

Copyright © 1974, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

A COMPARISON OF THE PLU AND QR METHODS FOR DETERMINING

EIGENVALUES OF REAL HESSENBERG MATRICES

by

J. T. Panttaja

Memorandum No. ERL-M440

May 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A COMPARISON OF THE PLU AND QR METHODS FOR DETERMINING

EIGENVALUES OF REAL HESSENBERG MATRICES

by

t
J. T. Panttaja

May 1974

t

Mathematics Department

Present Address: IBM Corporation, Poughkeepsie, New York.

The author gratefully acknowledges partial support by the Office of Naval
Research under Contract N00014-69-A-0200-1017. Reproduction in whole or
part is permitted for any purpose of the United States Government.

CONTENTS

1. Introduction

2. Theoretical Presentation

3. Environment

4. Iterations

5. Operation Counts

6. Results

7. Conclusions

APPENDICES

A. Instruction Execution Times

B. Test Matrices

C. Listings of Programs

2
D. Order n Operation Counts

E. Order n Operation Counts

F. Timings

BIBLIOGRAPHY

A COMPARISON OF THE PLU AND QR METHODS FOR DETEEMXNING

EIGENVALUES OF REAL HESSENBERG MA.TRICES

J. T. Panttaja

ABSTRACT

The LU algorithm with interchanges (herein after PLU) should be

substantially faster than the QR, based on an order n^ count of

floating point arithmetic operations, and is essentially stable. If

this comparison held in actual executions of these two algorithms, and

if the PLU provided convergence on most matrices, we would have a strong

case for using the PLU instead of QR.

In actual timings of the algorithms on test matrices, the PLU

algorithm did not yield as substantial a savings as was predicted by this

traditional operation count. We study this anomaly here. A complete order

2a count of all operations predicted results closer to those observed, but

still were considerably off. The number of iterations required for the two

methods, however, were comparable for each of the matrices tested.

The LU algorithm failed on some matrices, as predicted by the convergence

theory. The PLU algorithm never failed on the matrices tested.

Eigenvalues found by the PLU and QR algorithms were of equivalent

accuracy.

Key Words: Eigenvalues.- LR and QR. Operation Counts. Timings.

1. Introduction

The eigenvalues of matrices are useful in many disciplines. A need

has arisen, therefore, for methods with which to determine eigenvalues

quickly and accurately.

In 1959 Rutishauser presented the LR (we will refer to it in this

papaer as LU) method which utilizes a sequence of triangular decompositions

of the matrix using elementary transformations. In 1961 Francis introduced

the QR method which uses unitary triangular transformations [7].

By restricting ourselves to real matrices of Hessenberg form (Martin

and Wilkinson present stable methods for reduction to Hessenberg form [3]),

we can consider very fast variants of these methods: the double LU and double

QR methods.

2
Each iteration of the double LU method requires 2n multiplications,

2
while the double QR requires 5n multiplications per iteration (see

Section 4). It has been suggested by Wilkinson that the number of iterations

required for the LU method is consistently more than for the double QR

[8].. Parlett and Wang have suggested that operation counts (particularly

only of multiplications) may not be adequate in considering differences

in running times of algorithms [6].

The LU method has stricter requirements for convergence, and is

unstable. To eliminate stability problems, interchanges are introduced at

each double step, to form the PLU method. Little is known about the con

vergence of this method (see Section 2). On the other hand, more is known

about the convergence of the QR method (see Section 2).

With these ideas in mind, I have set out to consider three questions:

-2-

1. What is the difference in the number of iterations of the

three algorithms?

2. What is the difference in the timing of the three algorithms?

3. How often do the LU and PLU algorithms fail?

2. Theoretical Presentation

We are considering methods which produce a sequence of similar matrices

which usually tend to a form from which the eigenvalues may be recovered

easily. In the case we are considering we have real matrices with possibly

complex eigenvalues. Our methods will tend to block triangular form with

1x1 and 2x2 blocks on the diagonal corresponding to real eigenvalues and

complex conjugate pairs [4].

The QR method produces a sequence of unitarily similar matrices. The

LU method use elementary transformations. The PLU method introduces pivoting

at each step in the LU algorithm.

In the following discussion, convergence refers to convergence to block

triangular form, since the elements above the diagonal do not necessarily

converge. For our methods, however, this essential convergence gives the

eigenvalues in a convenient form.

For the basic LU algorithm (no origin shifts), convergence has been

shown for A=Udiag (1^^, I2, ...» 1^) U^ if we have eigenvalues of
distinct modulus, and if both U and U^ have LU decompositions [4].

This method can fail if at some point we cannot continue the triangular

decomposition. The method is also unstable (division by small elements may

lead to element growth) [8].

-3-

Introduction of interchanges at each step, as is done with triangular

decomposition, takes care of both of these problems. Unfortunately, inter

changes may continue after many steps, and convergence cannot be guaranteed

[8].

The basic QR method converges when the eigenvalues are of distinct

modulus [4].

We now note that the Hessenberg form is invariant under all three

methods, and that if a matrix is real, it remains real under each of the

three methods [8]. This has a significant impact on computation.

Shifts of origin may be introduced at each step. If chosen properly

they improve convergence rates. In particular, this leads us to the double

QR, LU and FLU methods. These involve combining two successive steps using

shifts corresponding to the eigenvalues of the bottom 2x2 matrix on the

diagonal. This retains real Hessenberg form and decreases the number of

operations in each iteration [8].

