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ABSTRACT. Necessary and sufficient conditions are given for the
non-cooperative equilibrium policies of N players when they are
simultaneously controlling the evolution of a stochastic system
described by an Ito equation. In the case of perfect information,
these conditions are generalizations of the well-known Hamilton-
Jacobl equations. Conditions are also indicated for the case
when the players have only partial information. Sufficient
conditions are derived which guarantee that an equilibrium is
also Pareto-efficient.

1. INTRODUCTION AND SUMMARY

We apply the results obtained in [1] to study the equilibrium
policies of N players when they are simultaneously controlling
the evolution of a system described by the stochastic functional
differential equation

dz^ =f(t,z,u^,...,u^) +dB^ , t ^ [0,1] (1.1)
Here is the "state" process and {B^} is a vector of inde
pendent Brownian movements. The "drift" f depends at any time t
on the past {z ,s t} of the state and also on the controls u^
of the jLth player, i=l,...,N. u^ takes values in a fixed
metric space U^ and depends on the past {y^, s ^ t} of the
observations made by i. The cost incurred by i is
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J^(u) =E[f h^(^z,uJdt] (1.2)
Jo

where {u^} =
* 1* N*

A set of policies {u } = {u } is a (non-cooperative)
equilibrium if for all i

J^(u*) _< J^C^u ,u^) for all ^ (1.3)^
it ^ j[

Thus u is an equilibrium iff u is a policy which minimizes
(1.2) when for all j i player j adopts the policy uJ . This
trivial fact allows us to use the results of [1] to obtain the
equilibrium conditions, u* is efficient if for all v = {v^,...,
v^}

I

J^(v) ^ J^(u ) for all i
i i *

implies J (v) = J (u ) for all i. Evidently, if there exist
numbers > 0,...,!!^^ > 0 such that

Vp. J^(u*) £ . J^(v) for all v, (1.4)
i i

is —
then u is efficient. But^(1.4) means that u* is an optimal
control for the cost and so we can once again apply the
results of [1] to obtain efficiency conditions.

These conditions are straightforward extensions of the well-known
Hamilton-Jacobi equations when the game is of complete information
i.e., when yj = for all i. When the information is incomplete
the conditions are much more complex.

The paper is organized as follows. The next section introduces
some background material dealing with the interpretation of the
Ito equation (1.1), after which the relevant results of [1] are
displayed. Sections 3 and 4 treat respectively the case of
complete and incomplete information. Section 5 discusses some
difficulties connected with the notion of efficiency in the case
of incomplete information.

adopt the notation (^u,v^) =» (u^,...,u^ ^,v^,u^**'̂ ,... ,u^)
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2. RESULTS FROM OPTmL CONTROL THEORY

2.1 Specification of the dynamics

k k
Let be the set of all continuous functions from [0,1] Into R .
Let K be the evaluation functional on C^, and, for t ^ [0,1],
let *3^ be the o-fleld of subsets of generated by s £ t}.

Is the a-field of-subsets of [0,1] x C such that a®function
g on [0,1] X c Ismeasurable Iff g(t,*) Is measurable
for all t and g(*,x) Is Lebesgue measura^e for each x ^ C ; thus

measurable functions are non-antIcIpatIve.

The state process (z } Is n-dlmenslonal. The ^th player's obser
vation process {y^} Is a n^-dlmenslonal subvector of {z }. The
components of the drift f corresponding to y are denoted by the
vector f^. The sample paths of iz } are^contlnuous, hence they
lie In whereas those of {yj} lie In C We can now define
the admissible control policies.

Is a separable metric space and Its Borel field Is A
policy for player 1 Is a measurable function u^: ([0,1] x

(U^, ^)« ^e set of such policies Is denoted 'Q.. Let
^ =s 7ij^x.,,x Tljj, similarly for U, V. The following conditions
are Imposed on f:

(1) f J [0,1] X XU->• R** Is measurable with respect to
J(^ xV-,

(11) there exists K such that |f(t,z,u)| £ K(1 + HxB) for all
(tj'ZjU). ^

Here I*! Is the norm In R and K«fl Is the sup norm In C^. The
functions h In (1.2) are assumed to satisfy the condition corres
ponding to (1) above and In addition the h^ are assumed non-
negative and uniformly bounded.

