observed process u

with the notion that u Is In some sense exogenous or external to the

process generating y I.e. y Is a function of the process u and an
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an unobserved process v with the a-fields generated by u and v being

independent.

The problem with using (2.1a) alone to define the lack of feedback

between y and u is that the criteria usually proposed depend upon v

which is unobserved and cannot be estimated without a-priori knowledge

of the parameters of the system. On the other hand the formulation we

introduce below is consistent with the ideas of Akaike and Bohlin but

is formulated in terms of observable processes.

Let H denote the Hilbert space which is the mean square completion

of the space of all processes with finite first and second moments.
oo

Further let Ketc. denote the map from Hinto Hgiven by Kv - (S
i=0

-00 < t < "}. Then, formally solving (2.1) for y and u in terms of the

processes v and w, we obtain

y

u J

(I-KM)"^L

_(I-MK)~^L

"PL

_QML

PKN

(I-KM)"^KN

V ""

- W __

r-
(I-MK)~ N J L w

(2.2)

where KM etc. denotes the concatenation of the operators K and Mand

P A(I-KM)"^ and QA(I-MK)"^, where the inverse operators are assumed to

exist. .

Let us assume that feedback is absent from (2.1) in the sense that

M is identically zero. Then (2.2) reduces to

y

.u_

KN

N „
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and y has the representation

y = Ku + Lv

in terms of the independent processes u and v which are respectively

observable and unobservable. This discussion suggests that the triangular

structure of the joint representation (2.2) can be used to formulate

the notion of the absence of feedback. However equation (2.2) was

derived from equation (2.1), and, as it stands, this is not a unique

(canonical) representation. For this reason we begin the discussion

afresh starting from the theory of stationary stochastic processes.

2. Consider the r component process C lying in H. (For convenience

in this paper we shall take all stochastic processes to have zero mean.)

Let denote the subspace of H generated by } and let
—m — m n

n|j^ denote the projection of a random variable n on H^. When
lim C+.|h^ =0 the process C has zero projection on the infinite past

n-^»

and is termed regular [12] or non-deterministic [13]. Further, when the

T
process C has the property that ~ ^ 0,the process C is said to

be of full rank. It was shown by Wold that a regular full rank

stationary process possesses a canonical one sided moving average

representation of the form

where e is an r component stationary orthonormal process (i.e.

i
is invertible and the subspaces spanned by {c^.; t<n, i=l,...,r} and

{e^; t^n, i=l,...,r} are identical. In order to make the representation
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(2.3) unique we take (j)^ to be upper triangular with positive elements on

the diagonal. (Otherwise the sequence ...}, together with the

orthonormal process Ue,and the sequence {$qU,...},together with the

orthonormal process e,yield two different canonical representations of
T

the same process,when UU = !•)

In this paper we shall only deal with finitely generated stationary

processes; these constitute the subclass of regular full rank stationary

processes for which there exist two sets of real matrices A= {A^,...,A^}

and r = such that

«t-l + ••• + ^ «t-n = ^0= r„ e + ... + r G
n t-n

(2.4)

From this point on the phrase 'stationary stochastic process' shall denote

only a regular full rank finitely generated stationary stochastic process.

Let

-1 .
A(z) = I + A,z + ... + A z .

^ 1 n

and

r(z) =r +r^z ^+ ... +r^z "

where zG^ the field of complex numbers. Clearly A^(z) exists at all
except a finite number of values of the argument. In order to present

the first definition we use the following block decomposition of the matrix

of rational functions A^(z) r(z); we shall write

A(z) B(z)

C(z) D(z)

where A(z), B(z), C(z), D(z) are matrices of rational functions of

dimension pxp, pxq, qxp, qxq respectively. Then, motivated by the
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discussion in Section 2.1, we make the following

Definition 1. Let C be a p+q component stationary stochastic process

composed of the p component process y and the q component process u.

—1 —1 —2
Further let $(z) = A (z) r(z) ~ ^2^ + ... • Then we say

there is no feedback from y to u or the process C is (p,q) feedback

free if and only if the matrix $(z) has the form

A(z) B(z)

0 D(z)

(2.5)

If C is not (p,q) feedback free we say there is (p,q) feedback from y to u.

It is convenient to introduce immediately an equivalent definition

to the one given above. This second definition will prove to be more

useful than the first in the context of system identification.

Consider the process e in the canonical representation (2.3).