The convergence theory of LU with shifts is limited. Parlett has

shown convergence in a special case with restrictions on the shifts. These

restrictions are not reasonable computationally [4].

A little more is known for the QR algorithm [5]: for symmetric

matrices, with shifts by a , we have convergence almost always.
nn

In the normal, non-symmetric case, Buurema has shown convergence

almost always with the standard double shift strategy [5].

There exists a k^ such that if we change from no shift to the usual

shift at the k^ step we will always have convergence. However, k^ cannot

be estimated a priori.

-4-

We have, therefore, a convergence theory which is not nearly complete.

We know very little about the PLU method.

3. Environment

The programs (see Appendix C) were patterned after the QR algorithm

in the Eispack Library [2], All programs were written in Fortran. The

eispack balancing and reduction routines (BALANC and ELMHES) were used to

reduce the test matrices to Hessenberg form (3,6).

The programs were run on a CDC 6400 using the RUN compiler and FTN 3.0,

an experimental optimizing compiler provided by CDC (1971). The 6400 uses

a 60 bit floating point word.

The programs were also run on an IBM 360/50 using the H compiler. Short

words (32 bits floating point) were used.

Finally, the programs were run on a Honeywell 437. This machine uses

a 48 bit floating point word.

See Appendix A for instruction execution times.

4. Iterations

Table 1 demonstrates that in the special matrices used, the number of

iterations is quite comparable for the three methods. In some cases as many

as 19 iterations were required to find a single eigenvalue, however, later

eigenvalues took fewer iterations. We ended up with an average in each

matrix from one to three iterations per eigenvalue. In the case of random

matrices on the CDC 6400, the PLU method required 10 to 30% more iterations.

This oversimplifies the situation, because iterations at the beginning

will take more time than iterations near the end (when the matrix being

-5-

transformed Is smaller). There did not appear to be any trend, with one

method consistently requiring more, or fewer iterations with larger n.

These results are rather surprising. For positive definite matrices

one QR step yields the same matrix as two LU steps (no shifts).

Since the number of iterations required varies in most cases less than

10%, and at worst by 35%, it is reasonable to evaluate the number of

operations in one iteration in order to obtain an estimate of relative

execution times.

5. Operation Counts

Each of the three methods being evaluated transforms a Hessenberg

matrix into another Hessenberg matrix, in an attempt to deflate it. We will

evaluate here the number of operations involved in one iteration (one of

these transformations).

It has been traditional in considering operation counts to evaluate

only multiplications, and perhaps additions. Since we are going to give a

more detailed account later, we quote here the standard multiplication counts

(nxn matrix) [8]:

2
Double LU 2n

Double PLU 2n^
2

Double QR 5n

There are, however, many machines where the execution times of the

arithmetic operations are not significantly longer than other operations.

Also, Parlett and Wang have suggested that different compilers will affect

the comparative timings of algorithms [7]. For these reasons I have done

-6-

TABLE 1

ITERATIONS - CDC 6400

Order HLU HPLU

12 0 0 0 a

12 13 14 b 13

12 14 14 14

12 12 13 13

12 (5.8 & 5.4) 16 15 17 e

12 (5.5 & 5.4) 16 15 15 e

15 (5.20) 16 15 15 e

15 (5.21) 21 c 31 e

15 (5.22) 41 c 41 e

18 (5.12 & 5.1) 44 48 44 de

20 (5.23) 33 60 b 26 e

24 39 36 41

59 87 c 89

RANDOM MATRICES

25 43 49 58

25

50

50

50

89

87

111

109

118

96

a. All eigenvalues isolated by BALANC.
b. Norm very large, eigenvalues not even agreeing to 1 decimal place.
c. HLU broke down.

d. Triple eigenvalues agreement to only 5 decimal places.
e. Reference to example number in Gregory and Karney [1].

the operation counts for the methods, as compiled for the four compilers used,

and considered actual timings of operations.

2
Detailed Order n Count

2
In considering an order n operation count, we need only count the

Inner loops In the routines. In the QR and LU algorithms we have first a

DO loop which modifies rows M through EN (Loop 1) (see Figure 1), and second

a DO loop which modifies columns L through EN. In the PLU algorithm we add

a DO loop which Interchanges two rows of the matrix (Loop 3), and one which

Interchanges two columns of the matrix (Loop 4).

In the following calculations, n Is the dimension of the matrix being

transformed, and we assume L=M (n = EN-L + l = EN-M + l) (see Figure 1).

For an operation which Is executed once In a tjrplcal Iteration of Loop 1,

we have:

n2 ^
~ plus two times the number of occurrences In each of the

last two steps.

For an operation which Is executed once In a typical occurrence of

Loop 2, we have:

^2
(~ +3^-6) plus n times the number In the last step.

Loops 3 and 4 correspond to Loops 1 and 2 respectively.

.2
For an li evaluation we need only consider the number of steps Involved

In a typical Iteration. See Table 2 (summary of Appendix D).

-a-

FIGURE 1

VARIABLES

X X X X X X X X X X

X X X X X X X X X X

0 X X X X X X X X X

0 0 a X X X X X X X

0 0 0 X X X X X X X

0 0 0 0 b X X X X X

0 0 0 0 0 c X X X X

0 0 0 0 0 0 X X X X

0 0 0 0 0 0 0 0 X X

0 0 0 0 0 0 0 0 X X

a small compared to A(3,3), A(4,4)

b, c small compared to A(5,5), A(6,6), A(7,7)

L'. = 4 .

