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ABSTRACT

In this report it will be shown, for a fairly broad class of non

linear time-varying dynamic networks and systems, that while global

passivity does not imply uniqueness, however, local passivity implies

the uniqueness of the time domain solution. Furthermore, necessary and

sufficient conditions will be presented ensuring the uniqueness of the

solution also in case of non-Lipschitz systems. The conditions are

given also in terms of element characteristics and network topology.

Finally, the results will be generalized for networks containing multi-

port time-varying and nonlinear elements.
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I. INTRODUCTION

Mathematical models for describing the time domain behaviors of

physical systems must have a unique solution for all initial values and
t

excitations. This is one of the physical realizability conditions.

This means that if a network (or system)cjljhas the vector-valued inputs

state and output functions u(t), x(t) and ^(t) respectively (see Fig.

1). Then for any initial value x(t^) and for all permissible excita

tions (inputs u(t)) the state and output functions must be unique for

t > t (t is the scalar time variable).
— o

In the following, we suppose that q(t) is a single valued contin

uous function of u and x, and hence we will investigate the uniqueness

of x(t) only. We set t = 0 (t is finite) and define uniqueness as
o o

follows.

Definition 1

The network (system)oM has a unique (time domain) solution if and

only if for any bounded defined on t e [0,T) T > 0,

the state vector functions X2(t) and x^(t) are equals on this interval

whenever U2(t) t G [0,T) and x^(0) = X2(0) =

It has been shown that linear passive networks always have a uni

que solution and that they are causal and finite time stable [1]• The

necessary and sufficient conditions for causality and finite time sta

bility of active linear (lumped-distributed) networks [2], some analytic

sufficient conditions for the causality of nonlinear operators [3], as

well as results concerning active infinite lines [4[ and linear active

lumped networks [15] are also well known. In case of lumped nonlinear

networks sufficient conditions have been determined for checking the
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unique time domain solvability of a class of networks [5] and condi

tions were derived for ensuring the unique solution of a class of

monotone uncoupled RLC networks [6, Theorem 5]. For some related re

sults we refer to [7,8].

Let us suppose, now, that the network is described by the state

equation

dx

(1) ~ = X = f(x,u(t)); X = x(0)* ' H +• /*-> rs/' ft' O

where ^ is continuous in x and ju (and single-valued).

Equation (1) has a unique solution if ^ is either Lipschitz con-
g f

tinuous^ or the Jacobian J = is continuous (and bounded) in a do-

main x

In the case of nonlinear lumped networks, however, it is possible

for the element characteristics to satisfy a Lipschitz condition in^H^

but f is not Lipschitz and vice-versa. On the other hand, many well

behaved" nonlinear networks contain non-Lipschitz elements and/or state

equations (f). It is interesting to note that even very simple cir

cuits (containing positive RC elements, operational amplifiers and

diodes with simple models) have more than one distinct time domain so

lutions to a given input (see Example 2. in [5]).

The circuit in Fig. 2 shows a more interesting feature, namely,

it is a passive circuit and has two different solutions (responses) to

a simple unique input.

Our ultimate goal is to find conditions for ensuring the unique

ness of the solution (possible necessary and sufficient ones) which

may be stated in an algorithmic form, or which can be formulated in

terms of the element characteristics and the topology of the network.
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In what follows it will be shown for a fairly broad class

of nonlinear'dynamic networks which may contain n—port ele

ments that-global passivity"does not imply uniqueness,.(see Fig. 2)

and that local passivity (and the reciprocity of the lossless sub

network) implies the uniqueness of the solution (Section II). Fur

thermore, necessary and sufficient conditions for the uniqueness

of the solution will be presented (Section III). For an important

class of practical networks, these conditions will be given in terms

of the element characteristics and network topology (Section IV).

Finally, these results will be generalized for networks containing

multipart time-varying and nonlinear elements and the conditions under

which the Lipschitz property of the elements imply the Lipschitz

property of the state equation will be determined (Section V).

The results are based on two niathematical theorems the proof of

which can be found in the Appendix.

Throughout this paper we denote the Euclidean k-space by R ,

the set of positive real numbers by R^, the usual Euclidean norm by

II *|j and the Cartesian product of A and B by A x B. Vector quantities

are column vectors denoted by lower case letters, matrices are denoted

by capital letters. The elements of a vector x are denoted by x^,

namely, x^, ... x^. We denote the Euclidean inner product by .

Aone-to-one onto mapping R^ R^ is called a C^-diffeomorphism

if ^(O and ^ ^(O are functions.

II. PASSIVITY AND THE UNIQUENESS OF THE SOLUTION

r^msider the network^^Mof Fig. 3. It is supposed that u and j

are o.rmissible excitations of the memoryless (n+r) -port M (later
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only the Independence of u^, ... will be required). So, Mcan be

described by

(2) = g

and the lossless n-port L has a constitutive relation

X = h(y) ,
(3) ~ ^ p(.) = h \-)

y = p(x)

where g, h and p are C° functions: IR^ g and p are single valued

in a domain"^ C r'^. Using the above relations the state equations can

be written as follows

i Jti(t)) = f,(x,u)
-INx(0) = Xq e<-L)

Suppose a solution exists in^.

