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Abstract

This paper presents an algorithm for minimizing an objective function

subject to conventional inequality constraints as well as to inequality

constraints ^^f the functional type: max <|>(z,u)) £ 0, where fi is a closed
(A) ^ fi

interval in R, and z G R is the parameter vector to be optimized. The

algorithm is motivated by a standard earthquake engineering problem and

the problem of designing linear multivariable systems. The stability

condition (Nyquist criterion) and disturbance suppression condition for

such systems are easily expressed as a functional inequality constraints.
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1. Introduction.

This paper presents an algorithm for solving problems of the form:

min{f°(z) |f^ (z) _< 0, j =1, m; g^ (z) £ 0, j = 1 ... r}
where z C is the parameter vector to be optimized, f°: R is the

criterion, g^: r" -»• R, j = 1, ... p, are conventional inequality constraints,

and f"^ : r'̂ ->• R, j _= 1, . . . m, are inequality constraints of the functional

type, i.e.

f^ (z) = max (()^ (z,a)) , j = 1 ... m (1)
0) ^ ii

where is a closed interval in R. The algorithm is motivated by problems

arising in the design of earthquake resistant buildings [10] and in designing

controllers for linear multivariable systems using frequency response tech

niques. For the latter, a sufficient condition for asymptotic stability of

the closed-loop system is that (if the open-loop system is asymptotically

stable) for all w ^ R, det (T(i(i),z)) lies outside of a suitably specified

subset of the complex plane (see Fig. 1), where det(T(*,z)) is the deter

minant of the matrix return difference of the multivariable system corre

sponding to parameter z. ®-| defined by:

= {s ^ |6(s) £ 0} (2)

where 6:0"^ R» then the stability functional constraint is:

f^(z) 1 0
1 A 1 1 Awhere f"^(z) = max (p (2,01) , and <p (z,u)) = 0(|T(ia),z) |)

0) ^ R

In practice it is known that there exists a < <» such that <J)^(z,a)) < 0

for all feasible z, for all m ^ u , so that R may be replaced by = [0,a) ]
c c

in the definition of f^.

Similarly, a performance constraint can be specified, for some 6 > 0,

as IIt "^(iojjz)!! < 6 for all o) (= Q.



Existing procedures for designing linear multivariable systems, when

the state is not completely accessible, are either of the time-domain [1,2]

or the frequency-domain type [3,4,5]. The former require relatively lengthy,

complex calculations, and, usually, the specification of an artificial

criterion (which may, itself, have to be repeatedly adjusted to meet basic

design objectives); the latter require, at least in their current stage of

development, considerable skill, and they do not necessarily yield the

simplest designs. Since the latter procedures easily handle design objectives

(e.g. stability and performance) which are meaningful in many practical situa

tions, it seemed useful to develop an algorithm to achieve these objectives

automatically. Standard algorithms cannot be employed since at least some

of the constraints are of the functional type.

Because the problem contains functional constraints which cannot be

evaluated without resorting to approximations, the algorithm is presented in

two versions: the conceptual version, which assumes that the functionals

can be evaluated exactly, and the implementable, which incorporates efficient

approximation procedures compatible with convergence. The conceptual version

is given primarily because it considerably simplifies the presentation.

In constructing these new algorithms we have made use of ideas appearing

in Zontendijk's feasible directions algorithms [6] and in Demyanov*s algorithm

[7] for min max problems.

I. Definitions and Assumptions.

The problem considered is:

PI. min{f°(z)If^(z) <0,jGJ ;g^(z) <0, j^J }
' — m — p

where J, = {1,2, k}, k = m, p, f^, j ^ J , is defined in (1), and the
ic ni

following conditions are assumed to be satisfied:

Al. f°: R, g^ : r'^ R, j = 1 ... r are continuously differentiable.



A2. <|)^ : X ft R, j = 1 ... r are continuously differentiable.