M = 6

EN = 8

^9-

TABLE 2

SUMMARY OF OPERATION COUNTS

CDC 6400 FTN

QR

1223

nminor cycles times y

100

LU

613

%

50

2
nCDC 6400 RUN minor cycles times y

QR

27S2

IBM 360/50 H

QR

444.56

Honeywell 437

% LU %

100 1604 58

2

microseconds times y

% LU %

100 225.66 51

^2
microseconds times y

QR %

1916.6 100

LU

974.0

%

51

-TO-

PLU

797

PLU

2567

%

65

%

92

PLU %

289.91 65

PLU %

1654.4 86

Predicted by
Multiplication
Count

%

40

%

40

%

40

40

Note that the percentage of the execution time attributed to floating

point multiplies varies from less than 10% of the total for the Honeywell 437,

to 37% for the FTN compiler on the CDC 6400.

The CDC computer does not have a fixed point multiply. The FTN

compiler does array subscripting by updating previous accesses using

additions. The RUN compiler requires additional floating point multiplies

in the inner loops.

In the PLU algorithm, I am assuming that interchanges will be required

during each iteration. If there is no interchange, the n^ operation
count reverts to the LU algorithm count.

These operation counts suggest that rather than the traditional ratios

for LU or PLU to QR, we get the values in Table 2.

Order n Operation Count

The FTN compiler on the CDC 6400 does a large amount of the work for

array subscripting outside the loop generated to represent a DO loop. For

that reason I have chosen to do an order n operation count for this compiler,

in the hopa of gaining a better estimate of execution time.

The first loop within an iteration of each of the three methods is

identified in the tables, (see Appendix E), as 80 (since it is the body of

the statement "DO 80"). It finds the first "small" subdiagonal element. This

determines the value of "L". Each instruction in this loop is executed EN - L

times.

The next loop, 140, finds two consecutive relatively small elements,

and determines the value of "M". Each instruction in this loop is executed

EN - M - 2 times.

-11-

The final loop is the one which actually does the transformation

(QR = 260, LU and PLU = 300). It includes the initialization for inner

loops, 1, 2, 3 and 4 described in the previous section. Each instruction

in these loops is executed EN - M - 2 times. The inner loops 1 and 3

are executed ((™)' + (™)) tl^es.
The inner loops 2 and 4 are executed

2 2

(~ +I" EN-L*EN-Hl*L+L-4- times.

In loops 2 and 4, we have an additional EN + 1 - L iterations of the sub-

loop executed when K = EN - 1 (which occurs at the end of the loop 260 (or

300)).

I include a computation with N=25,L=M=1. For one iteration

on this matrix we see that the order n contribution is about one third of the

total. This suggests that, particularly for smaller submatrices, the order

n contribution will be significant. The formulas suggest further, that if

L and M are much bigger than one, the execution times will be significantly

changed. (Notice that this appears to be more sensitive to M.)

6. Results

As can be seen by looking at Table 23 (Appendix F), the percent of time

required fOr LU as opposed to QR using FTN, varies between 48% and 76%. The

percent required for PLU as opposed to QR varies between 60% and 82%.

Table 24 shows a range of 46% to 97% for LU as opposed to QR using FTN.

The percent for PLU as opposed to QR varies between 62% and 93%.

Even the operation counts do not suggest this difference. We first note

-12-

that the number of iterations is about comparable for each matrix, although

a potential source of difference is the number of iterations at each n

(see section 4), or the values of L and M (see section 5).

Fitting cubics to the values for random matrices on the CDC

6400, we get:

QR RUN

.090n^ - .283n^ + 56.3n - 379.

FTN

.035n^ - .071n^ + 33.8n - 314.

PLU RUN

.114n^ + .327n^ + 51.7n - 511.

FTN

.056n^ - .708n^ + 51.7n - 378.

2
Both compilers yield high n and n coefficients.

-13-

TABLE 3

Summary of table for order n

minor cycles

Loop Times QR LU BLU

80 EN-L 649 649 649

140 EN-M-2 2131 2131 2131

160 EN-M-2 135 135 135

230 (300) EN-M-2 3436 2104 3900

1 , 3)2 +

609 309 401

264 ^ - L*EN4M*L+L-4- p- -
614 304 396

2 & 4 EN+l-L 396 183 267

-14-

TABLE 4

Sample Evaluation of Order n Counts

Loop

80

140, 160,

260, (300)

1 & 3

2 &4 (n^)

2 &4 (n^)

Total

EN=25 M=1 L=1

minor cycles

gR ML

15576

125444

197925

211216

9900

560061 100%

15576

96140

100425

106296

4575

323012 58%

-15-

PLU

15576

135652

130325

136224

6675

424452 76%

2
It appears that an order n operation count may be inadequate,

and perhaps a large order n component cannot be ignored. Further, even

an order n operation count involves so many assumptions, that it is

inadequate.

Whereas the previous evaluations suggested a timing of 40% for LU,

or PLU compared to QR: I have proposed about 51% and 66% respectively,

using FTN, or 58% and 93%, using RUN. However, the values for actual

observations are about 64% for LU and 70% for PLU, and 65% and 74%, using

RUN.

7. Failure

It is known that the LU algorithm can break down, and is unstable,

and we question convergence in the PLU algorithm. How did these problems

manifest themselves in actual runs?

The LU algorithm failed in four matrices due to break down in the

algorithm. In two other cases the LU algorithm gave results which didn't

even agree to one decimal place with the results of QR and PLU. In these

two cases, observing the following norm - square root of the sum of the

squares of the elements - , we noted an increase of several orders of

magnitude in norm during execution.