2.2 Solutions of (1.1)

Let P be Wiener measure on (C*^,3?)« Let z be the evaluation
functional on so that {z^,^^,P} Is a standard, n-dlmenslonal,
Brownlan movement. For u ^ 16 define the corresponding drift

by

(|>"(z) = f(t,z,u^(t,y^),...,u^(t,y^))

Recall that y^ Is a subvector of z. For future reference let
be the sub a-fleld of generated by {y^, s £ t). Also for ' ^
each u define the non—negative random variable by

p" =exp[J^
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Theorem 2.1 [2,3,4] Under the above-stated assumptions on^f ^
P**(z) P(dz) » 1. Hence P" is a probability measure on (C

5where

P"(F) =f p'̂ Cz) P(dz) , F€
-'f

Furthermore, the process {w^ ,*3^ ,P"} defined by

't = -Jo *8
is a Brownian movement.

This result justifies the following definition. The solution of
(1.1) corresponding to a policy u ^ 'LL is the process {z , |̂̂ ,P^}
Thus the impact on the system of a policy u is summarized by the
probability distribution P^.

2.3 Optimality conditions

Suppose N = 1. We can then drop the index i. For u ^ XLt define
the process (w^,

^1
w" « infimum E^[| h(s,z,v )ds
' veu Jt ®

u is value decreasing if {W^} is a supermartingale i.e., if

E**[W^_l_g|'y^] £ W^ a.s. for all t, 6 >0.
It '

u is optimal if J(u ) j< J(u) for all u ^ IL, It is known that
an optimal policy is value decreasing [1, p. 242].

Theorem 2.2 [1] u is optimal iff there exists a constant J
and for each value decreasing u there exist processes {AV^},
{VV|J}, taking values in Rand R™ respectively (where mis the
dimension of the observation proqess y), adapted to and
satisfying the following conditions: ^
(i) « 0, where •

c" » J* +f AV** ds +f w" dyt Jo s Jo s
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(ii) AV** + W" f^(t,z,u ) +h(t,z,u ) 0 « Av" + f^(t,z,
c t lit

U ) + h(t,z,u ) for all t,z,u .
t •- ^

Then x***" W^* and J* =" J(u*) is the mlniTntim cost. ^(Here is the
stibvec^or ol^ f corresponding to y. fy(t»z>u^) ~ E [f^(t,z,u^) I'M^] >
and h is defined similarly).

if

Theorem 2.3 [1] Suppose y = z . is optimal iff there exists
J* and processes Uv }, (VV }, taking values in R and R
respectively, adapted to ™ and satisfying the following
conditions:

(!) = 0, where

x^ «J* +̂ AVg ds + VVg dZg
^ *

(ii) AV^ + fCt.z.u) + h(t,z,u) > 0 = AV + Wj, f(t,z,Uj.)t t ^ .
+ h(t,z,u^) for all t,z»u.

ju

Then x^ « and J is the minimum cost.

3. EQUILIBRIUM CONDITIONS: COMPLETE INFORMATION

3*1 Equilibrium conditions

The next result is then an immediate consequence of Theorem 2.2.

r r 1* N*, .Theorem 3.1 (Equilibrium condition) lu^} = lu^ ,...,u^ } is^an
equilibrium iff for each i there exist J^* and process {AV^},
{TV^} adapted to satisfying the following conditions:
(i)*^ xj =0, where

x^ = +C AV^ ds +r 7V^ dz (3.1)
Jo ® Jo ® ®

11 1* i N*x . i r 1* i(ii) 7v^ f(t,z,u^ ,...,u u^ ) 1* h (t,z,u^ ,...,u ,...,
u®*) >0=AVj +vvj f(t,z,u*) +h^(t,z,u*), (3.2)
for all t,z,u .

