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I. INTRODUCTION

A programming language becomes of value for the final specifi

cation of computer programs only when a translator or translators

for that language are constructed. The construction of practical

translators (assemblers, interpreters, compilers) is the main soft

ware concern of the computer system designer. The construction of

translators for sophisticated programming languages has become a

field of its own and formal procedures have been developed just as

in every other area of computer system design. The object of this

paper is to summarize the formal procedures for constructing trans

lators which utilize a computer to generate substantial portions of

the translators. The internal organization and logic of translators

(e. g. , compiling algorithms) are not the subject of this paper.

A general, but highly ideaLized solution to the problem of con

structing translators for a variety of programming languages and

machines was proposed in Ref. 1. The solution involved the use of a

hypothetical universal computer-oriented language called UNCOL.

The use of an UNCOL would allow all translators to be constructed so

that they produced the UNCOL language as output. Hence, each new

machine would require only an UNCOL to machine language translator.

Using a "bootstrap" procedure all existing translators which produced

UNCOL output could be implemented on the new machine as soon as

an UNCOL to machine language translator were available. Although

a generally accepted UNCOL has not been developed, the concept of

an intermediate language has been useful. Bootstrap methods have

been successfully applied in several major translator projects.

The term, "bootstrap" procedure was originally used to describe

a method by which a translator is used to translate its own source

language description; however, the term is now commonly used to de

scribe any procedure which uses an existing programming language

and translator to construct a new translator. The essence of any
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"bootstrap" procedure is that it is an attempt to minimize the amount

of programming required and the amount of human effort repeated in

each new translator project. This is the objective of the methods

discussed in this paper, and in that sense they can be called bootstrap

procedures. Each of the procedures described has proved to be of

value in the actual construction of one or more translators.

II. NOTATION

A. PROGRAMMING LANGUAGES

The capital letter L, appropriately subscripted, will be used to

represent a programming language. The subscripts m and n will

commonly be used to denote an executable machine language. For

example, FORTRAN and COBOL might be represented by L„ and "L-,

IBM 1401 machine language by L (m defined in the context to be the

IBM 1401).

B. TRANSLATORS

Symbolic machine language assemblers, macro expanders, com

pilers, and a variety of other translators all perform the task of trans

lating programs written in one language into equivalent programs

written in another language. In the following paragraphs the word

translator may refer to any of these various translator programs.

Three external characteristics of a translator which are necessary

to identify it are:

1) the language it accepts as input

2) the language it produces as output

3) the language in which it is described (the

language used to program the translator).

Item 3 is the consideration most often overlooked. A translator is

just a program and, of course, it can be described in any number of
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different programming languages. But it is just this fact which pro

vides many practical ways of generating translator programs. In fact,

the possible ways of constructing a given translator are so numerous

that it is necessary to use a formal notation in order to adequately de

scribe and demonstrate the construction procedures which are the sub

ject of this paper. Attempts to describe more than the simplest of

these procedures without the use of a formal notation usually result in

confusion and misunderstanding.

C. TRANSLATION OPERATIONS

The symbols for programs and translators defined below are iden-
2

tical to those introduced in Ref. 1. Bratman later introduced a diagram

for describing translation operations. The operational notation defined

below allows a concise description of multi-level translation operations.

Let

.Pm (1)

represent a program P, written in language L , which accepts inputs

i and produces outputs j. P will represent any program written in

language L
m

Let

kTT (2)
represent a translator program T, written in language L , which

translates programs written in language L, into equivalent programs

written in language L..

Note that , T „ could also be written as
k I

m pm (3)
k1* - pk^ pi' {*'

.mA translator , T . is just a program written in language L which
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accepts inputs P (programs written in language L, ) and produces

outputs P (equivalent programs written in language L.); hence we

have Eq. (3) above.

Let

ipT rhj (4>

denote the execution of program P on the set of inputs i to produce

the outputs j. This notation will be most useful for describing trans

lation operations such as

m lcsince , T g is just a program which accepts inputs P and produces

outputs P .

Note that the operational notation of Eqs. (4) and (5) has physical

significance only when the language L which describes the operators

,Pm and ,Tm is an executable machine language for some existing
1 J K x

machine; that is, when the operation can be performed by some existing

machine. This condition will be true for all cases described in the next

section which summarizes several useful applications of the bootstrap

method of translator construction.

III. TRANSLATOR CONSTRUCTION

A. BASIC BOOTSTRAP PROCEDURE

The first translators constructed were written in the machine language

of a particular machine because it was generally the only method available.