In all but one other case we had agreement to 10 decimal places

(relative to the largest eigenvalue). In that one example we had a triple

eigenvalue, and had an agreement of 5 decimal places, which is as good as

can be hoped for (cube root of round off error) [8].

in-

8. Conclusions

The evaluation of the QR, LU and PLU methods in a practical

investigation has produced some interesting results, and posed new

questions.

I have found that the number of iterations required for the three

methods are about the same on each of the matrices considered.

With an operation count (based on the generated code from the FTN

3.0 compiler) we expect ratios of 51:100 for LU:QR and 66:100 for PLU:QR

in timing. These values are probably impossible to predict, and vary

from compiler to compiler (in particular, they are quite different using

the RUN compiler or on an IBM 360/50 or Honeywell 437). They are

significantly different from the values predicted by considering only

multiplications and additions. By investigating, we see that the average

of actual comparisons are 64:100 for LU:QR and 70:100 for PLU:QR. (The

expected values based on operation counts, and the actual values using a

non-optimizing compiler were less favorable for LU and PLU.)

The failure for LU was as predicted. The PLU algorithm (which has

little convergence theory) never failed on the matrices tested.

-17-

APPENDIX A

Instruction Execution Times

CDC 6400

IBM 360/50

Honeywell 43/

-18-

Instruction Execution Times

CDC 6400

Ten minor cycles are performed in 1 microsecond.

Operation Minor Cycles

Fetch 12

Store 10

Compare branch 13

no branch 5

Integer add 5

Floating add 11

Floating multiply 57

Floating divide 57

Boolean operation 5

Normalize 7

Pack 7

Unpack 7

Count 68

Integer add (a) '6

Increment 6

Shift 6

Return jump 21

No op 3

-19-

Instruction Execution Times

IBM 360/50

Arithmetic timings are average values.

Operation Microseconds

Load LR 2.5

Load (short) LE 4.0

Load (short) LER 2.75

Load L 4.0

Load Complement LCER 3.75

Store (short STE 4.0

Add A 4.0

Add Normalized AE 8.73

Add Normalized AER 7.97

Add AR 3.25

Subtract SR 3.25

Subtract Normalized SER 8.75

Multiply ME 21.5

Multiply MER 20.75

Compare no branch BXLE 4.5

branch 5.5

Compare branch BC 3.0

Compare C 3.25

-20-

Instruction Execution Times

Hone3rwell 437

Times for arithmetic operations are average Limes

Operations

Store

Load

Add

Multiply

Compare

Branch

Exchange A-Q

Shift binary

Index

Index Pointer

floating

fixed

floating

fixed

floating

fixed

floating

fixed

fixed

greater

unconditional

zero

-21-

Microseconds

8.4

5.6

8.4

5.6

12.25

5.6

17.85

15.05

5.6

2.8

2.8

5.6

2.8

4.55

2.8

5.6

APPENDIX B

Test Matrices

-22-

Two different sets of matrices were used. The first were specific,

predetermined matrices. Some of these were taken from Gregory and Karney [1],

These have been identified in the tables. These matrices were only used on

the CDC computer.

The second set of matrices are matrices with randomly generated elements

The order of these matrices vary on the different computers considered, due

to memory considerations.

-23-

APPENDIX C

Programs

HQR (From the Eispack Library NATS Project

Argonne National Lab., Illinois 60440)

HLU (Omitted)

HPLU (Listing Given)

-24-

SUBROUTINE HPLU(NM, NRt LOW t IGH, H, t WI, I ERR)
REAL H(NM,NM),WRINM),WI(NM)
INTEGER EN
INTEGER ENM2

LOGICAL NUTLAS
"real MACHtP" ~

C THIS SUBROUTINE FINOS THE EIGENVALUES OF A REAL
C UPPER HESSENBERG MATRIX BY THE LU METHOD.
C ON INPUT-
C NM MUST BE SET TO THE ROW DIMENSION OF TWO DIMENSIONAL
C_ ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C" ' " ' "DrMENSICN STATEMENT,.
C N IS THE ORDER OF THE MATRIX
C LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING
C SUBROUTINE BALANC. IF BALANC HAS NOT BEEN USEt
C SET L0W=1, IGH=N,
C H CONTAINS THE UPPER HESSENBERG MATRIX. INFORMATION ABOUT_

"C THE TRANTF0RJ1ATI0"n~'USED""IN THE REDUCTION TO HESSENBERG
C FORM BY ELMHES OR ORTHESf IF PERFORMEDt IS STORED
C IN THE REMAINING TRIANGLE UNDER THE. HESSENBERG MATRIX.
C ON OUTPUT-
C H HAS BEEN DESTROYED. THEREFORE, IT MUST BE SAVED
C BEFORE CALLING HQR IF SUBSEQUENT CALCULATION AND
C BACT'TRANSFORMAf iON OF EIGENVECTORS IS TO B"E PERFORMED,
C WR AND WI CONTAIN THE REAL AND IMAGINARY PARTS,
C RESPECTIVELY, OF THE EIGENVALUES. THE EIGENVALUES
C ARE UNORDERED EXCEPT THAT COMPLEX CONJUGATE PAIRS
C OF VALUES APPEAR CONSECUTIVELY WITH THE EIGENVALUE
C HAVING_.THG POSITIVE IMAGINARY PART FIRST. IF AN... . error' ExTt'TS MADITthE eigenvalues SHOULD BE CURRECT