Construct the r component stationary i.i.d. process 6 by setting 6^ =

Then C has the canonical representation

+ Qi * (2.6)'t " ^t 1 t-1 2 ^t-2

-i
0,2

i=0
where E 6^6* = Notice that 0(«>) = I when 0(z) A ^ 0 z with

t t 0 U ~ 1

0Q ^ I. Using (2.6) we state

Definition 2. The process C is .(p,q) feedback free if and only if the

matrix 0(z) derived from the representation (2.6) is upper block triangular

with indices {p,q}.

Since 0(z)$q = $(z) and since is upper triangular, has positive

elements on the diagonal and is invertible Definition 1 and 2 are clearly

equivalent.
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Zero mean stationary gausslan processes are completely characterized

by their spectral density matrices l'(z). For such processes the property

of being feedback free is given by the structure of the spectral density

matrix:

Proposition 1

The p+q component stochastic process C is (p,q) feedback free if

and only if there exist matrices of rational functions A(z), B(z), D(z)

of dimension pxp, pxq, qxq respectively with A(z), D(z) of full,

normal rank (i.e. full rank except at a finite number of points) and the

poles of A(z), B(z), D(z), A~^(z) and D^(z) lying in the open unit disc.
such that

A(z) A*(z) + B(z) B*(z) B(z) D (z)

^(z) = (2.7)

D(z) B (z) D(z) D (z)

dfc " —1

where A (z) denotes A'(z ) etc.

Let us describe a matrix of rational functions as (asymptotically)

stable when all its poles lie in the open unit disc. Then a theorem due

to Youla [14] states that the spectral density matrices of full rank

stationary processes possess stable and inverse stable spectral factors.

The proposition follows immediately using this result.

Acausal operator T shall be called a rational operator on Hwhen

TC = (S T.C < t < «} and T(z) = T^^i is rational and all poles
i=0 ^ i=0 ^ ^ .

of T(z) lie in the open unit disc. Employing this terminology, the reader

may readily verify the first four of the following simple properties of

our notion of feedback:
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Some Properties of Feedback

1. Let 5 be a (p,q) feedback free process. Then operations with any

upper block triangular rational operator T(i.e. T(z) upper block triangular

with indices {r,s} x {p,q}) m^ps C into an (r,s) feedback free process

when the blocks on the diagonal of T(z) are of full normal rank. (The

last condition ensures the image process is full rank. It can be dropped ^

if we relax the full rank assumption.)

2. In general operations with matrices of rational operators introduce

feedback into a feedback free process. However given a process C with

(p,q) feedback there exists a lower block triangular rational operator T

(indices {p,q}) such that TC is feedback free.

3. Let w be a p component zero mean stationary process (not necessarily

of full rank) which is independent of the process [y',uM- If

ordered pair of processes ^y,u) is feedback free (i.e. C* 'r [y*>u*] is

feedback free) then so is <y + w,u>. However, if w is a q component

process it is in general not the case that ^y,u + w) is feedback free.

4. ^y,u) and ^u,y) are feedback free,and y^ is independent of u^ for
it

all t,if and only if the process y is independent of the process u.

5. <y,u> is feedback free if and only if there exists a unique represen

tation of y in the form

y = Ku + Lv (2.8)

where K and L are rational operators with L invertible, Lq is upper triangular

with positive elements on the diagonal, the processes u and v are

We point out that
system contains , - u l

are independent i.i.d. processes
i.i.d. Gaussian process with covariance Z, <y,u> and <u,y' are always
feedback free. -11-



independent and v is an orthonormal process.

This is shown as follows. From Definition 1 ^y,u ) is feedback free

if and only if

:]•
L M V

_0 N_ _w_

with [v',w'] an orthonormal process. Now a property of the unique

representation (2.3) is that the rational operator <I> is invertible and

hence that $ has a causal stable inverse. (In the Gaussian case this

is equivalent to saying that the innovations representation (2.3) gives

the stable minimum phase factor of the spectral density matrix <^(z)).

As a consequence

y = MN ^u + Lv,

where MN ^ and L are rational operators, L is invertible, has the
•k

required form and u and v are independent with v orthonormal.

Clearly if y has such a representation then <y,u> is feedback free.

Uniqueness of the representation (2.8) is demonstrated quite

simply. Assume

Ku + Lv = ku + Lv.