It will be shown that local passivity plays an important role in

ensuring the uniqueness of the solution.

First we will present an important theorem.

Theorem A (a generalization of Theorem 6.2. in [9])

Let us consider the differential equation

IE (Cy) = -£(y.t) = £y
(5)

= 2o

where g is a C° function: IR^IR ->• in the domain^U^ R for t ^
t + a] a > 0; y, y„ G^and £ is an n-dimensional bounded real matrix.

0 ~ ~0

If for all yj^, y. in'l)and for all t S t'o'''o ^

<6(22''=^ -2<2i'')' 22-2i> 2 0
and C is symmetric positive—definite then equation (5) has at most one

solution in'̂ ^and on [^q* t^ +a], a >a >0.
The proof is given in the Appendix. Using this result the fol-
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lowing theorem can be stated.

Theorem 1

In the case of networkuMof Figure 3, let us suppose that the

lossless n-port L is locally passive, reciprocal and C^-diffeomorphic
in the Eneighborhood d^ of = x(0) (d^ = {x: || x-x^H <£}) e > 0

e 0 for all x. in ,

Or equivalently, we assume the incremental reactance matrix is

bounded symmetric positive-definite and in these d^ neighborhoods

h(*) is a Cp" diffeomorphism and

(6)

Under these conditions if the memoryless n-port subnetwork M is

locally passive in these d domains in*^with respect to y; namely,
e

<8(X2^ - g(yj^), y2 - Yi > i 0
(g is Increasing), then the solution x(t) is unique in'Dand t > 0.

Proof

The state equation (4) in d^ is approximated by

~1^ = ~§(y> x^ =
However since g is locally passive and continuous if follows from

Theorem A that the solution y(t) is unique. Hence x(t) is also unique

in d . This y(t) is a solution of an approximation, namely if h(y)
e * ~ ~

is a piecewise-linear approximation where the domains are arbitrarily

small. Using Theorem 3.2 of [9] we conclude to the result that this

approximation approaches the exact solution. But the uniqueness

Ids in every :open neighborhoods of , so the solution is

u!i ique. in q).. q. e. d.

-1 ; ^ h(y) ;
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Corollary 1.1

If the lossless subnetwork L has capacitors forming linear C-E

loops (loops containing linear capacitors and independent voltage

sources only) and inductors forming linear L-J cut sets (cut sets con

taining linear inductors and independent current sources only) then the

statement of Theorem 1 is still valid.

Proof:

According to the Reference [10] these C-E loops and L-J cut

sets can be transformed in such a way that one C(L) element is deleted

from each loop (cut-set) provided the remaining elements become mu

tually coupled. These coupled elements remain lossless, passive and

reciprocal.

Remarks 1

1. If M contains only passive linear resistors and locally passive

(increasing) nonlinear one-ports and multi—ports, then M will be lo

cally passive [16]. Hence if L is locally passive and reciprocal,

the solution is unique.
9g

2. The boundednes^ of the Jacobian is not needed.

3. Corollary 1.1 remains true even if the specified loops and cut

sets contain nonlinear elements. For in each infinitesimally small

neighborhoods, the characteristics can be considered linear and we can

use the limit theorem for the convergent series of solutions [9, Theorem

3.2].

4. These results are in good agreement with the result of [6,

Theorem 5] for monotone uncoupled RLC networks.

5. Consider the circuit of Fig. 2. Observe that even though h is
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locally strictly passive and reciprocal, the function g is locally

active in the neighborhood of Xq.

III. NECESSARY AND SUFFICIENT CONDITIONS

FOR UNIQUENESS OF SOLUTIONS - ANALYTIC RESULTS

Let us consider again the networko^fof Fig. 3 and the state equa

tion (4). Suppose there are some points x*(y*), henceforth referred to

as irregular points, where the memoryless element characteristics are

"very steep" in the sense that the derivative is infinite (though the

curve is continuous and bounded but not Lipschitz continuous). More
g f

precisely, in these points the Jacobian J = does not exist, it

contains unbounded (infinite) elements. Since we have seen in Section

II that the sign of the slope, even if it is unbounded, is very im

portant (local passivity), let us first define the different Jacobians

near the irregular points. Throughout this section we suppose that

near the irregular points p(x) is a C^ diffeomorphism.

Definition 2

Consider the e neighborhoods of the irregular points x*(y*) and

denote these neighborhoods by d^, d^ = {x: || x-x*|| £ e, e >0,

e is chosen in such a way that the elements of the finite Jacobians,

4k

defined next, have the same sign in d^. (Observe that since p(x) is
1 * *

a C diffeomorphism, d^ is also a given neighborhood of y .) We de

fine the finite Jacobian J^^ of f by the equation

(8) Af = J, Ax
-Ax

near x*, where J is an n x n matrix whose jk element is-Ax -Ax^j^

Af

-Ax.,jk Ax^
Ax^ = 0 iii^k
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*

where Ax = x„ - x-, x-, x- e d .
~L "1 -c ~± e

By the definition of the irregular points, at least for one ele

ment of J. (J» ), it is true that for all y > 0 there exists an e
~Ax ~Ax..

such that |j. I > Y. These elements are the unbounded elements (of

course for the bounded elements J, ).
X = X*

The finite Jacobian of g near x* is defined by the equation

(9) Ag = A y

in the same way as for with the additional assumption, the elements

3d ( x) ^
of have also the same sign in d^.

e

Sk

Before showing the conditions of the uniqueness of the solution of

networkAl we introduce an important theorem.