Let F s {z S R'̂ lf^ (z) £ 0, j € j ; (z) £ 0, j ^ J } denote the
IQ p

feasible set, and I" its interior. The algorithm is an extension of a

method of feasible directions, and requires the determination of the

"t-active constraints". Thus, let:

Jg(z) ={j ^ J |̂f^(z) - 'I'q(z) - e} (3)
•J?(z) = {j ^ J |8^(z) - 4'-(z) ^ - e} (4)

E p O

where il/ : r'^ R is defined by:
^o

^^(z) = max{0, ij'(z)} (5)

and i|;: R^ -»• R is defined by:

y;(z) =max{f^(z), j ^ J^; (z) , j Gj^} (6)
Clearly, if zSF, then i^^(z) =0. If j GJ^(z), then (j)^(z,a)) - ^q(z) ^ ~e
for some m ^ ft; the set of all such ui will be denoted by:

ftg(z) ={o) Gft|<f)^ (z,m) - ^q(z) ^ - e} (7)
The following further assumptions are made:

A3. F 9^ <l>, F = F.

A4. Vz e Vj e Jq(z), ft^(z) is a finite set (ftj(z) ={w Gftl(f)^(z,a») =iI'qCz)})
A5. Vz ^ r'̂ , Ve > 0, Vj GJ^(z), ft^(z) is the union of a finite number of

0 0

disjoint intervals g^ u(^)> k = 1» ••• k^(z), possibly of zero length, i.e.
C , tC £

nl(z) =u li k(z) ' (8)
^ k6 7Ke(^>

where: ^ *•"

The algorltluB also uses a set of discrete frequencies ^

defined Vz ^ r", Vj S by:

j?(z) - {io^^^(z)|k e K^(z)} (10)

The overbar denotes closure.



where w'̂ k is the midpoint of , , Vk ^ K"^ (z).
e e > K e

Most algorithms require directional derivatives of the constraint

functions. This causes no difficulties for the conventional constraints

g"^ , j ^ Jp - the directional derivative corresponding to direction h^
is <Vg^(z)jh ) . To cope with the functional constraints, the function

Df^; Xp" ^ R, defined by;
Df^ (z,h) Amax{ ^7 (j)"^ (z»w) ,h ) , iti ^ Q? (z) }, j ^ J^(z)

£ . Z £ £

= - «, j ^

V£^ 0, is introduced. Similarly, for convenience, Dg^: R^ x r'̂ -> Ris
defined by:

Dg^(z,h) = <7g (z),h >, j e J®(z)
O J o

=- j ^ jf(z) (12)
In choosing a search direction, a linear programming problem has to be

solved. To make this low.dimensional, the following 'approximation'

Df^: r'̂ XR*^ Rto Df^ is employed:
Df^(z) =max{ <V^(|)^ (z ,aj) ,h ) , mcTPCz)}, j GJ^(z)

= - «>, j ^ Jg(z) (13)

Because of A4, A5, Dfj = Df^, Vj GJ .
' ' 0 0 m

For given z ^ r'^, £ > 0, the search direction h (z) ^ R^ is obtained
£

by solving the following linear programming sub problem:

P2. Compute h^(z) ^ r'̂ by solving:
0 (z) = min max{-i|) (z) + (Vf°(z),h ) ;

^ h e S °

Df^(z,h), j GJ^; Dg^(z,h), j G (14)
where:

S = {h G r""'! Ilhll < 1} (15)
I 00 —

The function makes the algorithm concentrate initially on driving z

into the feasible region F. In the conceptual algorithm, once z becomes



feasible it remains feasible.

To check that the computed search direction h^(z) is satisfactory,

0^(z), defined by;

0^(z) =max{- 'I'q(z) + ^Vf°(z), h^(z) ) ;
Df^(z,h^(z)) , j ^ Dgg(z,h^(z)) , j ^ (16)

is evaluated. To aid the analysis of the algorithm, the function 0^:

-> R, defined, V e ^0, by:

0 (z) = min max{- ^^(z) + <Vf°(z),h >; Df^(z,h), j GJ ;
h G s

; Dg^(z,h), j ^ Jp} (17)
is introduced, ~ ® ^ necessary condition of optimality.

Tlis final assumption can now be stated:

(z.mj. 0) <= , 1 *=

set of linearly independent vectors.

A6. Vz Gr'̂ , (z,m) , mGJ^j(z) , j GJq(z) ; Vg^ (z), j GJ®(z)} is a
t

This assumption is not-easily verifiable. However, it indicates that the

algorithm may jam up, even when z ^ F, at a point where it is not possible

to reduce all the active constraints. This might indicate that the problem

is not well posed, and that some constraints should be removed. The

n iassumption ensures that there exists an h G R such that DfQ(z,h) < 0

Vj G and Dgj(z,h) <0 ¥j GJ^, Vz GF^.
3. The Conceptual Algorithm.

