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FORWARD

About a year ago a first report was published under the title
"Neural pulse frequency modulated control systems. " This report
contains certain points of the research done on the subject since that
time but its main purpose is to emphasize the relation of this, class*of
systems to biological models.

The author is grateful to Professor E. I. Jury of the Dept. of
Electral Engineering and to Professor D. Wilson of the Dept. of
Zoology for their help in this research.
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I. INTRODUCTION

Although a detailed mathematic description of single neurons
has been offered by the Hodgkin-Huxley equations, very little has
been done in the direction of studying neural nets in detail. One reason
is the high degree of complexity of the Hodgkin-Hurley equations which
makes impossible the simultaneous solution of a system of equations
representing more than one neuron. Another reason is that little is
known about the way neurons are interconnected.

One way to circumvent the first difficulty is to substitute the
Hodgkin-Huxley equations by asimpler model which simulates only
those properties of the neuron which are essential in the operation of a
group of them (neurons). That is of course avague statement because
we do not really know exactly which are these essential properties.
However some assumptions seem reasonable:

1. The waveshape of the neural pulse is not of importance. On
one hand the pulse duration (about 1msec)1 is much smaller than the
interval between two successive pulses under most circumstances (at
least 10 msec corresponding to frequency 100 c/s). On the other taad^
it is established that the synaptic transmission has low pass properties.

2. The variable threshold negative refractoriness can be substituted
by anegative feedback. Indeed if the time of the emission of apulse is
determined by a relation of the form:

p(t) = r(t) + r
o

(1)

where p is the membrane potential and r(t) +rQ the value of the threshold
this can be easily rewritten as

p(t) - q(t) =r <2>
o

where q(t) is due to the negative feedback. We will call this refractory
feedback.
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3. No effort should be made to simulate the absolute refractoriness

as this is of importance only in very high firing frequencies (1000 cps),

well above the usual range.

4. The phenomenon of accommodation can be neglected at first

because it is of importance only in very particular cases. For the problem

of interconnection, however, one can make only some arbitrary assumptions.

5. The phenomenon of inhibition can be represented by inverting

the sign of the pulses.

6. The equations describing the transmission of the pulses across

the synapse are linear.

Based on these assumptions we are going to indtroduce a system

simulating some of the features of neural nets.

II. AN ATTEMPT FOR A GENERAL MODEL FOR NEURAL NETS

We define first as a neural trigger a device with scalar input p(t)

which emits an impulse of area 6 whenever its input reaches a value

r, which is called the threshold. Immediately after, p(t) is reset to

the zero value. Consider now a system containing m triggers. Let

their inputs be p., p , . . ,p and their outputs d., d0, . . . d where
1 2 -^m r 12 m

n

d. = V 6.(t - t.) for t .< t < t _,,. (3)
i L- ix j1 n— n+1 w/

6.(t - t.) represents an impulse of area 6. emitted at time t.. We
1 J i J

define furthermore the following vectors.

p = coltp^ p2, .. .pm) (4)

d= colfd^ d2, ...dm) (5)

u=col(u1, u2, . . . ur) (6)

x = col(x., x2, ...x ) (7)
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where u, are various inputs to the system and x. auxiliary variables

necessary also for the description of the synaptic transmission and

the neural receptors. Now we can write the following equations:

o

2L =Ai 2£ +_^2 - +—3 - *8)

p=B_(p,x,u) (9)

where_A. is an n x n matrix, A_2 n x m and A- n x r and B a
vector function.

It is easy to check that the above equations represent a system

which resembles a neural net under the assumptions of Sec. I. An

input u^. can cause either directly (Eq. (9)] or indirectly (Eq. (8)1
a change in p.,(t) which may result in the firing of a pulse. An

equation of the form of Eq. (8) can represent the refractory feed

back while a group of them can be used to describe the synaptic

transmission which eventually will affect another trigger with input
p.(t), etc.

Actually Eq(9) .need not be so complicated. It is reasonable to

assume that there exists no terms of the form p.k., p.u, ,k.u, and also

that the effect of the x.'s on the "generation" of the p.'s is linear.
Then Eq. (9) is written

£ = B^p) + B^c + B3(u) (10)

where B2 is an m x n matrix.
In Sec. VI it will be shown that by using equations of the form of

Eq. (8) and (10) one can construct a model of a single neuron which
has a large number of properties of the biological original. '

Now the following question arises: Given that equations of the

form of Eq. (8) and (10) account for a good model of a single
neuron, it is possible to consider Eq. (8) and (10) as giving an equally
good general model for neural nets?