1* 1 *
Then J = J (u ). Furthermore

x^ » inflrnum E^*[f h^(s,z,u]" ,... ,u^,... ,u^ ) ds|';^"i (3.3)
' •'t ® 8 8 t

As a special case of this result we can deduce the conditions for
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a saddle point policy in a 2-player.^zer^-sum game. So suppose
N-2 and h^=-h . Apolicy u* » "t '"t ^ saddle point if

J^(u^,u^*) _> J^(u^*,u^*) >_ J^(u^*,u^) for all u^, u^. (3.4)
1^ 2^Theorem 3.2 (Saddle point condition) (u } = (u^ »ut ) is a saddle

point iff there exists J^* and processes (VV^) adapted to
satisfying the following conditions:

(i) = 0 where

=» +C AV^ ds +f VV^ dz (3.5)
Jo ® Jo ® ®

(ii) AV^ +Vvjf(t,z,u^,u^*) +h^(t,z,u^,u^*) >0=AvJ +VvJ
f(t,z,u*) +h^(t,z,u*) =0>AvJ +VvJ f.(t,z,uj*,u^)
+h^(t,z,uj*,u^) for all t,z,u^,u2 (3.6)

1 ^ 1 It
Then J « J (u ) is the value of the game and ^

xj «inf E^*[f h^(x,z,u\u^ )ds|C^°] =sup E** [f h^(s,z,u^ ,
t 1 J,. s s ^ 2 Jt ®

u u

Ug)ds|'3^) (3.7)

is the value function.

We give this result a form similar to that which has already
appeared in the literature [5-8]. Define the Hamiltonian
functional H: [0,1] ^ x n R? ->• R by H(t,z,u^,u2,p)
• pf(t,z,u^,u^) + h^(t,z,u^,u^).

Then (3.6) is the Isaacs condition,

H(t,z,u^ ,u^ H(t,z,u^,u^,VV^) =Min Max H(t,z,
- 2 u2 u u^ u

u .u ,VV^)

Next, suppose that (1.1) is a diffusion equation i.e., the
dependence at time t of f on z is through z^:

dz^ " f(t,z^.,uj,u^) dt +dB^,
Aand suppose further that u^ has the ^me property i.e., u (t,z)

- u^*(t,z^). Then the solution {z fg g diffusion, and
hence from (3.7) it follows that the value function at time t
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depends only on z^, i.e., there is a function Von [0.1] x R
such that xj Hvd.zj. Secondly, if this function is sufficiently
smooth then'by Ito's'^differential rule we can identify the

processes {AvJ} and {wj} as AvJ = ^2 ^ 3z^3Zj
yyl (t,z ). Combining these two observations yields the
weil-known Hamilton-Jacobi partial differential equation for the
value function,

(t.z) +I i: «in H(t.z.u\u^f (t.z)) =0.

for (t,z) € [0,1] X and (3.5) yields the boundary condition
V(l,z) = 0.

3.2 Efficiency conditions

We return to the N-player game of complete information. The next
result is immediate from our earlier remarks.

r f 1* N*-.
Theorem 3.3 (Sufficiency conditions) lu^} = lu^ ,...,u^ I is an
efficient equilibrium if for each i there exist > 0. Ji and
processes {AV^}. {VvJ} adapted to"^^, and satisfying conditions
(3.1). (3.2) and

53hi{AvJ +vvjf(t.z.u*) +h^(t.z.u*)} =0

=Min SwJAvf +VT^f(t.z.u) +h^(t.z.u)} (3.8)
i

Condition (3.8) appears to be a very stringent condition. It
turns out, however, that if a certain convexity condition is
satisfied, then this condition is also necessary for efficiency.
We say that the convexitv assumption holds if for all t, z the
(N+n) - dimensional set

{(h^(t,z,u),...,h^(t,z,u), f(t,z,u))lu € U}

is convex. Now replace the original game by the following one.
The dynamics of this game are given by a (N+n)-dimensional Ito
equation
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dqj = h^(t,z,u^) dt +d3j

dq^ « h^(t,z,u^) dt +dP^ (3.9)

dz^ « f(t,z,u^) dt + dB^

whiere (3)B) is an (IHii)-dimensional Brqwnian movement. The cost
incurred by the ^th player is

J^(u) =Eqj (3.10)

It is evident that the two games are equivalent. What we have
achieved by this transformation is to remove from (3.9) the
explicit dependence on the policy (u }. Next, as in Section 2.2,
for u ^ define

P** = exp h^(t,z,u^(z)) dq^ +̂ f(t,z,u^(z)) dz^

and let the set of all such random variables be

Then

J^(u) « qj p"(q»z) P(dq,dz) = (p^) say

-8-

^ere P(dq,dz) is Wiener measure on (C^^, Note that the
map ^ ->• defined by ^ (p) = (p),...,^ (p)) is linear.
The next result is proved in [3] and [A].