These first translators were mostly symbolic machine language trans

lators (assemblers). Once a symbolic machine language translator be

came available for a particular machine, most programs were written in
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the symbolic language, including the translator itself. This was

really the first application of the "bootstrap" procedure. The process

can be summarized as follows:

Let L. represent the machine language of a particular machine

and L9 the symbolic machine language. The first step was to write
1the translator program ?T. , which is a symbolic machine language

to machine language translator written in machine language. The

next step was to write the translator in the symbolic language, i. e. ,
2construct 9T, , and then translate it into an executable program

1

2T1 b^

• (6)

At first glance this may seem a useless exercise, but in fact it
2

is a very practical manuever. The translator ~T. is described in

a higher level language and is generally much easier to modify and
1 2expand than is 2T. . In fact, a translator T. is usually pro

grammed for the second step where L^ is an expanded language which
includes L9 It is easy to show that one application of the original

translator still produces an executable program:

(7)

In this case two purposes have been served: 1) the translator has

been written in a more sophisticated programming language, L~, and

2) the translator has been expanded to accept a larger language L~

which usually includes L?.

The above examples demonstrate the "bootstrap" procedure. It

is important to note the essentials of the bootstrap process described

in the previous paragraph. First, the language L~ need only be
2

sufficient for describing the translator ~T, ; it need not be sufficient

for general programming. Second, the language L- need not include
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Li ; indeed it could be entirely different. And finally, .-T. is just

a program—it could just as easily have been -T. where L . is

some language other than our original machine language. This im

mediately presents a great many possibilities, the most important

of which are described below.

The basic bootstrap step described by Eq. (7) can be continued

with a series of translators .T,, CT15 ... T " . If each L
4 1 5 1 n 1 n

includes L . we can be assured that the last translator can be
n-1

translated into an executable program. Each step can be used to

perform the next step as follows:

n-1

or written another way:

.2•i ,* {

Each of the translators , T,
.1 k l

T1k1!

k-1

Tn-2
n-11!

>nV

(8)

' n 1

(8a)

can be translated into an executable

program , Tj" by the previous translator , .T.. Notice, however,
k-1 1

that each , T. can also be translated by , T. to produce itself, i. e. ,

^k1! (9)

since each language L, included the language L, .. Stated in

words: Each of these translators can translate its own description

into itself since it is described by a language which is a subset of the

language it translates.
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Most existing symbolic machine language translators (assemblers)

were constructed by theprocedure summarized by Eqs. (8) and the end

results have the property displayed by Eq. (9). That is, the final ver

sion of a typical symbolic assembler is a program written in the sym

bolic machine language that is translated into machine language by the

symbolic assembler. Let us call this symbolic program (translator)
2

„T. , that is, it translates L„, the symbolic machine language, into

L., the machine language, and it is described in language L~ which

is a symbolic language identical to or included in language L_. Of

course, this symbolic description of the translator itself must have been

translated into an executable program by a previous translator [see
Eqs. (8)1 to produce an executable form of the symbolic assembler,

1 J
^T.. Hence, two forms of such translators always exist, one called

3
the source language description (->T, ) and another called the obj.ect

1language description ( T. ). The latter is the executable form, and

the two have the property:

3T1 {3Tf}-> 3T1 • <10>
A number of translators (compilers) for sophisticated programming

languages have been rapidly constructed by using this same basic boot

strap procedure and proceeding in the steps described above. The re-
3 4suiting compilers have become known as "self-compiling compilers, " '

that is, the compilers are described (programmed) in the source languages

they translate, and the two forms of each compiler obey Eq. (10).

For example, the first NELIAC compiler for the Remington Rand
3

M460 computer was constructed by the basic bootstrap procedure.

The first "hand coded" translator accepted only a very limited subset

of the NELIAC language. But this subset was sufficient to describe a

translator for the complete language and the final M460 NELIAC compiler

was programmed in NELIAC. The M460 compiler was then used to con

struct NELIAC compilers for numerous other machines by the methods

described in the next section.
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B. MULTIPLE BOOTSTRAP PROCEDURES

None of the examples of the basic bootstrap procedure described

above involved translators which produced object programs for machines

other than the machine which performed the translation, i. e. , the end

result was always a translator T T where m was a machine
L m

language. There is obviously no reason why a translator T

could not be constructed where n and m are different executable

machine languages. In fact, such translators are the most valuable at

our present stage of computer development where new computers and

new programming languages are appearing faster than appropriate

translators can be constructed. The possible uses of such "hybrid

translators" are numerous but the two most common problems for

which they are useful are:

1) construct a translator AT for a new machine n when a
' A n

translator _,T exists and the machine m is available
B m

2) construct a translator which produces object programs for

machine m but is executed by machine n. In this case the hybrid

translator T T is the desired result. This situation usually comes
L m

about when the machine m is not available or not capable of performing

the translation x>peration. It will be obvious that the solutions given be

low for Problem (1) embody a solution to Problem (2). Hence, only

Problem (1) will be discussed.