The answer is obviously negative. However they are expected
to present a behavior resembling the behavior of actual neural nets
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and the study of such a class of systems may be helpful in under

standing some processes occurring in the nervous system of animals.

III.- NEURAL PULSE FREQUENCY MODULATION SYSTEMS

The class of systems represented by Eqs. (8) and (10) will be

called Neural Pulse Frequency Modulation (N. P. F. M. ) Systems. We

think that by using this name no implication is made that the above

systems are an exact model of neural nets while the existence of some

common basic features between the two is also brought to our attention.
2

The same name has been used by the writer before to describe

only a special case of the above class of systems, which now for

distinction will be referred as special N. P. F. M. The class of
3 4Integral P. F. M. systems ' is also a special case of the N. P. F. M.

systems. This can be seen by putting B, = 0 in Eq. (10). However

although it is much easier to study Eq. (8) and (10) under this assumption,

at the same time the connection with neural nets is dropped completely.
3

This is because I. P. F. M. systems present no input threshold which

is a very essential property of neurons, while N. P. F. M. have an

input strength duration curve very similar to the one of the neurons.

The study of N. P. F. M. systems can be interesting not only from

the biological point of view but also for technological reasons. Pulse

frequency modulation is widely used in many applications and the

modulator described by Eq. (8) can be implemented with very simple

components. The results w 11 be higher reliability as well as smaller

weight and occupied space. I. P. F. Modulators have been already used
5

in space vehicles. In this respect N. P. F. M. systems present

also certain advantages over I. P. F. M. systems in terms of performance

criteria.

A special case of Eq. (10) results when the i-th component of

B^(p) depends only on p.. If B, is a mareix this amounts to say that
it is diagonal. This simplification is particularly justified when one

seeks to design models for neural nets.
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Another simplification maybe done when the system is such that

to every trigger emitting negative pulses corresponds one emitting

positive and the sum of the inputs to the two of them is zero. This is
2 3necessarily the case in a control system ' as well as in a neural

net containing pairs of antagonistic neurons. Then one can approxi

mate the pair by one trigger emitting pulses of both signs depending

on the sign of the input. The number of scalar equations included

in Eq. (10) is then reduced to the half. Thus the class of double

signed (D. S. ) N. P. F. M. systems is defined.

Each one of the scalar equations

vmvx *SVfc£ b^)uk wJ=i J J k=i

represents one Modulator.

Eq. (11) represents in particular a linear modulator. A non

linear modulator will result if b:. is looked not an constant but as
n

a nonlinear operator.

IV. ANALYTICAL STUDY OF N. P. F. M. SYSTEMS

One can readily see that the study of N. P. F. M. systems is not

possible by using either differential or difference equations. One

could work recursively if the solution, of the equation

Pi(t) = rt (12)

with respect to t was possible but except when b:. = 0 this is

always a transcendental equation.

If only one modulator is included in the system one may try the

use of a difference equation with independent variable the number of

the pulses emitted. However the difficulty of the solution of Eq. (12)

still remains.

An equivalent gain approximative approach has been described
2 6

elsewhere. ' According to this approach, a modulator is sub

stituted by a nonlinear, frequency dependent continuous element. In

this case if
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or

n ,,4 m .^. n

8. = J a' x. + y a1'' K. y bif' x
j A-, li i .<£-. jk k A-, ks s
J i=l J k=l J i=l

(14)

sj • i k» *i •;? k* -ei«, «,
This is then written as

x =(ax +A2 KB2)x (16)

where K is a diagonal matrix m x m with elements K .

A further simplification can be made if we assume that the

K^'s do not depend on the frequency. Then Eq. (16) can be written as

I =[^1 +^2K(x) Bj x. (17)

Any further simplification results in too large derivations from the

actual behavior of the system. (Such examples will appear in a future

report. )

V. STABILITY OF N. P. F. M. SYSTEMS

The problem of stability when the system contains only one D. S.

modulator has been investigated by the use of a quasi-describing function.

For a more complex system a possible approach is to use Liapunov's

method on the system presented by Eq. (17). This however is not very

accurate as one can see by considering the above mentioned special

case. Fig. 1 shows the graph of the normalized quasi-describing

function. If we applied the simplification of Sec. IV, and we reject all

the points with nonzero imaginary parts, then certain systems will seem

to be asymptotically stable while they actually present sustained oscillations

Let us consider however the initial system represented by Eq. (8)

and (10) (for zero input).