C FOR INDICES IERR+1,...,N,
C lERR IS SET TO
C ZERO FOR NORMAL RETURN,
C J IF THE J-TH EIGENVALUE HAS NOT BEEN
C DETERMINED AFTER JO ITERATIONS.
C MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING
C THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC^

MACHEP=2.««(-47)

IERR=0
C STORE ROOTS ISOLATED BY BALANC

00 50 I=1,NR
IF(I.GE.LOW.AND.I.LE.IGH) GO TO 50
WR(I}=H(I,I}
Wit I)=0.0

50 CONTINUE
EN=IGH

1=0.
FOR NEXT EIGENVALUES

60 IFIEN.LT.LCWJ GO TO 1001

ITS=0

NA=EN-1

ENM2=NA-1

LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT

-25-

FOR L=EN STEP -1 UNTIL LOW DO —
70 CQMTINUE

00 80 LL=LCW»bN
L=EN + LOW - LL

—il (AB SI iVrL a-1? ^^ '
+ ABS(H(LtL)))) GO TO 100

80 CCNTINUE
FORM SHIFT

100 X=H(EN»hNj '
IF (L . EO - EN) ..GO_,TG . 37_?_ —
YsH(,NA,NA)
W=H(EN»NA) * H(NAtEN)
IFIL.EQ.NA) GO TO 380
IF(ITS.EQ.30) GO TO 1000
IFIITS.NE.IO.ANO.ITS.NE.20) GO TO

FXr.FPTICNAL SHIFT *«»»»»»»»»

T=T + X

DO 120 I=LOWfEN
1?0 H(11 I) = H(IfI) - X

S=ABS(H(ENfNA)) + ABS(H(NA»ENM2))
X=,75»S
Y=X _ -—
-^_O.A3 7 5 « S*S

130 CONTINUE

C FOR TWO CONSECUTIVE SMALL
C SUB-DIAGONAL ELEMENTS.
C _ FOR H=EN-2 STPP -I UNTIL L DO "

iio"'1VO MM=Lt EN M2
M=ENM2 <• L -MM
ZZ=H(M,M)
R=X-ZZ
S=Y-ZZ

P= <R*S ^ ^^^ H(MtM-H) — —
Q=H(T+iTM+l) -ZZ -R -S
R=H(M+2,M+1)
S=ABS(P) + ABS(Q) + ABS(R)
P=P/S

Q=Q/S
R-R/S

140 CONTINUE
150 CCNTINUE

MP2=M4-2

00 160 l=MP2fEN
H(I,I-2)=0.
IF(I.E0.MP2) GO TO 160
H(ItI-3)=0.

DOUBLE LU STEP INVOLVING ROWS L TO EN AND

-26-

COLUMNS M TO EN
DO 300 K=M,NA

NGTLAS=K.NE.NA
J~MIN0(EN,K+3)
IF(K.EO.M) GO TO 170

P=H{K,k-r)
Q=H(K+l,K-l)
R=0,0

IF(NOTLAS) R=H(Kf2,K-l)
X=ABS(P) ABS(O) + ABS(R)

IFCX.EQ.O.OJ GO TO 300
P=P/X

Q=Q/X

170 CONTINUE
c determine pivot

IPIV=0

P2=ABS(P)

Q2=ABS(0)

IF(P2,GE.Q2) GO TO 195
P2=Q2
P3=Q

IPIV=1

195 R2=ABS(R)

IF(P2-GE,R2) GO TO 197
P3=R
R=P

IPIV-2
197 IF(IPIV.EQ.O) GO TO 610

IFdPIV.EU.I) Q=P

P«P3

IPIV2=IPIV ♦ K
IF(K.NE.M) H(K,K-l)=H(IPIV2,K-1)

INTERCHANGE ROWS K AND IPIV2
00 501 I=K,EN
TEMP-H(IPIV2tI)
HlIPlV2,I)aH(K,n
H{K,n = TEMP

501 CONTINUE
C • INTERCHANGE COLUMNS K AND IPIV2

DO 601 I=L»J
TEMP=H{I»IPIV2)
H(I,IPIV2»=H(I,K)
Hi UKIsTEMP

601 CONTINUE

610 CONTINUE

IFiP.EQ.O.) GO TO 300
0=^0/?
R=R/P

ROW modification

DO 210 I«K«EN
p^HiK.n
IFi.NOT,NOTLAS» GO TO 200

-26a-

H(K+2,I)=HU+2f I I ~R*P
200 HiKfl, I }=H(K4-1, n -J*P
210 CCNTINUe

COLUMN MaOIFICATION
1^0 200 I=L,J
P=Q*H(I,K+1)