The conceptual algorithm can now be stated:

Algorithm I:

Data: Zq Gr", a ^ (0,1), 3 ^ (0,1), Eq ^ (O,-), 0 < e^ « 1.

Step 0: Set i = 0.

Step 1: Set e = e^.

SLep 2: Compute lig.(z^) and 0g.(z^) by solving P2.

This assumption is related to the Kuhn-Tucker constraint qualification.



Step 3: If £ - 2e, go to Step 5.

Else, set e = e/2 and go to Step 4.

Step 4

Step 5

Step 6

If e £ and 6^(2^) = 0, stop. Else go to Step 2.

If £ - e go to Step 5. Else set e = e/2 and go to Step 2.

If F compute the smallest integer i such that:
A. £f°(z^ +e ^h^(z^)) - £°(z^) <- 6^ae (18)

•f£j(z + 8 h (z.)) <0, e j
-L ex — m

£.
gj(z^ + 8 \(zp) <0, Vj e J

C T12^ G F (the complement of F in R ) compute the smallest

integer such that:

S'. a.
+ a ~ £ - 3 ^ae

Z.

(19)

(20)

(21)

tt£te£_7: Set + 3 h^(z^), i = i + 1. Go to Step 1 (Step 2).

For future reference let e(z) denote the value of e generated by the

algorithm (with "go to Step 1" in Step 7) given z^ = z, i.e. Vz GR^, e(z)
is the largest number, of the form 0^/2^, where k is a non-negative integer,
satisfying:

97(2) (2) - " ^

%(z) i

(22)

(23)

Note that Steps 1-7 of the conceptual algorithm (with "go to Step 1"

nin Step 7) define a Map A: R 2 , so that ^ A(z^), with the property

that A(F) C F.

Note that if e > e^, there is no need to evaluate 0q(z^).
f+We shall give a proof of convergence for the case "go to Step 1" in Step 7,
i.e., when e is reset to Eq at each iteration. The algorithm also converges
when e is forced to decrease monotonically, i.e. "go to Step 2" is used in
bt°p 7. However, the proof of convergence is then substantially more com
plicated and will therefore l)e omitted.



The algorithm essentially has two different cost functions, one for F

and one for F . In order to analyze its convergence properties we make

use of the following general convergence theorem for algorithm models with

this structure. (Theorem 1 below generalizes theorem 1.3.10 in [8]).

Theorem 1.

nSuppose an algorithm A: R 2 , with associated cost function

c: -y R, has the following properties (with N (z) 4 {z'M'z-zMI < e}):
e — ' —

1) ^ FCR such that c = c^ on F and c = c^ on F^, where c^, c^: r'̂ -y R

are continuous.

2) A(F) C F.

3) Vz GR^, such that z is not desirable, ^e(z) > 0, ^6(z) < 0 such that

(i) c^(2") - c^(z') £ 6(2) <0. Vz' € N. . (2) n F, Vz" S A(z')
S\,Z)

(ii) c^(z") - C^(2') 1 6(z) < 0, ¥2' e (z) n Vz" e A(z')
Then, every accumulation point of an infinite sequence generated

according to the rule z^_|_^ = y^ GA(z^) if c(y^) < t(z^), z^^^ = z^ other-

wise, i = 0, 1, 2,..., is desirable.

Proof. Suppose {z^} is an infinite sequence, generated as above, which has a

subsequence, indexed by K, converging to a z ^ A, where A denotes the set of

desirable points. From assumption 2), either there exists a finite k such

1 ^1that 2. ^ F Vi ^ k, or z^ F^ Vi. In the first case (j = 1) c (z ) ^ c (z)
2 2 —I(m in the second (j = 2) c (z^) -y c (z). Hence, J k' ^ [0,") such that,

for j = 1 or 2:

c^(z^^^) - c^(z^) £ 6(z), Vi ^ Ksuch that i ^ k*.
Hence for j = 1 or 2, (assuming, without loss of generality, that Zq ^ F

if z^ " F for all i sufficiently large)

c^(z) - C^(Zq) = ^ [c^(z -) - c^(z )]
i G K ^
i > k*

Note that if the sequence is finite, i.e. for all i ^ then z^
is desirable.