Theorem B

Given

(1) X= f(x,t) , Xq = x(0)

where f: R^x R ^ is single valued and Lipschitz continuous in x
~ "4*

in the domain'^^^ R^, except at the irregular points x*.

has unbounded elements only in the diagonal positions and these elements
*

have the same sign in a neighborhood of the irregular points d^.

Under these conditions equation (1) has a unique solution in'̂ D if

and only if the sign of the unbounded elements of in these neigh

borhoods are negative.

The proof of Theorem B is given in the Appendix.

The necessary part means that if the sign is positive then in the

neighborhood of the irregular points there will be at least two solutions.

Now we define a class of permissible characteristics for the loss-
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less and memoryless n-ports.

Property A

The lossless n-port L of Fig. 3 is characterized by a constitutive

relation y = p(x) which is a single-valued Lipschitz continuous bounded

diagonal mapping ih^C IR^ and in the d* neighborhoods of the irregular

points it is a diffeomorphism (the "diagonal" constraint will be

dropped later on).

Property B

The memoryless n-port M of Fig. 3 is characterized by a constitu

tive relation g(y) which is single-valued Lipschitz continuous bounded

in^l!) except in the d* neighborhoods of x*(y*). + P where

Jg is a diagonal matrix containing the unbounded and only the unbounded

elements of J. .
-Ay

Theorem 2

If the lossless and memoryless n-ports of network j\l of Fig. 3 have

the Property Aand Brespectively then JD has a unique solution in'^C

x^ G*^if and only if the following terms have the same sign and they
'^U

*

are positive in the neighborhoods d^:

where J.. = J.,, and k are the indices where J., f 0 (This means that if
6k 6kk ok

the specified terms are all negative then there is always at least two

solutions near the irregular points).

Proof:

Since

(4) X = -g(p(x), u(t))

-10-
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9p(x)
and J. = J

Ax -Ay 3x

9p(x)
where —= is diagonal. Theorem 2 follows from Theorem B in the do-

3x

main d . Outside d g and f are Lipschitz continuous and uniqueness
e e ° ~

of the solution is already assured.

Remarks 2

1. If p(x): ->• in the specified k-th equations does not de

pend on the variables x. i^k, i.e., does not have off-diagonal
9x ^

elements in the k-th rows and columns in d^, then couplings are per

mitted. Namely, then Theorem 2 is valid under arbitrary couplings be

tween the lossless elements. So the constraint of Property B is par

tially dropped.

2. Theorem 2 assures unique solutions even if the characteristics

or the constitutive relations are not Lipschitz.

3. It is possible that the irregular points form an n-m dimen

sional subspace m>0.

IV. THE CONDITIONS OF UNIQUENESS IN TERMS

OF NETWORK ELEMENT CHARACTERISTICS AND TOPOLOGY

Next, we try to determine the conditions of Theorem 2, at least for

an important class of practical nonlinear dynamic networks, in terms of

the network element characteristics and network topology. First, we

consider networks containing memoryless nonlinear resistive one-ports,

linear resistive multiports and energy storage elements (Corollaries

2.1, 2.2, 2.3). Then we drop this restriction to obtain Theorem 3

which represents the most general, main result within this context.
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It is also important that constructive algorithms are given for deter

mining the irregular points x*(y*).

Throughout this section it is supposed that the state equation

exists (see conditions, e.g. in [10]). We use the same notations and

definitions as in the preceding sections.

Property C

This includes Properties A and B and the requirement that all non

linear memoryless elements of M are one-ports. Moreover each voltage-

controlled resistor is connected across a parallel voltage-controlled

capacitor while each current-controlled resistor is connected in series

with a current-controlled inductor.

Corollary 2.1

If the network A( of Fig. 3 has the Property C, then

(i) has unbounded elements only in the diagonal positions.

(ii) Nhas a unique time domain solution in^^D^ for all x^
if and only if in the neighborhoods d of x*(y*) for each nonlinear

one-ports the terms

• Sp^CXj.)

9x^

have the same sign and they are positive. The functions n^Cy^) are the
i i

characteristics of the nonlinear resistors and y^ = are the

characteristics of the energy storage elements attached to the non

linear resistors.

(iii) x*(y*) are determined only by n^(y^); namely the irregular

points of n^ are the irregular points y*.

The necessary part of this and the subsequent two corollaries means
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that if all the specified terms have the same sign and they are nega-

istive then in the neighborhoods d^ there exist at least two different

solutions.

Proof:

In this case M has the following description

(10) g(y) = Hy + <f)(y) + B u(t)

where J(y) is a diagonal mapping of <f>^ = (1*^ case no resistor is

attached to an energy storage element n^ =: 0), H and B are the hybrid

matrices of the linear part of M.