IF(.MUT.NGTLAS) GfJ TO 220
P=P ♦ R«H(I,K+2)
H(I,K)=M(I,K) + P
CONTINUE

CCNTINUE__ _
GO "to 70

QjyjC

WR{EN)=X + T

WI(EN)=0.
EN«NA

GO .TO 60 _
♦ TWO ^ Found
CONTINUE
P=(Y-X)/2.
0=p«p + w

ZZ=SQRT(AaS(Q))
X=X + T

IFIQ.'LT.O. FgO to 420
REAL PAIR

ZZ=P ♦ SIGNIZZ.P)
WR(NA|=X ^ iZ

.WRCEN)=WR(NA)
LFi^i.NCip^O) WR(EN)=X-W/ZZ
WnNA) = 0.
WI(EN)»0.
GO TO 430

COMPLEX PAIR
420 WR(NA)-X^P

WR(EN)=:X ♦ P

220

230

300

370

380

430

1000

1001

WI(NA)=ZZ

MI(EN)=-ZZ
CONTINUE
EN«ENM2
GO TO 60

ieRK=EN
RETURN
;^4c4i4[4t44>4t4i<0(

END

ROUT FOUND

SET ERROR — NO CONVERGENCE TO AN
EIGENVALUE AFTER 30 ITERATIONS

LAST CARD 3F HPLU

APPENDIX D

• 2
Ordier n Operation Counts

-28-

TABLE 5

QR - Operation Counts

FTN

Operation Loop 1

Number Cycles
Loop 2

Number Cycles

fetches 13 156 13 156

Boolean 1 5 1 5

stores 5 50 5 50

integer adds 1 5 2 10

compare branch 1 13 1 13

no branch 1 5 1 5

multiplies 5 285 5 285

adds 5 55 5 55

normalize 5 35 5 35

This gives
, ^ 1223 2a total of -"'2 iiL minor cycles.

RUN

Operation Loop 1

Number Cycles
Loop 2

Number Cycles

fetches 27 32A 32 384

Boolean 10 50 5 25
•5

stores 7 70 6 60

integer adds 17 85 17 85

compares branch 1 13 1 13

no branch 1 5 1 5

-29-

Table 5 Continued

RUN

Operation Loop 1

Number Cycles
Loop 2
Number Cycles

multiplies 8 456 11 627

adds 5 55 5 55

normalize 5 35 5 35

integer add (a) 1 6 1 6

pack 6 42 12 84

increment 5 . 30 16 96

count 1 68 1 68

This give a total of
2782 ^2 cycles.

-30-

TABLE 6

LU - Operatipn Counts

FTN

Operation Loop 1

Number Cycles
Loop 2

Number Cycles

fetches 8 96 8 96

Boolean 2 10 1 5

stores 3 30 3 30

integer adds 1 5 1 5

compares branch 1 13 1 13

no branch 1 5 1 5

multiplies 2 114 2 114

adds 2 22 2 22

normalize 2 14 2 14

This gives a total of
613 2 . .—^ n minor cycles •

RUN

Operation Loop 1

Number Cycles
Loop 2

Number Cycles

fetches

Boolean

stores

Integer adds

compares branch

no branch

multiplies

adds

15

6

6

8

1

1

5

2

180

30

60

40

13

5

285

22

-31-

17

4

4

9

1

1

5

2

204

20

40

45

13

5

285

22

Table 6 Continued.

RUN

Operation

normalize

integer adds (a)

pack

increments

counts

Loop 1

Number

This gives a total of

Cycles

14

42

24

68

Loop 2

Number

1604 2 ^ T- n minor cycles.

-32-

Cycles

14

42

63

68

TABLE 7

FTN

Operation Loop 1

Number Cycles
Loop 2

Number Cycles

fetches 2 24 2 24

Boolean 3 15 3 15

stores 3 30 3 30

integer adds 2 10 2 10

compares branch 1 13 1 13

This gives a total (with total from Table 2) of ^ n^ minor

RUN

Operation Loop 1

Number Cycles
Loop 2
Number Cycles

fetches 9 108 7 84

Boolean 5 25 4 20

stores 5 50 4 40

integer adds 10 50 10 50

compares branch 1 13 1 13

multiplies 2 114 4 228

integer adds (a) 2 12 2 12

packs 4 28 8 56

increment 4 24 6 36

This gives a total (with total from Table 6) of tl" minor cycles.

-33-

Operation

LR

LE

LER

LCER

STE

A

AE

AER

AR

SR

SER

ME

BXLE branch

no branch

TABLE 8

QR - Operation Counts

360/50 H Compiler

Loop 1

Number

2

2

5

2

3

2

3

1

2

1

1

5

1

1

Microseconds

5.

8.

13.75

7.5

12.

8.

26.19

7.97

6.5

3.25

8.75

107.5

5.5

4.5

Loop 2
Number

2

3

4

2

3

444.56 2
This gives a total of r— n microseconds

-34-

Microseconds

5.

12.

11.

7.5

12.

17.46

15.94

9.75

3.25

8.75

107.5

5.5

4.5

Operation

L

LR

LE

LER

LCER

STE

AE

AER

AR

SR

ME

MER

BXLE branch

no branch

C

BC

TABLE 9

LU - Operation Counts

360/50 H Compiler

Loop 1

Number

1

2

1

2

2

2

2

5

1

1

1

1

1

1

Microseconds

4.

5.

4.

5.5

7.5

8.

17.46

16.25

3.25

21.5

20.75

4.5

3.25

3.

Loop 2
Number

225 66 2
This gives a total of 5— n microseconds

-35-

Microseconds

5.

8.

2.75

4.

8.73

7.97

8.75

3.25

21.5

20.75

5.5

4.5

Operation

LR

LE

STE

AR

BXLE branch

TABLE 10

PLU - Operation Counts

360/50 H Compiler

Loop 3
Number Microseconds

Loop 4
Number Microseconds

2.5

8.

8-

9.75

5.5

2.5

8.

8.