+ H [c^(z J - c^(z.)]
i G K ^
i < k'

+ H [c^(z. .) - c^(z.)]
i ^ K ^

= — 00,

since each term in the first summation is less than or equal to - 6(z) and

all the other terms are negative. This contradicts the convergence of

{c^(z^)}, j = 1 or 2. Hence z is desirable. //
To establish that the conceptual algorithm satisfies the assumptions

of Theorem 1, we require the following results, which are proven in the

Appendix.

Proposition 1. If z GF is optimal for PI, then 0q(z) =^q(z) = e(z) = 0. //

Proposition 2. Vz ^ such that 0q(z) <0, ~| Y> 0, e > 0 such that:

e(z') ^ e, Vz* €N^(z). //

Proposition 3. Vz G such that 0q(z) < 0, ^ Y^ -1 e > 0 such that:

f°(z*) - f°(z*) £ - e, Vz' GN^(z) F, Vz" ^ A(z*)
Hz") - ip(z') < - e, Vz' GN (z) H F^, Vz" G (A(z')),

nwhere A: R 2 is defined by Steps 1 to 7 of the conceptual algorithm,

with "go to Step 1" in Step 7. #

As a consequence of Proposition 1 we define the set A of desirable

points as follows:

A= {z Gr |̂0q(z) = 0} (24)

Since algorithm I stops only at z^ G a we only need to consider the case

where the sequence {z^.} is infinite. Our first main result is:

Theorem 2.

Consider algorithm I with "go to Step 1" in Step 7. Then every accumu-

"klation point z of an infinite sequence {z^} generated by algorithm I is



desirable.

Proof. Since f : R ->• R and iff: R ->• R are continuous, the conceptual

algorithm satisfies condition 1) of Theorem 1 will c^ = f°, c^ = i/;.

It is obvious from Step 5 of the conceptual algorithm that If z. ^ F,
n

then € F and consequently, defining A: R^ 2 by Steps 1-7, we find

that A(2) C f. Condition 2) of Theorem 1 Is therefore satisfied.

Finally, Proposition 3 shows that the conceptual algorithm satisfies

conaltlon 3) of Theorem 1. //

We state without proof a similar result for the alternative version

of the conceptual algorithm.

Theorem 3.

Consider algorithm I with "go to Step 2" In Step 7. Then every

A *

accumulation point z of an Infinite sequence {z^} generated by algorithm I

Is desirable. //

The Interested reader can prove Theorem 3, by modifying a convergence

theorem due to Klesslg [9], analogoxisly to the way we have modified Theorem

1.3.10. In [8].

4. The Implementable Algorithm.

The algorithm below takes Into account the fact that It Is Impossible

to evaluate expressions such as max <j)^(z,a)), with high precision, a large
0) ^

number of times,without Incurring high computational costs. We assume that

Is a closed Interval,

^ (25)

and, for q = l, 2, ,e^0, we define

S " ^ A[0)^-0)^1/2^, £=0, 1, ..., 2"^} (26)
f^ (z) = max (()^(z,o)), j = 1, 2, ..., m (27)

- 0) e n
q

10



={z e R |̂f^(z) <. 0, j e j^; gj(z) £0, j e j^} (28)

ip^(z) =max{f^(z), j G (z) , j Gj^} (29)
ijj (z) = niax{0, ij; (z)} (30)

4 ,u q

^ <31)

J® -(z) ={j e J |gJ(z) - 4-^ (z) >- e} (32)
4 ,t. p 4 >o

{o) Gft |,j)^ (z,a)) - }p (z) 1" e}, j ^ J , (33)
4,t. 4 4>® ®

whsre the w" i.(z) are mid points of intervals i,(z) = It«3*»w"]> where
*1 >£ jK q ,e ,k.

0)*, 0)" Gft-^ (z) , oj* = 0)" is allowed, and for any oi Gft^ (z), oj ^ i,(z)

min I(o-w |^2* [(w -(u)/2^].
0) G iJ (z) ^ °

q,e,k^

Let I*** A{0, 1, 2, }, then Vj GJ , Vq G l"*", Ve > 0, Df^ ^ is
m 4»X .

defined as in (11) with replacing , and Df^ is defined as in (13)

with replacing J2^. Next, Vq G i , V e ^ 0, Vz G r , h (z) and 0 (z)
q,e e

are obtain by solving:

P3. 0 (z) = min max{- ip (z) + <Vf°(z) ,h ) ;
«!>£ h G s

D^Eq^e(2.h), j e Dg3(z,h), j €J^} (35)
Finally, VqGi,V£>O,0 : R^->Ris defined as in (16) with Df^

~ q»e q,e

replacing Df"^ , Vj G j .
m

Algorithm II.