Then

(K-K)u = Lv - Lv (2.9)

*The reader should notice that for any pair of correlated processes a
representation of the form (2.8) exists with the condition that v^ is
independent only of u . This representation is obtained by setting
TKiil = V . . [vl = y - y I and L = I. However the entireLi^ujt yt|t-l'. ^^t ^t ^t|t-l
process v is not independent of the entire process u.
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since u is independent of v and v and all processes are zero mean (2.9)

yields K = K. Now consider the process Lv = Lv. By assumption L and L

are invertible rational operators with Lq and Lq upper triangular with

positive elements on the diagonal and v and v are orthonormal processes.

It follows that Lv and Lv are both innovations representative of the

same process and hence L = L and v = v.

We shall mention in passing two other extensions of the concept

of feedback free systems. We do not pursue these generalizations in

this paper because of their limited scope for applications. First, we

may define a non-stationary process ? to be asymptotically (p,q) feedback

free if it is generated by

aind

+ A, .+...+ A + ... + r et l,t^t-l n,t t-n 0,t t n,t t-n

-1 . . -n,-l p„ . . _ -n, ^ -1lim [I + A_ z" + ... + A ^z ] [r + ... + r z ] = A (z)r(z)
l,t n, t vjC n,t

where A^(z)r(z) has the structure (2.5). Second, a family of processes

given in a preassigned order might be defined as feedback

free if the canonical representation of the vector process [yj^»»..>y^]

has a canonical representation possessing an upper block triangular

structure with indices {dim yj^,...,dim

Finally we remark that the definitions and results above are also

applicable to continuous time processes. The causal rational operators

of this section are merely replaced with stationary causal stochastic

integrals I h(t-s) dw where w is a Wiener process and the kernel
Jo ®

function {h(T),0<t<«»} has a rational Fourier transform. The matrices
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(2.5), (2.6) and (2.7) appearing in the definitions are unaltered except

in their arguments and the definition of conjugation.
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3. Linear Least Squares Estimation and Feedback

Given any two processes y and u for which the autocorrelation

function R^(l,j) and the cross correlation function are defined

one may formulate the corresponding Wiener filtering problem I.e. find

the Impulse response {h(l,j); l,j = Integer} of the linear system which

when driven by the process u has output y which minimizes Trace E(y(t)-y(t))

(y(t)-y(t))* for each Integer t. It Is well known [15-17] that this

leads to the Wlener-Hopf equation

00

Y, h(t,r) R^(r,s) = R (t,s) (3.1)
]*ss»oo

In the case of non-stationary autoregresslve processes the causal

solution to (3.1) may be given In terms of the spectral factors of

Infinite matrices [18]. In the stationary case, without the restriction

that {h(t); t - Integer} be causal, (3.1) has the solution

H(z) =1'yu(z)'!'u^(z) (3.2)

where ¥ (z) and 'l'y(z) are the z-transforms of R ^(t) and R^(t) and H(z)
yu y

Is the z-transform of h(t).

To solve the problem when the filter Is restricted to be causal.

we use the following assumptions and notation. Each discrete transform

A(z) will be assumed analytic In some annulus p < llzll < p ^ (0 < p < 1)

containing the unit circle. (In particular, this Implies that all spectral

densities are analytic on the unit circle.) Furthermore the causal

truncation of the Laurent expansion of any A(z) will be assumed to be

analytic In the region 1 ^ |z| and the antlcausal truncation analytic In

|z| < 1 I.e. when
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A(z) = S A^z ^ , p<llzll <p

then

[A(z)]. = E A,z '•
i=0 ^

converges for 1 ^ HzII, and

-1

[A(z)]_ = x; -1
z

converges for llzll £ 1. This is equivalent to saying that A(z) only

represents causal sequences that are summable (and hence stable in the

sense that Ha II -> 0 as 1 and anti-causal sequences that are summable
1

(and hence anti-stable in the sense that Ha^H ->• 0 as i ->• -"). These

assmuptions allow us to identify the operation of causal truncation of

any rational A(z) with the operation of selecting that part of the partial

fraction expansion of A(z) which has all its poles in the open unit disc

(see [19]). We remark that this association of causality and stability by

identifying the contour of inversion with the boundary of the stability

region is a convenient simplifying assumption often employed in continuous

time problems (see e.g. [15]).

Using the notation just introduced the optimal causal Wiener filter

has an impulse response given by

H^(z) =[fy^Cz) (0*(z))"\ (3.3)

where 0 (z) is a stable and an inverse stable spectral factor of ^„(z)
u "
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* T -1
and 0 (z) denotes 6 (z ).

u u

It is interesting to ask whether the structure of the optiroal

causal Wiener filter for estimation of the process y from the process u

is affected by the feedback properties of the joint process (y,u).