The first problem is continually encountered. Whenever a new

machine n appears there occurs the problem of constructing new trans

lators for it. First, consider the most common variation of this prob

lem: the language LA is identical to LR. The desired translator
.T can be constructed in the following steps.

1) Construct a translator AT , that is an LA translator which
' An A

will produce programs for the new machine n but is described (pro

grammed) in language L . .
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2) Perform the translation

.mAT£ I.O^ AT_' (11)

which yields an LA translator which runs on the existing machine m
and produces executable programs for the new machine n. The first

such program to be produced and executed on the new machine should

rightfully be the translator itself, so. . .

3) Perform the translation

AC UTnW AT" <l2>

which yields the desired LA translator for the new machine n.

The obvious difficulty in this seemingly painless procedure is the

construction of the translator AT in step 1. This might seem as
A n

difficult as simply programming the AT directly in machine language.
A An

Note that the required AT program is described (programmed) in

language LA, not a machine language. This fact can mean a sub-

stantial savings in programming cost. The remainder of the work

(steps 2 and 3) is done by the computer m.

Further comments are in order about the bootstrap method as

compared to the direct construction of ATn . First, there is no guar
antee that the language LA will be convenient for programming the

Atranslator AT ; however, if L is sufficient for general purpose pro-
J\. n

gramming and it is sufficiently useful to justify constructing an LA

translator, it is probably sufficient for programming ATn . This has
proved to be true for most of the current general purpose programming

languages. Second, there are several rewards provided by the bootstrap

method in addition to the immediate objective AT . The most important
Aof which is that a source language (LA) description ij^n ) °* the trans

lator ATn is available for future reference. The importance of ade-
A n

quate documentation of logical systems is well known. Also, the translator
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can be maintained (corrected, modified) and/or expanded by the basic

bootstrap procedure. Finally, the AT might be modified to produce
A An

a AT , where p is a new machine, much easier than writing the
p A pprogram AT or AT^ from scratch. This modification may involveA p A p ^

changing only the command generators of AT so that it will produce
A An

command for p, i. e. , become AT . Hence, if we had started with
c A p

the assumption that the original AT translator was the product of a
r to A m c

bootstrap process and AT existed, we could have summarized the

programming problems with the previous sentence. At any rate we are

back where we started.

So far we have only considered the case of Problem (1) where LA

was identical to LR. The bootstrap method can be useful when LR is

quite different from LA as long as they are both sufficient for describing

translators. In this case the previous solution must be modified as

follows:

A B
1) construct _,T and _T (the same translator written in the

on B n

two languages LA and L„).

Perform the translations

Am
2) ATm -Urn » -T"* (13)

3) BTm ^T^ > ^T: . (14)

The solution given above for the case LA different from LR re
quires the programming of two translators in step 1; however, this re

quires little more effort than required for one since the logic is identical

for both translators. Of course, this solution degenerates to the original

one when LA is equal to L_.

Finally, consider the case that LA and L_ differ but have a

common portion, say Lr sufficient to describe the translator for L„.
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The solution is identical to the LA = LR case with L-. used as the
describing language instead of LA. The steps are:

Q
1) construct -T .

' B n

2) Perform the translation

a?™ Ibt»Wbt: • <i5>
3) Perform the translation

BT~ BTn MbT" • <16>

The translations in steps 2 and 3 can be performed since it was

assumed that Lp is included in both LA and L_. This last case
is a very practical one. It has often been the case in translator proj

ects, using the bootstrap method that a subset of the programming

language was sufficient to describe the various translators.

C. APPLICATIONS

The important step in the solutions for the three cases of Problem

(1) above is the programming of a hybrid translator(s) which runs on one

machine and outputs the machine language of another machine. The re

maining steps are performed by a machine. The practical value of

these translator construction procedures can be best judged by the re

sults. For example, among others eight operational NELIAC com-
4 5pilers for eight different machines have been constructed to date

using the original M460 compiler and the steps summarized in Eqs. (15)

and (16). These compilers have also been used to construct a number
6 7

of compilers for other languages. '

The concept of an intermediate language between sophisticated pro

gramming languages and binary machine languages has been valuable in
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several cases of translator construction for restricted classes of

computers. In fact, if one looks within most any compiler, he can

recognize the use of some intermediate form between the input pro

gramming language and the output binary machine language. However,

the explicit use of an intermediate language and multiple bootstrap

procedures have been very valuable in several translator projects.

The CLIP and JOVIAL translators constructed by the System De
ft

velopment Corporation make use of intermediate languages. A

translator project recently completed by Mendicino, Storch, and

Sutherland at the U. C. Lawrence Radiation Laboratory, Livermore

will be described as the final example, in this section. This project

was a particularly significant and complete application of both the

bootstrap method and the intermediate language concept.