•k

Hence in d

^ A<{)(y)
(11) J, = H + : - = H + diag

-Ay - Ay - ®{^}
where diag {a^} is a diagonal matrix with diagonal elements a^. Be-

Ank(y^)
cause it follows from Theorem 2 that the sign condi-

tion of our corollary is a necessary and sufficient condition of the

k k

uniqueness in d^. Outside d^ the Lipschitz continuity guarantees the

uniqueness q. e. d.

We note that if the network M has one-and two-port elements only

then equation (4) is equivalent to equation (10-90) of [10] with the

following restrictions

Sl = 9' tT = = 9: = 9:

V , i , V , i are diagonal mappings.
L ~®T "•®L

Property D

This includes Property C. However, the following couplings are

allowed within the lossless reactances and between the nonlinear one-

ports:
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(i) between resJ.stors; any coupling which does not contain the

non-Lipschitz resistors; (ii) between reactances: any coupling which

does not contain the energy-storage elements attached to the non-Lipschitz

resistors. (It is supposed that the couplings are either linear or if

it is nonlinear, then the corresponding partial derivatives are con

tinuous.

Corollary 2.2

Suppose the network N of Fig. 3 has the Property D. This means

that

^(y) and p(x) are block diagonal mappings and hence

1^2 ^2^-2^
contains the non-Lipschitz resistor characteristics, and p^^

'{'(y) = p(x) =
^1 " ?1^-1^"

are diagonal mappings.

If ^~2 and ^?2 contain Lipschitz-continuous functions in^^T)C|R'̂ , then

(i) Nhas a unique solution in Dfor all x^E^ if and only if in
the neighborhoods d for the unbounded elements of ^~1

e

all the terms
Ay,li ""li

of the functions and p^ have the same sign and they are positive.

(11) x*(;^*) are determined only by ((()^^ = ^li^^li^^*

Proof:

*

In d^, e 0,
3p(x)

(12) h. = -^Ay ^
and J. = H +

-Ay

9x,

Ay
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(see equations (10) and (11))

So, in this domain

Ja = H +~Ay
li

Ay.

Since ^^2 and are Lipschitz continuous and ^?1 is a diagonal
9y. ^?2

matrix can have unbounded elements only in the diagonal positions.

These terms are the terms of the condition in the corollary (consider

equation (12)). Hence using Theorem 1 the proof is complete q. e. d.

We note that if the networkA( contains one-ports and two-ports only,

equation (4) is equivalent to equation (10-90) at [10] with the restric

tions mentioned after Corollary 2.1, and provided that in the mappings

V , i_ , v_ and i_ the couplings in the sense of Property D are al-

lowed.

Corollary 2.3

Corollary 2.2 is true also in the case the network Al contains li

near C-E loops and L-J cut sets (specified in Corollary 1.1). However

these loops and cut sets may not contain the energy storage elements

attached to non-Lipschitz resistors (in the sense of Property C).

Proof:

The problem can be derived back to the network of Corollary 2.2

by the same reasoning as in the case of Corollary 1.1.

Let us realize that the networks containing linear RLC elements,

transistors and diodes (modelled by the usual Eber—Moll models) have
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Property D (in the generalized senae of Corollary 2,3),

Next we drop the restrictions of Property C and introduce the most

important result of this section. In this case the state equation will

be an implicit function.

Consider the network of Fig. 4 where it can be seen that memoryless

nonlinear elements (multiports) are allowed which are not attached to

energy storage elements. These nonlinear resistive elements form an

m-port characterized by the constitutive relation

n = $*(C)

where and are the port variables (voltage and current) of the i-th

port. The linear resistive multi-port has the hybrid description

(13)
-T)

II

'Sii 9i2

1

1

-z' .921 922 y

+ B u(t) ; B u(t) =

and g*(y) exists.

For this class of networks Theorem 3 gives the conditions which

ensures the uniqueness of the solution.

Theorem 3

Consider the network of Fig. 4 with the constitutive relations just

specified. The lossless subnetwork has Property A, however, loops of

capacitors and cut sets of inductors are allowed as well as couplings

in the sense of Corollary 2.2 and 2.3.

m
is Lipschitz continuous in IR . (J)(y) is Lipschitz-continuous in

-T)c IR^ except near the irregular points x*(y*). These irregular points

are determined solely by (J) namely these are the irregular points of ({>(y).

Under these conditions the networkof Fig. 4 has a unique solu

tion in-^ for all x^ t >0, if

-16-



*

hoods d
e

* / \ ^det Jjj = det ( —— + 1 ^ 0 in Uand In the nelghbor-

A(|). (y.) 3p.(x )
^ ; > 0Ay^ ax^

1: the indices of the ports of L attached by the non-Lipschitz resistors.

Proof:

We will show that the conditions ensure the uniqueness in the domain

d . Outside of these domains the condition ensures the Lipschitz-con-
e

tinuous character of the state equation.