In answer to this question we obtain the following result.

Theorem If the processes (y,u) are feedback free the optimal causal

Wiener filter for the estimation of y from u is identical to the

optimal non-causal filter. Conversely assume the optimal causal and

non-causal Wiener filters for the estimation of y from u are identical

and assume

(Al) The poles of B(z), C(z), D(z) in (2.7) and the stable zeros of

|A(z)A (z)+B(z)B (z)I (i.e. the zeros of |0(z)|) form pairwise

disjoint sets.

(A2) The poles of C(z) each have multiplicity one and at the poles of

* A*
C (z) the matrices A(z) and 0 (z) have full rank.

Then ^y,u ) is feedback free.

Proof. When (y,ii ) is feedback free express 'i'yy(z) and in terms of

the matrices of the canonical representation (2.3). Then

'fyy(z) =B(z) D*(z),

H'̂ (z) =D(z) D*(z).
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This yields immediately

H^(2) =tB(z) D*(z) (D*(z))"^]^ d"^(z)

= B(z) d"^(z)

= H(z)

which proves sufficiency.

Necessity is only slightly less simple. Assume the causal and non-

causal filters are equal i.e. [^y^(z) (0^(z)) ^1+ ~ ^ ^
0;\z)

then

[^y^(z) (0^2))-^]^ =^y^(2) (0*(2))-^

or, equivalently

[\„(2) (0*(Z))'̂ ]_ =0
J ^

Let 0^(z) denote 0~^(z) and 0*(z) denote (0*(z))~^. Further for
rational matrices M(z), N(z) let R^(Rj^ respectively) denote that part

of the partial fraction expansion of H'y^(z) 0 (z) which has poles in
common with M(z) (M(z) or N(z) respectively). Since A(z), B(z), C(z),

D(z) and 0(z) are causal it follows that

0 = [^y^(z)

= [(A(z) C*(z) + B(z) D*(z)) 0*(z)]^

-18-



Using (Al) we conclude that R^.*(z) = Rjj*(z) = R*(z) = 0- Now A(z), B(z)
*

and D(z) can have no poles in common with C (z) and by (Al) the same is

also true of 0 (z) and C (z). For R^^(z) this yields

° ? (z-v ) [(A(z)C*(z)+B(z)D*(z))0*(z)]

c
* ^"k

= y "7—A(v.)C 0 (Vj(z-v^) ^ i^ i'

where {v.; l^i^c} are the set of poles of C (z), C denotes the residue
^ i

of C (z) at the pole and where we have used (Al) again. Since by (A2)

A(z) and 0*(z) are full rank at the poles of C*(z) the residue mtrices
of C (z) vanish at each of its poles. Consequently C(z) = 0 and the

result follows.

Incidentally when C(z) = 0 we have 0 (z) = (D (z)) and so

f (z) 0*(z) = B(z)D*(z)(D*(z))~^ = B(z). But then clearly by (Al)

Because the spectrum of a feedback free process has a special

structure certain standard formulae associated with stationary processes

take on a very simple form in the feedback free case. Two examples

are the following:

1. Let the processes (y,u ) be feedback free, then, as above,

^^(z) =A(z)A*(z) +B(z)B*(z) and 'i'̂ (z) =D(z)D*(z). Substituting these
expressions into the standard formula [10] for the mean square filtering

error yields:
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=TraceJ (H'y(z) -H(z)*l'̂ (z)H (z)) z d̂z
z|=l

(3.4)

1-fiTTj J
* -1

= Trace I A(z)A (z) z dz

'zl=l

(3.3) and (3.4) show that in the feedback free case the optimal causal

(equivalently non-causal) filter is independent of A(z) and the mean

square filtering error is independent of B(z) and D(z).

2. ' The mutual information between the processes y and u is given by

the following expression [20]:

1 f dz
J(y>u) 1 log ; li * , T

^ •'l I , (H' (z) - y (z)'i' (z)^ (z))|z|=l I ^ yu^ U yu^ '

When ( y,u ) is feedback free this formula also simplifies yielding,

s if , det|A(z)A (z)+B(z)B (z)| dz
— |a(z)a%)| t

lz|=l

It can be seen that unlike the case where feedback is present the

expression for the mutual information between output and input does not

depend on D(z).
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4. Detection of Feedback

As we described in the Introduction there are at least two reasons

for wishing to detect feedback in a system whose parameters are being

estimated. First, there is the simple fact that the existence of feed

back may be of scientific and engineering interest. Second, most

recent analyses [21-22] of the properties of parameter estimates

depend on the assumption that the observed input process is independent

of the system disturbances, in other words it assumed the system is feed

back free. When this is not the case it may well happen that estimates,

such as the likelihood estimate, are not consistent and are biased.