-6-
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0 = 0

6=0. 08

0=0.1

Fig. 1. Complex plane plot of the normalized quasi-describing function
of a N. P. F. M. System.6

C * = 4:1 —+ ^.2 —
S X

£ = ?i £ + ^2 -

(8»)

(10')

A necessary condition for the structural stability of the system S is

that A. and B. are stable matrices. S will be stable if the element of

A and B? are small enough in absolute value. This compares with the

earlier results of Ref. 6, where certain conditions necessary for the

stability of an N. P. F. M. feedback system were also sufficient when the

gain of the loop was made small enough.

The above result is of course of little practical value by itself,

however it justifies the use of approximate methods in order to find the

proper values of the elements of A_ and B-.
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VI. MODELS OF A NEURON

We will try now to suggest a system that simulates the properties

of a single neuron except the ones mentioned in Sec. I. We need only one

modulator, hence one part will be described by the equation:

p = f(p) + b' • x + g(u). (21)

The refractory feedback must enter through the term b' • x. A

fatigue feedback can be possibly added Hence we define

x= a. • x. + k • d (22)

x? = -a? x? + k? d (23)

with a2<< a,,

and choose b, < 0, b_^0.

As far as the input is concerned we have to consider the fact of the

limited temporal summation. This can be described by defining

x~ = - a_ • x_ + k~ • u. (24)

Then b3 0 and g = 0.
In Ref. 2 it is shown that the strength duration curve is obtained

for f(p) = - cp. Hence the final model is described by:

x = A • x + K- d + L- u (24a)

p = -cp + b' x (25)

where

/~al ° ° \
(a.>0)

L =
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The arbitrary choice of b , b~, b~ is due to the fact that only the product

K. b. is of importance in the system.

Because A is obviously a stable matrix and the trigger is single

signed the system is always stable. Its block diagram is shown in Fig. 2.

When the input of such a model is an impulse then it will emit another

impulse with a delay depending on the strength of , or it may not fire

at all. A detailed study of such a model has been done elsewhere.

Here we will mention only the phenomenon of fractional ratio of firing

frequencies. If the input of the model is a train of pulses at fixed time

intervals and say two of them are needed to cause the firing of one, then

the system will also fire every three pulses sometimes. Such a response

is shown in Fig. 3 and it is in agreement with experimental results.

trigger

K,

s + a,

Fig. 2. Block diagram for a model of a neuron.
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VII. SOME ADDITONAL REMARKS

A typical characteristic of N. P. F. M. systems is their pseudo
randomness. This is especially prominent in the case of sustained

oscillations in a feedback system where a continuum of modes of oscillation
O c L

exists. ' Such a response is shown in Fig. 4. The upper trace

presents p(t) and the lower trace the output of a unity feedback system
using a D. S. N. P. F. modulator and forward path linear plant [lO/s(s + 0. 5j
The input to the system is zero. The discontinuities in the diagram of
p(t) represent emission of pulses. From a physiological point of view
this system can be considered as model of two antagonistic neurons which
are cross exhibited. (This type of oscillation fits very well the experi

mental data of various biological oscillators. ) A not very careful

inspection of the response of any of the "neurons" would lead to the
conclusion of a "spontaneous random response. " However the system

is completely deterministic! With this example as starting point, one

may ask the more general question--

"Is the so-called random spontaneous neural activity really random

or is it deterministic but following a law unknown to us?"

The answer to this question exceeds the purpose of this report.

It should be actually the subject of very extensive research.

We can however already suggest a theory for the explanation of the

"random" spontaneous activity of neurons. A model for that behavior
is shown in Fig. 5 and the output of the two units in an analog computer
simulation is shown in Fig. 6. The physiological interpretation of this

model is that the firing of the two "neurons" is due to their cross-

excitation. This can a fortriori happen in a trunk of many neurons or

in a ganglion. In this way the spontaneous activity of neurons is
explained in terms of cross excitation without ay need to assume any
random input, as it is the case with other proposed models. The
model of Fig. 5 is a too simple one to explain all the characteristics
of the spontaneous activity of neurons but is incorporates the basic
idea of the new approach. A more complicated model is under study.
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Unit I

K

S(S + 1)

Unit II

Fig. 5. Model for the spontaneous activity of neurons.
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