6.5

5.5

289.91 2
This gives a total (with total from Table 9) of ——| n microseconds

-36-

TABLE 12

LU - Operation Counts

Honeywell 437

Operation Loop 1

Number Microseconds

Loop 2

Number Microseconds

Store Floating 7 58.8 4 33.6

Fixed 11 61.6 9 50.4

Load Floating 7 58.8 4 33.6

Fixed 13 72.8 11 61.6

Add Floating 2 24.5 2 24.5

Fixed 12 67.2 9 50.4

Multiply Floating 2 35.7 2 35.7

Fixed 5 75.25 4 60.2

Cmpare Fixed 1 5.6 1 5.6

Branch Greater 1 2.8 1 2.8

Unconditional 1 2.8 1 2.8

Zero 2 11.2 2 11.2

Exchange A-Q 5 14 4 11.2

Shift Binary 5 22.75 4 18.2

Index 3 8.4 4 11.2

Index Pointer 3 16.8 4 22.4

This gives a total of n^ microseconds

-37-

TABLE 11

QR - Operation Counts

Honeywell 437

Operation Loop 1

Number Microseconds

Loop 2

Number Microseconds

Store Floating 12 100.8 11 92.4

Fixed 19 106.4 19 106.4

Load Floating 12 100.8 11 92.4

Fixed 21 117.6 21 117.6

Add Floating 5 61.25 2 24.5

Fixed 20 112. 17 95.2

Multiply Floating 5 89.25 5 89.25

Fixed 9 135.45 9 135.45

Compare Fixed 1 5.6 1 5.6

Branch Greater 1 2.8 1 2.8

Unconditional 1 2.8 1 2.8

Zero 2 11.2 2 11.^

Exchange A-Q 9 25.2 9 25.2

Shift Binary 9 40,95 9 40.95

Index 6 16.8 9 25.2

Index Pointer 6 33.6 9 50.4

This gives a total
. 1916.6

2
n^ microseconds

-38-

TABLE 13

PLU - Operation Counts

Honeywell 437

Operation Loop 3

Number Microseconds

25.2

50.4

25.2

50.4

50.4

60.2

5.6

2.8

2.8

11.2

18.2

11.2

22.4

Store Floating 3

Fixed 9

Load Floating 3

Fixed 9

Add Floating

Fixed 9

Multiply Floating

Fixed 4

Compare Fixed 1

Branch Greater 1

Unconditional 1

Exchange A-Q 4

Shift Binary 4

Index 4

Index Pointer 4

Loop 4

Number

3

9

2

9

Microseconds

25.2

50.4

25.2

50.4

50.4

60.2

5.6

2.8

2.8

11.2

18.2

11.2

22.4

This gives a total (with total from Table 12) of n^ microseconds

-39-

AloPENDIX E

Order n Operation Counts

FTN Compiler

-40-

Instruction

Fetch

Store

Compare no branch

branch

Integer add

Floating add

Floating multiply

Boolean

Normalize

Pack

Integer add (a)

Increment

Mask

Shift

No op

TABLE 14

Order n 80

Number

15

3

2

1

1

2

4

7

2

4

8

1

1

3

2

For a total of 649 minor cycles

-41-

Minor Cycles

180

30

10

13

5

22

228

35

14

28

48

6

6

18

6

Instruction

Fetch

Store

Compare no branch

branch

Floating add

Floating multiply

Boolean

Normalize

Pack

Integer add (a)

Mask

Shift

Increment

TABLE 15

Order n 140

Number

43

10

2

1

13

16

22

15

12

11

1

10

1

For a total of 2131 minor cycles

-42-

Minor Cycles

516

100

10

13

143

912

110

105

84

66

6

60

6

Instruction

Fetch

Store

Compare no branch

branch

Integer add

Integer add (a)

Boolean

Mask

Increment

TABLE 16

Order n 160

Number

For a total of 135 minor cycles

-A3-

Minor Cycles

36

30

5

13

10.

18

5

12

6

Instruction

Fetch

Store

Compare no branch

branch

Integer add

Floating add

Floating multiply

Boolean

Normalize

Pack

Integer add (a)

Mask

Shift

No op

Increment

Square root

TABLE 17

Order n 260-QR

Number

56

19

5

1

15

5

22

19

5

16

28

5

6

8

9

1

For a total of 3436 minor cycles

-44-

Minor Cycles

672

190

25

13

75

55

1254

95

35

112

168

30

36

24

54

598

Instruction

Fetch

Store

Compare no branch

branch

Integer add

Floating add

Floating multiply

Boolean

Normalize

Pack

Integer add (a)

Mask

Shift

No op

Increment

TABLE 18

Order n 300-LU

Number

46

13

4

1

16

4

14

15

4

14

25

5

4

5

8

For a total of 2104 minor cycles

Minor Cycles

552

130

20

13

80

44

798

75

28

98

150

30

24

15

48

TABLE 19

Order n 300-PLU

Instruction Number Minor Cycles

Fetch 84 1008

Store 24 240

Compare no branch 7 35

branch 3 39

Integer add 22 110

Floating add 6 66

Floating multiply 26 1482

Boolean 31 155

Normalize 6 42

Pack 27 189

Integer add (a) 48 288

Mask 9 72

Shift 7 42

No op 10 30

Increment 17 102

For a total of 3900 minor cycles

-4ft-

Instruction

Fetch

Store

Boolean

Integer add

Compare no branch

branch

Floating multiply

Floating add

Normalize

TABLE 20

Loop 2 Order n

QR

Number

9

3

1

2

1

1

3

3

3

For a total of 396 minor cycles

Instruction

LU

Number

Fetch 5

Store 2

Boolean

Integer add

Compare unsuccessful

successful

Floating Multiply

Floating add

Normalize

For a total of 183 minor cycles

-47-

Minor Cycles

108

30

5

10

5

13

171

33

21

Minor Cycles

60

20

5

5

5

13

57

11

7

Instruction

Fetch

Store

Boolean

Integer adds

Compare no branch

TABLE 21

Loop 4 Order n-PLU

Number

. For a total (with Loop 2) of 267

-48-

Minor Cycles

24

30

15

10

5

TABLE 22

Square Root Subroutine-SQRT

(Time for one call)