Recently Ljung [24] has given conditions for prediction error esti

mation methods to generate parameter estimates that fall into a

particular equivalence class of the true parameters. However this equi—

valuence class is, in its turn, defined in terms of a prediction error

criterion.

Models of the form

y = Ku + Lv (^*1)

u - My + Nw (4.2)

are frequently postulated for the identification of closed loop systems

(see e.g. [25]). If it is assumed that the unobserved processes v and

w are independent then it is possible to make (4.1), (4.2) unique.

However when (4.1),(4.2) is used in an identification experiment, or when

(4.1) or (4.2) are used separately, it is not possible to impose this

independence assumption. Without this assumption the representation (4.1),

and hence the entire model (4.1)-(4.2), suffers from an inherent non-

uniqueness. This may be shown as follows. Let K be a rational operator.
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Then using (4,1) and (4.2) we may write

y = (K-K) u + Ku + Lv

= (K-k) u + k My + KNw + Lv

For any such k this yields a representation of y in the form

y = (I-kM)"^ (K-k) u + X

where (I-kM) is assumed inverse causal and stable and the spectral density

of X is

N*~1
= (I-KM) [KNN K + LL ] (I-KM)

X

Clearly there exists an entire family of operators {K} that give rise to a

family of representations of y in the form (4.1). In addition to models

of the form (4.1), (4.2), which contain unobserved noise in the equation

for the input u, models with deterministic feedback are frequently

postulated in the literature. Such models are obtained by setting N= 0

in equation (4.2). In this case the model (4.1), (4.2) is invariably non-

unique. This may be seen by merely setting N= 0 in ^^(z) above. As has

been suggested in the literature, uniqueness may be retrieved for (4.1)

by placing conditions on the orders of the rational operators K and L.

Unfortunately it is precisely this information which is unknown at the

commencement of an identification exercise.

Other non-uniqueness properties of models of the form (4.1), (4.2)

have been discussed by Akaike [26]. In this paper by using the unique

innovations representation for the joint process we dispose of the problem

of ambiguous system representations. The detection of feedback in
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practical situations then reduces to the application of hypothesis testing

techniques to the estimated structure of the system generating the joint

Input-output process. Once It Is established that the joint process Is

feedback free Property 5 of Section 2 assures us that we may consistently

estimate the parameters of a unique representation of the form (2.8).

4.1. System Identification

Let the Gaussian process C be generated by the model (2.4) which

we write again here for convenience:

^t ^l^t-1 + ••• + Vt-n " ^O^t *** ^n^ t-n'

where e Is a Gaussian orthonormal process. Since C Is also Gaussian so
t

Is the Innovations process {©j.) ^t|t-l^ Baye's rule
and the Independence of the Innovations process we obtain

M N 1p (c") = n P (C |c )
® t=i '

^ 1 1 1 , T -1
= n

t=i IEj. i72 - 2 V*

where the filtering error e^ Is distributed N(0,S^) for t 1 [27].

It follows that,up to a constant, the log-llkellhood function Is given by

N , N

L®(c®.e) =- f E log |2:tl "i E
t=i t=i '
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The maximim likelihood estimate of 6 is generated by maximizing

(4.6) with respect to 6. It is well known [28,29] that maximum likelihood

estimates (MLEs) have the desirable properties of strong consistency,

asymptotic efficiency and asymptotic normality for the case of independent

observations. Dynamical systems clearly possess dependent output

processes and so an extension of the classical theory and techniques is

required. This was first carried out for scalar autoregressive moving

average models by Astrbm and Bohlin [21]. AstrBm and Bohlin used the

law of large numbers in conjunction with the technique of Kendall and

Stuart [30] to prove the strong consistency of the sequence of maximum

likelihood estimates {0'^,n=l,2,...}. Their proof was incomplete but

Rissanen and Caines [31,32] used their suggestion of employing the ergodic

theorem to produce another demonstration of the strong consistency of

the estimates. It turns out that without knowledge of the Kronecker

indices [33] of the rational matrix a"^(z) f(z) neither the. parameters of
(1 f) = (A ,A ,f) nor the parameters of a Markovian state