According to Figure 4 using the constitutive relations we have

-5 = H21« ^.22l + ^2^')

-n = -4>*(p =

Let us define e(?) by

?12^ = -(f(p + b^(t)) =

=

Hence

§ =

and then

-2'= + ^227 + b^(t) = g'(y)

From Fig. 4 we have

g(y) = g'(y) + '{'(y)

and hence

3g'(y) A(y) Ag(y)

~Ay 9y Ay Ay

*

in d .
e
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Using the expression for g*(y) we have

9g»(y) /8f(p
(15) -±r-^ = Hdy -^21 \ 3 ^

i.e.

-H Tl

§ = ® (y)

+ H-1, . "ll
? = e (y)

r-1. . «11 ?12 «22

(Let us realize that in (15) there are two types of inverses: an in-

verse function, e (•)> and an inverse matrix, J ).

Because of J is nonsingular in^^ (according to our condition), con-
n.

*sidering the fact that outside d^:

af ag ap(x)

ax dy ax

We see that f is Lipschitz continuous in*^outside d*. This ensures
e

the uniqueness in^^ outside d*.
* ag*However in d ~ is bounded and hence only the terms
® 3y

of J,

will introduce the unbounded diagonal terms. So we have reduced the prob

lem to the special case of Corollary 2.2 and Corollary 2.3, where the se-

cond condition of Theorem 3 ensures the uniqueness in the domains d

q. e. d.

Remarks 3

*

1. If ^ (|) is a diagonal mapping with strictly increasing character

istics and g Pq (the class of matrices with nonnegative principal mi-

nors) then det J„ > 0 (i,e. ^ 0).
'^n

This is true, because, if A e Pq and D > 0 is a positive diagonal
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matrix then det(A+D) > 0 [13,8].

2. Let us realize that the condition det 9^ 0 in IR ensures

all the same time also the uniqueness of e because of the global

implicit function theorem [12] (the second condition in this theorem, the

behavior at the infinity is satisfied too).
*

3. If and H., are the elements of the class of a pair of
9 ^ J--L

matricesthen det > 0- This is true because if A and B are a

pair of matrices of the class then for every positive diagonal

matrix D det(^+B) 9^ 0. To our special case D = 1.

V. GENERALIZATIONS: Networks Containing Nonlinear and Time-varying

Multiports and the Lipschitz Property Invariance.

Next, we consider a fairly broad class of nonlinear and time-

varying networks containing multipart elements. After the state

equations are formulated we give conditions under which the Lipschitz

property (continuity) of the element characteristics imply the Lipschitz

continuity of the state equation (Theorem 4). Finally we apply Theorem

2 for these class of networks (Corollary 2.4).

Consider the network(^_Al of Fig. 5. The one-ports are linear or

nonlinear, time invariant or time-varying elements (R,L,C-s). The N-port

elements are defined by the following type of constitutive relations

where rj^(^), T^ and Nx Nmatrices. For convenience a few

one-port elements are listed on Fig. 6. It is important that the N-port

need not have a circuit model.

-19-



The state equation of these networks can be written as follows.

The constitutive relations of the extracted N-ports can be collected

in the following equation

(17) V = r(x) X + T$(x) + X

where: y contains the y^^-type port variables (in case of one-ports

e.g. currents of capacitors, voltages of inductors etc.);

Xcontains the x^^-type variables (e.g. voltages of capacitors etc.);

r(x) is a block-diagonal matrix of the r^(x^)-type matrices (e.g.

L or C in case of linear and C^(t) or L^(t) for time varying energy

storage elements etc.);

r. is a block diagonal matrix of the r„^(t)-type time-varying
~ t "NU

characteristics;

T is a block diagonal matrix describing the linear couplings between

the nonlinear memoryless ports (within the N-ports);

$(x): The characteristics of the nonlinear memoryless parts of the

N-ports, these are supposed to be diagonal mappings;

The elements of r are diffeomorphism in the domain considered,

the elements of and ({)(x) are continuous functions.

Generally the port variables of x are not independent. A part of

these, X2, can be expressed by the others x^, and by the inputs u(t);

Xo=L-Xt+L u(t); x=
~2 -1-1 -u -

?2

The linear memoryless n-port Nil can be described by the hybrid

equation
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(19) ?! - ?y2 = 5?!

It is derived from the form: P*y = R'x + Q'u.

Now, partitioning equation (17) according to x and introducing

the notations

T = ?1 Jl2 >
F = ri(xi)

?21 J2 _ 0

and ^ =
4i(xi)

0 r,i(t)

£2(52^ r,2i(t) rt^ct)

let us realize that in a lot of practically important cases the off-

diagonal submatrices of T and are zero. Under this assumption the

state equation can be determined easily using the above equations:

-1,
5i = - ?e + [R + + pr^2 +

+ [g + pr|.2 L^] u(t) +

(20) + PT^ tu 9^'^)

+ [Pr,(L,x, + L u(t))] L, i(t));
~~Z -1~± ~u ~ "

?e ° tP!:2(ii;i + tu y(t))] ii;

A If X = X, (all the variables are Independent), we have
•-l

X= - r ^(x) {Hx + X+ T$(x) + Bu(t)](21)

-1
where F means an inverse matrix and H,B can be read from (20).