Data: € r", a S (0,1), S^ (0.1), £ (0,") 0 <Ej^ « e^, q^ >0,
an integer.

Step 0: Set i = 0, q = q^.

11



Step 1

Step 2

Step 3

Step 4

Set e = Eq.

Compute h (z.) and 0^ (z.) by solving P3.
q,e 1 q,e 1

If 0^ 1 " 2e, go to Step 4. Else set e = e/2 and go to Step 2

If €^ and 0^ ~ ^q ~ ^i» q - q + 1 and go to

Step 1. Else go to Step 5.

Step 5: If 0^ 6° to Step 6. Else set e = e/2 and go to Step 2.

Step 6: If z^ ^ compute the smallest integer such that
Z Z

f°(2 + g \ (z,)) - f°(z.) <- g ^ae (36)
X q 1 1

z

f^(z, + &\ (z.)) < 0 Vj e j (37)
q i q,e i — '' m ^ ^

Z

gj(z + g \ (z,)) <0 Vj e J (38)
± 4) t 1 p

c nIf z^ G (the complement of F^ in R) compute the smallest integer Z^

such that

Z.

+ B ^ (39)

Step 7: Set z.,,=z,+3 h (z.),i= i+1.
— i+1 i q,e i

Step 8: If z. G F and e £ e,j go to Step 9. Else go to Step 2.
9

Step 9: If 0_ «(Zj) > - 1/2^, set y_ = z_., set q = q + 1 and go to Step 1.
' q,0 1 — qi

Else go to Step 2. //

The following result follows readily from the results in the appendix

and the asstmiptions made in the beginning of the paper.

Theox'eui 4.

Every accumulation point y of the sequence constructed by

algorithm II satisfies y ^ F and 0Q(y ) = 0. //

5. Conclusion.

It is hoped that the algorithms presented in this paper will be of

use for problems with functional inequality constraints. One example of

this class of problems was mentioned in the introduction: the design of

12



linear multivariable systems when stability and performance constraints

are expressed in terms of frequency response functionals. Another example

is the design of buildings is withstand earthquakes [10]; here the cost

would be the weight of the building, and a typical constraint the maximum

deviation of a floor during an earthquake.

For the problem of designing linear multivariable systems, a set

has to be chosen so that det(T(iu))) ^ V w G is sufficient to ensure

"relative", as well as asymptotic, stability i.e. the locus det(T(iJ2))

(det(T(iS2)) A { det(T(s))s = iw, co G fl}) should maintain a reasonable

distance from the origin of the complex plane . It is probably worth

mentioning that a prescribed degree of "relative stability" may be

achieved by considering rather the locus det(T((a + i)f2)), where a < 0 is

suitably chosen, in place of det(T(if^)); if this is done may be chosen

merely .to prevent encirclement by det(T((a + i)S2)) of the origin.

The algorithm has a feature which should be of interest also for con

ventional optimization problems (m = 0), i.e. without functional conistraints,

namely that the initial points z^ need not be feasible. Algorithm 1 auto

matically drives z into the feasible region and then maintains feasibility;

i.e. unlike conventional feasible directions algorithms, it solves the

"phase I" and "phase II" problems simultaneously.

13
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Appendix

Proposition 1. If z e F is optimal for Pi, then 0q (z) = ?q (z) = 0(z) = 0.

(i) It follows from assumption A4, (7), (10) that, Vz G R™, Vj ^ J ,
m

~^(z)» and hence from (11), (13), that Vj ^ J^, Df^ =Df^.
It now follows from (14), (16), (17) that Vz e ^q(z) =Qq(z) =0q(z).

(ii) If z GF is optimal, and 0q(z) £ 6 <0, then (z) =0, and ^ ^ ^

such that;

z3Df^(z,h) <6 Vj G J
u ~ jn

Dg^(z,h) <6 Vj S J .
0 - p

it follows from the continuity of Vf°, V^({>^, Vj G and Vg^ , Vj ^ J ,
that ^ A>0 such that z + Ah Ef and f°(z + Ah) - f°(z) <0, contradicting
the optimality of z.