1 n O n

space representation may be consistently estimated, see [31,32]. (We

have used here the zero superscript to denote parameter values in the

same equivalence class as the true parameters.) However without this

knowledge the following result still holds. ^

Theorem 1 [31,32]

Let S be a closed and bounded subset of the space of parameters
2

® = (e = (A,r)l0 e (J^(2n+l)r ^ all 0^ S the roots of

|a(z)| lie in the open unit disc and such that TqCQ) is non-singular and

upper trinagular with positive elements on the diagonal. Suppose

0^ = (A^,r^) maximizes Lj^(i;^,0) over 8, then
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lli^ - II ->• 0 a.s. as N->•
i«0

w

where $(z) = ^ $.z^ = A~^(z)r(z) and where li-H denotes any matrix norm.
1=0

In other words the maximum likelihood method produces strongly con

sistent estimates of the true Impulse response. Furthermore, by elaborating

AstrBm and Bohlln's [21] extension of the classical result [29], we have

Theorem 2

Let the conditions of Theorem 1 hold for the Gaussian process C,

let the Kronecker Indices of A^(z) r(z) be known and let (A(z),r(z)) be
-N

left relatively prime for 0 ^ S. Then the parameter estimate 0 Is
1 N

strongly consistent at 0. Further let L(0) denote 11m L >0)» assume
N-^

L(0) Is twice dlfferentlable with respect to 0 and assume that LQg(0)
/vJJ O —l,Ovv ,

Is Invertlble. Then 0 Is asymptotically normal N(0,-LQg(0)) where

Lgg(e) = ° n probability 1.
N-H»

In practical numerical work the expression (4.4) Is approximated by

L''(C^e) ==f log lz| - -I E \

where e^ Is computed using the predictor for |In Its steady state
form and 21 Is the corresponding steady state error covarlance matrix.

Given a sample the numerical maximization of (4.5) may be

carried out In several ways. The method we adopt Is the following:

first, maximize (4.5) with respect to E yielding
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and

N

^(9) =1 E
t=l

L^(C^,6(0),e) - I log l2(0)1 +const,

Second, minimize the function

V(0) = |e(0)

'^N N
with respect to 0 yielding 0 (C )

(4.6)

4.2 Hypothesis Testing

Using the estimation techniques described above the problem of

detecting feedback is reduced to that of choosing between the following

models.

Sq: Zq(z) =A^^(z) r^(z) =
0 0

A(z)

-1S^: Z^(z) = (z)r^(z) = A(z)

C(z)

B(z)

D(z)

B(z)

D(z)

• = ^p+q

, z (oo) = I .
c^ ^ p+q

where the subscript 0 denotes open loop system (i.e. feedback free), the

subscript c denotes closed loop system (i.e. feedback present) and

2(00) = X in both cases since we shall use the canonical representation
p+q

(2.6). Given a system which is feedback free the estimate of C(z) based on

input-output records of finite length will naturally not be identically zero.

Consequently it is necessary to develop suitable hypothesis testing methods.
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Likelihood Ratio Test

Let e„ and 0 be the parameter vectors of S and S and let these
0 c ^

vectors have n^ and n components respectively. Then we must choose
o c

between the following alternative hypotheses:

V ®=V
(A.7)

»!= ®= ®c^

Let c" denote {(yj^.Uj^), (72.02) (yjj.Uj,) 1aod let f(C and f(C .6^,)
denote the probability density functions of ^ with respect to the measures

Induced by 0 = 0 and 0=0. Then the likelihood ratio Is defined by
0 c

^^ '®c^ (4.8)

and the likelihood ratio test Is performed upon the computed value of

(4.8).

In the case of Independent observations It Is known [29] that X

can also be expressed as

v(e )>
c' \ (4.9)

X = v(eo)

where V(0) Is given by (4.6). Further (6.9) can be rewlrtten as

- N/2
rn - n

where
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(N-n ) V(6 )-V(e )
c_ 0 c_

' (n-o) V(e^)

where t is an F-distributed statistic with (N-n^.n^-n^) degrees of

freedom i.e. t ~ F(N-n ,n -n^). Since X is a monotone decreasing function
ecu

of t we can translate the likelihood ratio test on X into an equivalent

F-test on t. Applying these results to the dependent sample case of our

problem we formulate the following decision rule:

Accept Hq (Reject H^) if t £ FCN-n^.n^-nQlH^)
Accept (Reject Hq) if t > F(N-n^,n^-nQ|HQ)

where

Frob (t > F(N-n^,n^-nQ) Hq)) = a

and a is the prespecified level of risk.