4^

In this equation the bracket [ ] has been used for emphasizing the
matrix vector product against the functional relationship (e.g. F2(*))
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We note that N-ports described by their own state equation and

input-output equation can be incorporated in the very similar way [14]

Property E

The nonlinear and time-varying elements have independent x-type

variables (e.g. they do not form loops if they are voltages or do not

form cut sets if they are currents, and also the controlled sources

of NJl do not destroy this independence).

If N has Property E then it Can be shown [14] that if we denote

these independent variables by x^^ and hence

=

X-
~la

?ib

then P ^ will be
~e

(22)
.-1

M

0

where M is a matrix of real constants. This can be shown by using the

following identity:

~1

A =

~3.

-1
; A

A-^A A"^^1 3

^3'

and realizing the specific structure of as a consequence of Property

E.

Now, considering (20) and(22) we can state the following theorem.
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Theorem 4

If the network^\) of Fig. 5 has the Property E, <('(x)
III

are Lipschitz continuous in C (Hi is the order of Xi), then the

state equation (20) is also Lipschitz continuous in^-^)* So^\j has a

unique solution in ^ for all x ^
~o

Proof: For a function u(£) for which 4 0 the function — is
y

also Lipschitz continuous. The sum and product of the Lipschitz

continuous function is also Lipschitz continuous. Now, substituting

equation (22) into equation (20) we see that equation (20) is also

Lipschitz continuous q.e.d.

Next we apply Theorem 2 for these generalized networks in the case

when X = xj^.

Corollary 2.4.

Consider the network of Fig. 5 and suppose that x = Xi (the

variables of x are independent). In a domain C IR" j;(x) and r" (x)

(the inverse matrix) are continuous, single-valued and bounded. <J)(x) is

a diagonal mapping containing non-Lipschitz functions (j)i(Xi) at the
•k

indices i=i.,...i, only, those functions have the irregular points x .
X IV

Under these conditions (i) the irregular points of equation (21)

will be X and (ii) has a unique solution in^^ for all x^ ^ if

and only if the terms

A <{). (x. ) . (x. )
1 1 1 1

Ax. 9x.
X 1

•k

have the same sign in d and they are positive. (The necessity is
e
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understood in the same sense as in the case of Corollaries 2.1 - 2.3).

Proof:

After realizing that equation (21) has the same structure as

it was for Corollary 2.2 the proof goes in the same way. Because the

time-varying terms occur in the state equation as an explicit function of

t, these terms are vanishing at the application of Theorem B or Theorem 2.

Conclusions

As a consequence of the results presented here it is obvious that

the Lipschitz continuity of the state equation is sometimes a too

strong, superfluous requirement. On the other hand the Lipschitz

continuity of the element characteristics does not imply the uniqueness

of the solution of the network.

It turned out that local passivity and continuity is a sufficient

condition of the uniqueness of the solution.

It is important that necessary and sufficient conditions of the

uniqueness have been determined in terms of element characteristics and

topology. Finally the results are applicable for a broad class of

nonlinear time-varying networks and systems.

Acknowledgements

I should like to express my sincere gratitude to Professor Leon

0. Chua for his constant help and critics. The discussions with Professors

Ahmet Dervisoglu and Charles A. Desoer as well as Douglas Green were

very helpful for me. I am indebted to Professor Ernest S. Kuh for his

iulvice and encouragement.

-24-



References

[1] D. C. Youla, L. J. Castriola and H. J. Carlin, "Bounded Real

Scattering Matrices and the Foundations of Linear Passive Network

Theory," IRE Trans. Circuit Theory, Vol. CT-6, pp. 102-124, March

1959.

[2] A. Csurgay, "Multivariable Realizability Criteria," Proc. IVth

Colloquium on Microwave Communication, Ed. G. Bognar, Vol. CT,

Budapest: Akademiai Kiado, 1970.

[3] P. P. Civalleri, "On the Equivalence Between Telegraphist's

and the State Model of Active Lines," Proc. 2nd Int. Symp. on

Network Theory, Hercegnovi, 1972.

[4] J. W. Sandberg, "Conditions for the Causality of Nonlinear Operators

Defined on a Function Space," Quart. Appl. Math., Vol. 23, pp. 87-

91, Apr. 1965.

[5] T. Roska, "On the Unique Time Domain Solvability of a Class of

Nonlinear Networks," Proc. 2nd Int. Symp. on Network Theory,

pp. 199-205, Hercegnovi, 1972.

[6] C. A. Desoer and F. F. Wu, "Nonlinear Monotone Networks," SIAM

J. Appl. Math., Vol. 26, pp. 315-333, Mar. 1974.

[7] T. Ohtsuki and H. Watanabe, "State-variable Analysis of RLC

Networks Containing Nonlinear Coupling elements," IEEE Trans.

Circuit Theory, Vol. CT-16, pp. 26-38, Feb. 1969.

[8] A. N. Willson, Jr., "Some Aspects of the Theory of Nonlinear

Networks," Proc. IEEE, Vol. 61, pp. 1092-1113, Aug. 1973.

[9] P. Hartraan, Ordinary Differential Equations. New York: John Wiley

& Sons, 1964.

-25-



[10] L. 0. Chua and P. M. Lin, Computer-Aided Analysis of Electronic

Circuits: Algorithms and Computational Techniques. Englewood

Cliff, N. J.: Prentice Hall, 1975.