Fact 1. (i) V z G r", ©qCz) = 0q(z) = 6q(z)

(ii) Vz e R° V e > 0, ^ (z) < 0 (z) < 0 (z)
— ' e — e — e

(iii) ^2 R^, if e < e then 0 (z) < 0 (z).
1—2

Proof, (i) is proven in Proposition 1.

(ii) follows from the fact that Vz Gr'^, V e > 0, Vi ^ J , i?(z) ^ (z) .
— » m £ £

(iii) follows from the fact that e^ £ implies that

(z) C (z) //
^1 ^2

Fact_2. Vz Sr", Vj ? jf (z) (Vj ^ J®(z)) ^ Y>0 such that
P: P

j ^ J^(z') (j ^ J^(z*)) Vz* Gn^(z).

"F •Proof. If j ^ J (z), then ^ > 0 such that 6^(z) - (z) < - g - 6.
£ O

15



The result follows directly from the continuity of f^The proof

for the second case is similar. //.

Fact 3. Vz^R, Ve^O, Vj^ J^Cz) ,V6>0^ y > 0 such that
c —'

i<;^(z ) CN^(fi^(z)) Vz' GN^(z) , where , N^, denote, respectively, 6,

Y neighborhoods of (z), and z.
e

Proof. First, it follows from (5) and (6) that

Ris continuous. If N=N^(f2^(z)) =fi, the result is trivially
true. If N ^2, then C(J^^(z))^, and ^ p>0 such that Vj ^ J^(z) sup

0) e

[<l)^(z,a))- (z)] £ - e - n. (for, if not, sup [<})^(z,uj)- \p (z)] >-e,
0) e NC °

and 3 ^ sequence {m } such that m G and [(|)^ (z,a).)- ip (z) ] < - e
A* X, jo O

V£ ^ 0 and m -> o) G where m* satisfies [(|)^ (z,a)*)- ip (z)] > - e;
X/ Q

iAk *1 *however this implies that m ^ ^^(z) , i.e. J2^(z) N 9^ <{>, contradicting

the fact that fi^(z) Cint N) . Hence y] y >0 such that:

sup [(j)^ (z',0))- '/'̂ (z*)] = max [(J)^ (z',a})- i|̂ ^(z')] £ - e - n/2 <- e
CD e 03 e

¥z' eN^(z). Thus fi^(z') CN, Vz' ^N^Cz). //
j^_act_4. ¥ z£R, ¥ j GJq(z) , ^^(z) J^q(z) , with respect to
inclusion, as e 0.

Proof. The result follows from assumption A4, and the continuity of

- iPo» ^ ^ • //

Corrollary. ¥ z ^ r" such that SqCz) <0, ^ e >0 such that 6^i(z) <0,

¥ g' e [0,g]. //

Fact 5. ¥zGr\ ¥6>0, ¥y^0, such that

y(Sp ,(z')) £6, Vz'Gn^(z), ¥e»G[0,G], ¥j £
wnere m(-) denotes measure (total length).
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Proof. If j ^ J_f(z')» u(fi^,(z*)) = 0. Let j GJ^,(2*) and assume that
EE £

Fact 5 is false, i.e. sup y(^2^, (z')) > 6 , V e* > 0. Hence ^
z' e N (z) ^

Y

sequences {z.}, with z. z , and {e.}, with e. ->• 0, such that z^ G N (z)
1 1 1 1 i Y

and (z^)) ^6/2, Vi^O. But, by Fact "li] ^ such that
i

y(^^^(z )) ^ 6/8, and ^ ^ such that e^ <e Vi ^ i*, and (by Fact 3):

Cp (zp c c N, (£2^4(2 ))
'i E

Vi ^ i . Since y(i2^^(z )) 6/8 we have yCfi"^ (z.));^6/4, Vi^i.
E ^i

But this contradicts y(J2 (z.)) > 6/2, V i > 0. //.