A similar technique to this has been proposed by AstrBm [34].

Since the observed processes in our problem are generated by an

autoregressive moving average model the validity of this test for the

detection of feedback is uncertain. However lacking alternative methods

we proceeded in order to see if the F-test would give results consistent

with the confidence interval technique described below.

2
Chi-squared (y ) Test

An alternative approach to that described above is to work solely

with hypothesis and to reject whenever the zero vector of parameters

for C(z) falls outside a confidence region for 0^ under H^.
O

Given an n component random variable 0 distributed N(0,Z) we may

define the random variable ^ by C ~ (0~0) ^ (0~0)* C will then have the
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2
X distribution with n degrees of freedom. Since 6 is asjnnptotically

-1

00

O O

normally distributed N(0, - LggC©)) we may formulate the following

test:

'^NT —1 '^N '^NCompute = 0^ 0^ where 0^ is the estimate of the components

of 0 belonging to C(z) and is the submatrix of the estimate of
O

—LgQ(0) corresponding to 0^. Then the decision procedure is:

Reject if < Y

Accept if 5^ ^ Y

where Prob (5^ > y|Hq) = a and a is the prespecified risk level.

4.3 Examples.

To demonstrate the application of the ideas introduced in the

previous sections we present two examples. The first one uses artificially

generated data while the second involves recorded gross domestic product

(GDP) and unemployment (UN) time series for the United Kingdom. In both

examples the maximum likelihood estimates of the autoregressive moving-
A

average models were obtained by minimizing (4.6) with respect to 0 over

a specified compact set using Rosenbrock*s hill climbing technique. The
^ A

derivative of V(0) was calculated by differentiating V(6) analytically
—1 ®

with respect to 0. The covariance —Lgg(0) of the parameter estimate was

computed using the well known identity

E[I,gg(c'',e)] =E[Lg(cM)Lg (,S)] W* 12)

N N N N obetween I^g(5 ,0) and 1^(5 ,0). As a result we use

N

I
i=l
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to estimate L^gCC ,0), where Lq(?^,0 ), 1 <1 <. Nis evaluated using
"N

V-(0 ) computed for 1 £ i ^ N.
0

Example 1 200 pairs of univariate input and output observations were

generated using the model

y = Ae- + Bu

u = £2

where

1 + 0.42"^ 0-7z
A(z) = Zi 9 Bvz) - _i

1 + 0.6z 1 + 0.9z

(4.13)

and e^, £2 were serially and mutually independent gaussian random
variables generated by a standard computer subroutine and having distri

butions N(0,1^) and N(0,0.5^) respectively. For this sample the emperical
2 2

distribution of these random variables was N(0,1.047 ) and N(0,0.496 )

respectively.

Since, in practice, the structure of 4>(z) is not known a—priori,

the procedure of detecting feedback is performed using the following

steps. First, find the most acceptable model using the likelihood

ratio test (LRT) proposed in Section 4.2 for the case where feedback is

believed to exist. In such a case, there will be no zero entry in

$(z). Second, choose the most acceptable model using the LRT for the
2

case where $(z) is upper block triangular. Third, use the LRT and x -test

to decide whether to accept or reject the alternative hypotheses.

In this example, the most acceptable identified model where feedback

-30-



was assumed to exist is shown below with the estimated standard

deviations of the estimated parameters shown in brackets.

u

and

Cov

(±0.157)

1 + 0.414 z"^
-1

1 + 0.591 z

(+0.138)

- 0.014 z"^
(+0.032)

1.047

-0.015

-0.015

0.496'

(+0.232)

0.723 z"^
-1

1 + 0.913 z

(+0.292)

(4.14)

(4.15)

Next we asstimed $(z) was feedback free and the identified model

was as follows:

u

with

Cov

'-^2-

(+0.309)

1 + 0.429 z"^
-1

1 + 0.610 z

(+0.269)

0

1.044

•0.015

-0.015

0.496'

(+0.101)

0.722~^
-1

1 + 0.913 z

(+0.018)

(4.16)

(4.17)

It seems reasonable from inspection of (4.14) that the observed point

process was feedback free. The hypothesis testing procedures applied to
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N-n^ VCep) - V(6^)
' = n^-ng V(e^)

Now

200 - 8 ^ 0.544 - 0.541 ^ ^
8-7 0.541

the 5% risk level for F(192,1) is 3.95 and so we accept the hypothesis

Hq at the 5% level.