[11] L. 0. Chua and Y. F. Lam, "A Theory of Algebraic n-ports," IEEE

Trans. Circuit Theory, Vol. CT-20, pp. 370-382, July 1973.

[12] E. S. Kuh and I. N. Hajj, "Nonlinear Circuit Theory: Resistive

Networks," Proc. IEEE, Vol. 59, pp. 340-355, Mar. 1971.

[13] I. W. Sandberg and A. N. Willson, Jr., "Some Theorems on Properties

of dc Equations of Nonlinear Networks," Bell Syst. Tech. J., Vol.

48, pp. 1-34, Jan. 1969.

[14] T. Roska, "On Some Problems of Nonlinear Networks," Dissertation,

Hung. Acad. Sci., 1973 (in Hungarian).

[15] A. Dervisoglu and C. A. Desoer, "Degenerated Networks and Minimal

Differential Equations," (under publication).

[16] D. N. Green, private communication.

-26-



Appendix

A: The proof of Theorem A

Suppose, there are two solutions y^^Ct) and ^^0*^0*'"°'̂ *

Let us consider the scalar function.

(Ai) 6(t) = ^5(y2*"yi)>y2 ~ ^1^ —^

where y^» y^ are in and C is positive-definite. For,

y„(t ) = y,(t ) = y » 6(t ) = 0. Furthermore,
i2 o il o -o o

6(t) = 0 t > t^ if and only if y2 = y^^ = 9*

Let us realize that

6(t) = 2<C(y2-y^), y2 ~ yi^

(because C is symmetric) and substituting Eq. 5 into (A2) we get

6(t) = -2 ^g(y2»t) - g(y^,t), y2 -

However the condition of Theorem A, namely the monotone increasing

property of g assures that 6(t) ^ 0.

But, 6(t) = 0, 6(t) 0 t ^ t^, 6(t) £ 0 means that

6(t) = 0, t _> t^, i.e. y2(t) = yj^Ct) on [t^,t^ + a]. q.e.d.

B: The Proof of Theorem B

Consider the initial value problem of equation (1).

(1) X = f(x,t) , x(t ) = x(o) = X
- ~ ~ ~ o ~ o

First we prove the sufficiency of the condition. The following

-27-



Lemma will be used (see [9] pp. 34-35).

Lemma: If for the initial value problem (1)

(Bl) Y=^^2 " ~1» ~t^^^2""*l^ ^ ®

in a domain G C: iR'̂ x«, x,, x ^ G and t < t < t + a, then equation
~2 -1 ~o o — — o

(1) has at most one solution in Gand t ^ [t^,t^+a) if f is continuous

and bounded in G.

In what follows we prove the Theorem B in the e neighbourhoods of

A *
X* d , X ^ d because elsewhere the Lipschitz continuity assures the
- e o e

uniqueness (the notations are according to Section III). e is greater than

zero and can be arbitrary small.

Let be decomposed as

(B2) Jd + ?

where is a diagonal matrix containing the unbounded elements and only

these elements of J. . Hence H is a bounded real nxn matrix.
~ Ax

Using (8), (Bl) and (B2) the condition (Bl) can be written as

•k

follows (in d )
e

(B3) Y=<Ax, ( + H- -V" 1) Ax> =
~ ~ d ~ t—t ~ "*

= <Ax, J, Ax) - ( Ax, A Ax);
- ""d ~ ~ ~ ~

(B4) A= (-rhr- 1 - H)
O

However for any given H a At can be given for which A is positive-definite

if t-t < At. But because of f is bounded and continuous it follows that
o —

e can be determined such that IIaxH < e if t-t < A-t. Now let us choose
o o o

*
0 < e < e , then in d A is positive definite and in view of the condition

o e
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of the Theorem B, ^Ax, J, Ax) < 0 (the unbounded elements are negative).
~a -

•k

Hence y 0 the Lemma assures the uniqueness of the solution in d^.

(if J- is negative definite the statement remains true) q.e.d.
"d

Next we prove that the condition of Theorem B is also necessary. It
"k

means that if all unbounded terms are positive then in the d^ neighbour

hoods there are at least two solutions passing through x*.
•k

First we prove it for the case n = 1, x = 0 = f(x*) and

— = + 00 at X = 0. (See Fig. B.l.)
dx

Let us expand x = f ^(z) i.e. the inverse function in Taylor

series:

X= a.z^ + + ....= a. Z^d + z + 1 is odd
1 1+1 1

df
i > 2 because f is single-valued and —

have

k

= +». Now in d if e-»• 0 we
e

0

Hence

= a^z (1 + 6,(z))^ = ajz(l + 0,(z))
11 1 ^

e, II 0 k=l,2,. , £ 0
k

_ 1 1
i i

z = X

llxl
f(x)

However, then using Theorem 3.2 of [9] we conclude that the solution

of z = f(x) = X near x = 0 will be the solution of

- 63 (f(x)) = + 0(x); 03 = f (x) 0^;

->• 0, e 0
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X

i i

X= 3—~— x^= c x^; x(0) = 0; 3 > 2.
i r—

But (B5) has at least two solutions, e.g.