Lemma 3.1 If the convgxity assumption holds then ^ is a convex
subset of Ll(C^**"^,';f^^,P)

Theorem 3.A (Efficiency conditions) Suppose the convexity
assumption holds. Then {u*} =» {uj*,...,u^ } is an efficient equi
librium iff for each i there exist Pj > 0, and processes
{Av^}, {Vv^} adapted to and satisfying conditions (3.1),
(3.2), (3.8).



Proof The sufficiency follows from Theorem 3.3. To prove the
necessity let u* be ^ efficient equilibrium and suppose ,
AvJ.VvJ satisfy^(3.1), (3.2), and (3.3). By lemma 3.1 the set
r « {(J^(u),..., J^(u)), u^ is a convex subset of R^. ^
efficiency F is disjoint from the convex set {(J^ +x^,..., J^+x^^),
X. ^ 0 all i and {x^ O). By the separation theorem for convex
sets there exist > 0 such that

i ^ i ^

i.e.,.u is an optimal control for the cost functional
J (u). Hence (3.8) must hold by Theorem 2.2. "

i

It turns out in fact that this result is true without the convexity
assumtpion. The proof* is much more involved unfortunately. The
result implies that an efficient equilibrium is more stable than
may appear at first sight. Recall the following definition. A
policy Cu*} is in the core if for every subset of players
S ^ {1,..5,N} the following property holds: for all policies
Cv^}, whenever

i J^(u*) , i e S.

then

T^/ S T^/ <1 ^ C

S S' * i iHere (v ,u ') is the policy {u } where u = v , i ^ S and
4 4X t t t

u = u. for i ^ S. Theorem 3.4 immediately yields the following

remarkable corollary.

Corollary 3.1 Suppose the convexity assumption holds. Then the
set of efficient equilibrium policies coincides with the core.

4. EQUILIBRIUM CONDITIONS: INCOMPLETE INFORMATION

We return to the game of incomplete information. The following
result is immediate from Theorem .2.2.

Theorem 4.1 =" {uj (y^),..*,u^ (y^)} is an equilibrium
t t t

policy iff for each i there exists a constant J and.for every
value decreasing {uj(y^)} there exist processes {AV^" },

eiu^ '^i i{VV^ } taking values in R, R respectively and adapted to^^.
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such that the following conditions hold:

lu^ ^
(i) =0 where

^ J* +C ds +f dy^
t Jo ® Jo ® ®

(ii) AvJ"^+ f^(t,z, V,u^) +h^(t^z/u*,u^) >0
*i . *i . it * i

«= AV^*^ + VvJ-" f^(t,z,u ) + h (t,z,u ), for all t,z,{u }
i* i,

Furthermore J = J (u ) and

i^ A 1

=infimum [f h^(s,z,^Ug,Ug) ds|W^] (4.1)

This result is not of great interest. However some interesting
observations can be deduced. We give one instance. Suppose
the game is constant-sum i.e., suppose

A i
I ^h (8,z,u) = K , a non-random function. (In particular
Jt i

this includes 2-person 0-sum gaines). But this does not imply
that

. i*
Sx; 5 K (4.2)

1

This negative conclusion raises the question whether such a game
should be called a constant-sum game. As is clear from (4.1),
there is one special case where 14.2) holds and that is the
"equal" information case, yj = y^ = ... « yj?

Ip t t

5; NOTION OF EFFICIENCY IN CASE OF INCOMPLETE INFORMATION

The definition of an equilibrium policy is an attempt to embody
the concept of individual rationality, whereas efficiency is a
precise criterion for group rationality. Thus an efficient
equilibrium is stable against group action in the sense that the
players will not derive any additional individual benefits from
"cooperating" as a group. Now, in the situation of incomplete
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Information where the .information available to different players
is substantially different and where "cooperation" means sharing
of information as well as coordination of policies, it seems
quite unlikely that a (non-cooperative) equilibrium will be
efficient. This may appear puzzling since on a priori grounds
one would expect equilibrium policies in the "real world" to be
efficient. It is evident that one way this apparent paradox can
be resolved is if we can expand our framework to include costs
of cooperation, especially of sharing of information.
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