'i -Fact 6. Vz^r'^, Vh^S, V6>0, -^y>0, i^E>0 such that:

Off, (z' ,h) <Df|, (z' ,h) + 6, V2' e N(z) , Ve' ^ [0,e] , Vj Gj (Al) •
t £ IE

Proof. If j ^ J^(z'), then j ^J^i(z'), for e* ^ [0,e], and
•1

Df^,(z*,h) = -.00 and (Al) is trivially satisfied. From the continuity of

^ ^ '̂ m '̂ Vz^r'^, V6>0, j 6^>0, such that:

fiv (J)^ (z* ,01*)- V(j)^(z,aj)ll < 6/]/n

V z* G N (z) , V 0), 0)* ^ such that |a)'-(jo| ^ 6-, > V j ^ J (z) . But
Y2^ -L E

from Fact 5, ^ e>0,j23y^ (OjYj^J such that y(fi^,(z')) Vz' ^
N (z) , Ve' ^ [0,e], Vj ^J^(z). Hence llv (|)^ (z* ,a)*)- V-(|)^ (z,a)) II 6/»^,

"Y £ z ^

V z' *= N (z) , V 0), (1)* in the same subinterval of ^"^,(2*), V e* ^ [0,e],
Y ^

Vj GJ^(z). The desired result follows from the definitions of Df^, Df,
E e' e

and the fact that llhil /ii V h ^ S. #

Fact 7. Vz^R^, V6>0, such that:

'^^i(z') ^0 t(z*) + V e' S [0,£], V z' (z).
- E Y
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PtNoof. The result follows from the definitions of 0^,, 0^,, the continuity
of i}j and Vf°, and Fact 6,

o

Fac^. V2 e such that 0^(z) <0, []y>0, 3e>0 such that:

-2 ^ ^ V z' G N (z), ¥ e' G [0,e]Y

.nProof. By Fact 4, Vz £ R such that e (z) < 0, 3 t > 0 such that
0

♦(z) <0 ¥ e' G [0,e]. Now:
e

//

e^(z) = min max{- If, (z) + <Vf°(z),h>; <V4,^ (z ,0,) ,h >,
h ^ S ^

^ j e J^(z); Dg^(z), j Gj }
^ t £ p

Let 5 >0 be such that 0^(z) <3/4 0^(z), where 0^: r" -> Ris defined by:

0^(z') ^ min max{- 4,o(z') + <Vf°(z').h>; <V4j(z»,h>,
n fc o z

a,eN (J2J(z)), j €/(z'); DgJ(z'), j £ J }
*-1:. p

By Fact 3, Vz£r", g >0such that nJ(z') CN^(£2^(z)), Vj £J^(z') .
So that 0^(z')l0 (z') Vz'EN (2)

^1

Let Y ^ (0,Y-,] be such that 0 (z') < —0 CzW ,» ^ m / \ o i.
1 _ 3 ¥ z GN^(z). Such a y exists

because of the continuity of ip , Vf°, V(f)^ ¥ j Gj ^ vg^ ¥ i Gj
° ^ P*

Hence, 0^.(z') < 0^, (z') <0^ (z') <| 0Jz) <| 0^ (z) <0 Vz' £N^(z) .
V G [0,ej. #.

Proposition 2. Vz £ r" such that 03(2) <0,3 Y>0^ s >0 such that

e(z') ^ e Vz' £ t;^(z), where e(z) is the e generated by algorithm I in Step 5

(with = 2).

Proof. By Fact 8, ¥ z G such that 0q(z) <0, ^ Y]^ > 0., ^ £^ > 0 such

that: 0 ,(z') £y0 (z) = 6<0Vz'£N (z) , ¥ e' G [0,e.].
^ z c Y2^

18



Hence, by Fact 1, 9 ,(z.) <9 y e N (z), V e' S [O.e.].

Let 6 =min{£^, - 6/2}. By Fact 7, ^ Y^ (O.Yj^l, 3 ^ ^ (0>'5] such that

e^,(z') l?^,(z') +6, i.e. 6^,(z')£9 +5 Vz'eN^(z), Ve'e[o,£].
Now 9 _< 26 and e £ <5 £ that:

?^(z') <- 26 £ - 2£ (A2)

0^(z*) 1 - 6 1 - e (A3)

Vz* ^ N^(z). Since £(z') is the largest number of the form Eq/2 , S, a

positive integer,satisfying (A2) and (A3), the desired result is proven. //

Proposition 3. Vz ^ such that 6q(z) <0, ^y^O, ^£>0 such that:

f°(z") - f°(z') £ - e, Vz* GN^(z) F, Vz" ^A(z'), and (z")-if»(z* )£-£,
n

c . _n ..Rip(z") -</}(z')£-£, Vz*G ^^(2) F , Vz" € A(z') (where A: R -»• 2

is defined by Steps 1 to 6 of the conceptual algorithm with "go to Step 1"

in Step 6) .