x^(t) =0 t > 0

x^Ct) = kt°' t >0
1

where a = —rr >0; ka = ck^
p—l

Now, let us turn to the n-dimensional case. We will prove that if the

*

solution passes through the irregular point x then the solution will

"k

not be unique in d . (The terms of Definition 2 are used.)
e

Let us suppose that (1) has two solutions, namely x^(t) and X2(t);

Xj^(O) = 52(0). Let us consider the function

(B6) X2(t) - x^(t)> =

=(Ax(t), Ax(t) ) = llAx(t)ll^ ^ 0

If x^Ct) = x^(t) i.e. if the solution is unique, then

6^(t) = 0 6j^(t) = 0 for all t > 0

Now, we will show that at least in a small neighborhood of x

0

6j^(t) > 0 and this proves the necessary part of Theorem B.

Using (B6)^

6^(t) = 2( Ax, Ax)
= 2('J Ax, Ax)^

Ax ~

= 2<J Af. Af>
(B7) = 2< AX. Ax)

-30-
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Using (B2) equation (B7) will be

6, (t) = 2[< Ax, Jj Ax> +
1 ~a ~ ~a "

+<J d J dl? Ĵ d d ^ ^̂ d

+ (H J j Ax, J j Ax) + <H J j Ax, HAx) +
--a~~a~*

+ <H^ Ax, J , Ax) + <H^ Ax, HAx)
~~a*' -

where in the second term we realized that

2
<Jd Ax, HAx) = <Jd Ax, Jd HAx)

(because J, is symmetric).
~ a

Now, we will prove that m= J^d 1?^? 9 flAxil ^ 0, e > 0.

We prove that all the components of m ->• 0. Let the kth nonzero term of

J d t)e denoted by Jdj^ hence the kth component of mwill be

(B9) m^=

Using the same arguments for the approximation by a Taylor series

as in the case n = 1 we have, upon differentiating (B5) with respect to x,

(BIO) Jdj^ = 3 > 2
1 1

(in case n = 1 f = c(Ax)^ -)• f ' =^ (Ax) ^ •§ =K)
p p

Because 'IAxH < c -> 0 we can write

(Bll) Ax^ ^ * 1 1 "^k ^ ^

Now, using (B9), (BIO) and (Bll) we get
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i i. 1
(B12) "V = \ ^ I'̂ k \u

and because the term in the bracket [ ] is finite m^^ 0 as e 0.

And because this is true for all components of m we conclude to

J, H Ax 0 if II Axil _< e 0.
-d ~

As a special case Ax 0 too.

But hence, except the first term, all the terms of equation (B8)

go to zero as e ^ 0. It is because the two elements of all these

scalar products go to zero as e 0. We have just shown that I^x

•2 2
and Ax ^ 0. But, because H and H are finite so the terms HAx, H Ax

and HJ^ Ax go also to 0.

Let us now investigate the remaining first term of (B8).

Using (BIO) we have;

(B13) SlC:) ° 2 °

3

— - 1

= E K? (Ax. ; g > 2

This means, however, that

1-1
«l(t) ""E^ ; if E 0

k

e > 0

but hence if are greater than zero (this is the case if the condition

of Theorem B does not fulfill) then ^^(t) > 0 i.e. the solution is

not unique. q.e.d.
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Footnotes

^ If in Definition 1we make the additional assumption u^(t) =U2(t) =0
and t^ can be -<», then the network is called causal. For a more precise

definition of causality see [1-4].

^ Afunction f(x) is Lipschitz continuous in a domain -T) if Ilf(x2) - f(xj^)ll £

k"?2 ~ ~l" ~2*^1 ^where k is a constant and ll*ll is the usual
Euclidean norm.

3 *
Here we have used the fact that in d if e -> 0

e

X = JAx X +
- - ~ dU

3f(t)u(t) + ---

X, X,
"2 ~2

The last two terms are vanishing as we express the Ax at a given t.

We point out, using [16], that we are near x* i.e. Ax, x exist.

Similarly the last line of (B7) is as follows.

^ ^^~Ax -1^ ^~Ax"^~P IV ^^Ax ~1^ !2 ^ II 5ill ^ 0.
The terms containing the - s in (B7) go to zero as e ->• 0 as it

can be shown in the same way as was used for proving m ->• 0. In fact we

will prove that generally if e -> 0 5^->«>.

-33-



ii.{t) o—» O q(t)



+

x(t) t 7

X=|(x-a)"^ - b+U(t); x(0) =a

' • domain JO

in this domain:

i="l'(v-a)"^+ b

lott) =b=constant

X|(t) =a ; t>0 X|€o2?

XpCt) =0+t '̂̂ ; t>0 ^
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Name Constitutive relations

Linear time-
varying capacitor

Cv,ia: . .
i=q(t)^ + Ct(t)v;
q =Ct(t) V

Linear time
varying inductor v=L^(t)^+L/t)i ;

<f>~ L^(t)i

Nonlinear

time - varying
one port

Cv,i3--
y = C (x)x + F(x)+Co(t)x

C F and are real

functions

y =1, x=0 or y=0 , x =l



f(x)

dx
= +00

a, > o!