Instruction

Fetch

Boolean

Integer add

Compares no "branch

branch

Floating multiply

Floating add

Integer add (a)

Floating divide

Increment

Normalize

Pack

Shift

Unpack

Return Jump

Number

5

1

6

2

2

3

7

1

2

2

3

2

4

1

1

For a total of 598 minor cycles

-49-

Minor Cycles

60

5

30

10

26

171

77

6

114

12

21

14

24

7

21

APPENDIX F

-50-

TABLE 23

Timings (in Milliseconds) FTN

Order HQR % HLU % HPLU
Time Time Time

12 3 100 3 3 a

12 123 100 85 69 88 72

12 143 100 87 62 91 64

12 142 100 99 70 103 73

12 (5.8 X 5.4) 204 100 123 60 145 71 e

12 (5.5 X 5.4) 162 100 98 60 104 64 e

15 (5.20) 158 100 98 62 103 65 e

15 (5.21) 525 100 5 c 350 67 e

15 (5.22) 681 100 5 c 523 77 e

18 (5.12 X 5.1) 623 100 300 48 402 65 de

20 (5.23) 720 100 438 b 61 460 64 e

24 444 100 273 61 333 75

59 6703 100 783 e 4329 65

Random Matrices

12 237 100 124 52 142 60

25 1247 100 808 65 948 76

25 1441 100 1095 76 1126 78

50 7636 100 5614 74 6284 82

50 7193 100 5219 73 4296 68

100 53539 100 34497 c 37616 70

(See Table 1 for references)

-51-

TABLE 24

Timings (in milliseconds) RUN

Order HQR

Time

% HLU

Time

% HPLU

Time

%

12 3 2 3 a

12 213 100 145 68 156 73

12 256 100 153 60 159 62

12 257 100 173 67 184 72

12 (5.8 X 5.4) 361 100 213 59 253 70 e

12 (5.5 X 5.4) 284 100 165 58 177 62 e

15 (5.20) 286 100 179 63 182 64 e

15 (5.21) 970 100 6 c 683 70 e

15 (5.22) 1294 100 5 c 1069 83 e

18 (5.12 X 5.1) 1171 100 535 46 774 66 de

20 (5.23) 1354 100 810 b 60 916 68 e

24 817 100 491 60 599 73

59 14158 100 1792 c 10099 71

Random Matrices

12 447 100 434 97 412 92

25 2771 100 1750 63 2261 82

25 2425 100 1815 75 2256 93

50 15748 100 10929 69 12422 79

50 18442 100 7781 c 13529 73

100 122221 100 83467 68 92382 76

(See Table 1 for references)

-52-

TABLE 25

Timings (in seconds) Honeywell 437

Order HOR

Time

% HLU

Time

% OTLU

Time.
%

25 .3 100 .2 67 .2 67

25 •3 100 .2 67 •2 67

50 2.0 100 c 1.4 70

50 1.9 100 1.1 58 1.4 74

75 6.3 100 3.6 57 ^•7 75

75 6.1 100 3.8 62 4.6 75

(See Table 1 for references)

-53-

TABLE 26

Timings (in seconds) IBM 360/50 H Compiler

Order HQR % % HPLU

Time Time Time

25 4.40 100 2.81 64 2.93 66

25 4.50 100 2.38 53 2.87 64

50 24.03 100 c 19.02 79

50 28.67 100 22.73 79 19.73 69

75 71.87 100 c 62.65 73

(See Table 1 for references)

-54-

BIBLIOGRAPHY

1. R.T, Gregory and D.L. Karney, A Collection of Matrices for Testing
Computational Algorithms, Wlley-Intersclence, New York (1969).

2. R.S. Martin, G. Peters and J.H. Wilkinson, The QR Algorithm for
Real Hessenberg Matrices, Number. Math. 14, 219-231 (1970).

3. R.S. Martin, and J.H. Wilkinson, Similarity Reduction of a General
Matrix to Hessenberg Form, Number. Math. 12, 349-368 (1968).

4. B.N. Parlett, The LU and QR Algorithms, Mathematical Methods for
Digital Computers, Vol. 2, A. Ralston and H. Wllf eds., John Wiley,
New York (1967).

5., B.N. Parlett, Certain Matrix Eigenvalue Techniques Discussed from
a Geometric Point of View, Research Group Report, United Kingdom
Atomic Energy Authority, Harwell, Berkshire (1973).

6. B.N. Parlett and C. Reinsch, Balancing a Matrix for Calculations
of Eigenvalues and Eigenvectors, Number. Math. 13, 293-304 (1969).

7. B.N. Parlett and Y. Wang, The Influence of the Compiler on the
Cost of Triangular Factorization, Computer Science Technical
Report 14, University of California, Berkeley (1973).

8. J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University
Press, London (1965).

9. Control Data 6400/6500/6600/6700 Computer Systems Reference Manual,
Control Data Corporation, St. Paul (1970).

10. Honejwell Series 400 Programmers Reference Manual, Honeywell
Information Systems, Inc., Wellesley Hills, Massachusetts (1970).

11. IBM System 360 Model 50 Functional Characteristics, International
Business Machines Corporation, New York (1971).