Proof.

By Proposition 2, Vz ^ r'̂ such that 9q(z) <0,
such that e(z^) £ e, , and e_ 1 " V z' G n (z)

e(z') ^ h
(a) (upper bound on i|}(z") , z" ^ A(z*)).

Because of the compactness of the various sets involved, ^ ^ (0>1]

such that:

|<f>^(z' + AhjOj) - (j)^(z',a))| ±e^/2 (A4)

Vz'gn (2), V w e S2, V h G S, Vjej, vxe[o,Aj.
m 1

Let Z^ ^ j£ (z'), U) e S2), (j e / (z'), (z'))};
e(z*) e:(z') g(z')

19



then (|>^(z',a)) - ^(z') < - V (j ,01) ^ Z. It follows from (A4) that:

(J)^(z' +Xh(z'),a))- i^(z') e^/2 (A5)

V 7' ^ N (z) , for all (j ,u)) ^ Z where h(*) denotes h (•)•
!(•)

Also:

(z' + Xh(z') ,0))- ({)^ (z* ,0)) _< X[ <V<|>^ (z' ,0)) ,h(z') >

+ f IIV (|)^(z' +sXh(z*) ,0))- V(j) '̂(z',u))llds]
Jo ^ ^

since llhll < /n V h G S. Let Z^ denote the complement of Z in J x
~ m '

i.e. z'̂ = {(j,a))|(j e J_ (z'), uj € (z'))}. Now <V ((i^(z',a)), h(z') >
e(z') e(z') ^

_< 0e(z*) ^ V (j ,0)) ^ Z*^; it follows from the continuity of > that

3 X2 ^ (0,X^] such that

(()^(z' +Xh(z'),a)) - ilf(z') ±- Xa£^ (A6)

V (j ,0)) e z^, Vz' e N (z), vx e [o,x_].
^1 2

Combining A5 , A6 we ob tain:

f^(z' +Xh(z')) - ijj(z') Xae^ (A7)

Vz' £ N (z), VX£ (0,X ], Vj GJ where X^ G (0,X-] satisfies
Y-i m \ » 2-'

fX _< £^/2.

Similarly, it can be shown that 3 ^ ^ such that:

g^(z' +Xh(z')) - £ - Xa£^ (A8)

Vz- e N^ (z), VXe (0,x®], v j e j
IcLet X^ = 3 1> 0, where k^is the smallest non-negative integer, satisfying

f £< max{X ,X }. From (A7) and (A8) and the definition of we obtain:
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+ X^h(z')) - Ip(z') < - (A9)

V z' e N (z) .

Now, for z^ = z*. Step 5 of the algorithm chooses the smallest non-negative
— i(z*)integer Z(z[) and a corresponding X(z*)=3 such that:

^(z") - ip(z*) = ipCz' + X(z')h(z')) - i^(z')

£ - X(z')ae(z') _< - X(z') a (AlO)

with z" = z' + X(z*)h(z').

Comparing (A9) with (AlO) we obtain

X(z') > X
- 3

V z* ^ N (z) F^. Hence:
^1

ilf(z") - i|;(z*) £- 3X ae^ (All)

V z' e N (z), V z" G A(z')
^1

(b) (upper bound on f°(z") z" G A(z')). Let z' G F (ip (z') =0,
o

^(z') < 0).

Since ijj (z') =0, it follows that:
o

<Vf°(z') ,h(z') > £ 0_ (z*) £- e, , Vz' GN (z).
e(z') ">^1

Hence ^ > 0 such that:

£"(2' + Xh(z')) - f°(z')

V X G (0,X ], V z' G N (z) n F.
4

It follows from the discussion in (a) above (which is not restricted to

the case z* G f ) and, in particular, from (A9), since t^(z') £ 0, that

li ^5 ^ ^ such that:
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ipCz' + Ah(z')) £ 0 (A12)

k

V z' ^ N (z) , V X G (OjA-]. Let X. = g > 0 be such that X. <
3 6 6 —

max{X^,X^}. If £(z') is generated by the algorithm in Step 5, then
— £(zM • —X(z') = g satisfies X(z') > Vz' £ N (z) n F. Hence:

^1

f°(z") - f^Cz') (A13)

¥ z' G N (z), V z" e A(z').
"^1

(All) and (A13) establish Proposition 3. //
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