2. In this example the inversion of the ^ ^^c'̂ ^O^ submatrix
2

is simple since it is merely the scalar (0.032) . This gives

5 = (0-0^) (0-0^)

= (0.014)^ (0.032)"^ = 0.191

Since the 95% confidence region for 0^ under is given by C =
1 2(0-0 ) < 3.84 we see that we reject H., at the 5% risk level by the x

c —

test also.

Example 2 65 values of the gross domestic product and unemployment time

series for the United Kingdom from the first quarter of 1971 (1971 I)

were used in this experiment. The G.D.P. data was at 1963 factor cost

and seasonally adjusted; data for 1955-1967 is that quoted by Bray [35]

from Treasury sources and that for 1968—1971 from Economic Trends,

July 1971, Table 4 p. xii, col. 6. Unemployment denotes wholly unemployed,

excluding school leavers and seasonally adjusted; 1955-1970 II is that

quoted by Bray, while 1970 III-1971 I is from Trade and Industry, No. 28

October, p. 200.

Sixty-four pairs of normalized difference data were generated by

computing >k=l,...,65 for [GDP] = {GDP^, k=l,...,65} and

-32-



[UN] = { UN , k=l,...,65}. Further by subtracting form each series its

average value over the sample we obtain two zero mean processes.

As before, we first assumed that [GDP,UN]* is a process containing

feedback. The most acceptable identified model was

(+0.315) (+0.079)

1 - 1.973 z"^ - 3.182 z"^

GDP

UN

Cov

-1
1 - 0.337 z

(+0.073)

- 0.018 z

(+0.069)

-1

5.848

-2.901

-1 -2 -3
1 - 0.098 z - 0.355 z + 0.113 z

(+0.331) (+0.087) (+0.182)

-1
1 + 0.178 z

(+0.119)

-2.901

1.054

"=•2

(4.18)

(4.19)

Second we assumed the joint observed process is feedback free. This

yielded the model:

(+0.069) (+0.313)

1 - 2.013 z"^ - 3.197 z~^

GDP

UN

Cov

-1
1 - 0.312 z

(+0.284)

0

5.912

-2.948

1 - 0.104 z"^ - 0.332 z"^ + 0.117 z~^
(+0.079) (+0.134) (+0.065)

-2.948

1.052

-1
1 + 0.116 z

(+0.094)
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The hypothesis testing procedures yielded the following results

N-n V(0.)-V(e )
c U c

t =

V"o

29»964 —29.555 _ ^ 77c:
= 56 X 29355;

At the 5% risk level Hq is accepted for t <F((64-8),(8-7)) =4.02.

As a consequence the t test, or.equivalently the likelihood ratio test,

concludes that the process is feedback free at the 5% risk level.

2. For the test we reject at the 5% risk level if 0^ = 0 is in

the 95% confidence region under H^. This yields:

Reject if C (0-0^)11 (0-0^) < 3.84

Substituting from (4.18) gives 4= (0.018)^ (0.069)"^ =0.068, and so is
rejected at the 5% risk level.

In suimnary we conclude froni both tests that the joint gross

domestic product—unemployment series is feedback free.

In the light of Property 4 of Section 2 we may proceed to identify

the relation between the input process [GDP] and the output process

[UN]. From [36] this is known to be

(+0.5457) (+0.6124)

[UN] = -2-3275 + 1.6396 [^0?] + [E]
1-1.7094 z + 0.8074 z 1-0.224 z

(+0.0773) (+0.0658) (+0.1268)

•k

where [E] denotes an N(0,1) Gaussian noise process.

*The standard deviation of the numerator of the noise transfer function
is not recorded in [36].
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Conclusion

In this paper we have proposed a formal definition for the idea of

feedback between stationary stochastic processes. Our claim is that

the special structures (2.5) for the canonical representation of the

joint process and (2.7) for its spectrum correspond to the absence

of feedback. We believe this claim is supported by the discussion

in the first part of Section 2 and the consequences of the definitions

given in the second part of Section 2. In Section 3 we showed that there

are some intriguing consequences for filtering theory when an ordered

pair of process is feedback free. From the point of view of applications

Property 5 in Section 2 is the most important result of the definitions.

It asserts that if (and only if) an ordered pair of observed processes

is feedback free then there exists a unique representation of the first

process in terms of the second process and a distrubance independent

of the second process. We have illustrated these ideas by applications

to simulated data and to econometric data from the United Kingdom. We

believe there is great scope for the extension of these techniques in

many practical applications.
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