The translator constructed was for the FORTRAN language and

the IBM 7090 and CDC 3600 computers. The initial objective was to

use the existing IBM FORTRAN compiler for the IBM 7090 (which was

programmed in symbolic machine language) to construct a FORTRAN

compiler for the CDC 3600. For this purpose an additional statement

was added to the language which allowed direct manipulation of subfields

within words and BCD information. An intermediate language was

defined which could easily be translated into the machine languages of

the IBM 7090 and the CDC 3600.

Let us use L„ for FORTRAN, LD for the intermediate language,
L7nqn for IBM 7090 machine language and Lo^qO *or (-'D^ 3600 machine
language. Their first step was to program the translators FTD and

tt 7090
DT3600* Then usin8 the IBM 709° FORTRAN compiler, F^70^0 > they
performed the operations

7090 f Fl 7090
FT7090 lFTDf > FXD (U)

and

Fx7090 iDJ"3600iv—^D-"-3600T'SS LT* \^Tl°'° . (18)
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The two results of Eqs. (16) and (17) yielded a means of translating

FORTRAN into CDC 3600 machine language using the IBM 7090. Ob

viously, the next step was to bootstrap the compiler over to the CDC

3600. This required two operations. First they used the result of

Eq. (17) to bootstrap itself into an intermediate language form:

ft£090 UT^J. » „T£ . (19)

Then this was translated into CDC 3600 machine language using the

result of Eq. (18):

7090 f D\ T3600 , j
DT3600 JFTDJ > FXD UU'

The next problem was to produce an intermediate language translator

which would run on the CDC 3600 and produce CDC 3600 machine

language. This also required two steps:

,t1090 Lt* \_» „T° (21)

and

FXD lDx3600f ? D 3 600

T7090 j D "j 3600
DT3600 lDi3600^ >Di3600 ' *"'

The results of Eqs. (20) and (22) together form a FORTRAN to CDC

3600 translator which runs on the CDC 3600. The resulting FORTRAN

compiler for the CDC 3600 has been an operational compiler used at

Livermore for the last six months. It is also worth noting that the

intermediate translators [Eqs. (17) and (18)] which run on the IBM 7090
were used to compile major FORTRAN programs for the CDC 3600

before it was possible to execute the compilerfEqs. (20) and (22)~j on
the CDC 3600.

One obvious reward in addition to meeting their initial objective at

minimum cost (less than a man-year of effort) is that they now have a
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T7>

FORTRAN translator, „T „. , which can be easily modified to produce

an appropriate output for the next new machine.

The bootstrapping operations performed in this project are similar

to those proposed by the SHARE COMMITTEE using their UNCOL.

However, the approach taken in the above described project differs in
Fone very practical, aspect. All programming, namely pT^ and

Tif,00 , was done in the FORTRAN language rather than in the in
termediate language. This necessitated extra machine runs but saved

months of programming and debugging time by not having to hand pro-

gram FTD and DT3600 '

IV. CONCLUSIONS AND COMMENTS

The common characteristic of the methods summarized in this

paper is that they all make use of previous programming effort (existing
translators) in the construction of new translators. In this sense there

are attempts to stand on the shoulders of those who have gone on before

us—rather than step on their toes! The particular formal procedures

described in this paper have all been used with success for the construc

tion of operating, state-of-the-art compilers. Of course, a great

number of permutations of the bootstrap method alone have been ignored

because of lack of space. It is hoped that the reader will find the

operational notation defined in Sec. II and used in Sec. Ill useful for
investigating translation and/or translator construction operations in

general. Indeed, it should be obvious that the process of translator

generation and the operational notation described in previous sections

could be generalized in several directions. However, there is one con

cept, which we shall call executability for want of a better word, which
must be considered in any generalization that is to be valuable for ex

plaining and predicting physical phenomena.

In the previous sections the operational notation T, J . . . . L has
been used (and been meaningful) only when the language L was an
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executable machine language. This is a necessary constraint if the
coperational notation is to be physically meaningful. T, as defined in

Sec. II represents a program; T^J . . . .1 represents a program plus
machine which together perform a translation operation defined by

T,C and executed by machine c. One might dismiss the differentiation
a b c
between program and machine by saying that T, represents a finite

state machine and the means by which it accomplishes the transitions

between states is of no interest. This reasoning leads to the conclusion

that there is no significant difference between two translators, say,

T^ and T^ since they are equivalent finite state machines. But in

fact T^ may be an executable program for machine n (and actually
represent a finite state machine) whereas T, may be no more than

a passive definition (in language L ) of a finite state machine. Hence,

the concept of executability is of paramount importance in considering

a generalization of translator construction which will be physically

meaningful.

Interesting possibilities are presented by having two forms of a
n C

translator: T, , which represents a physical machine, and T, ,
a d ^

which is only a passive description of the translator in a language Lc
but which can be translated into L by other machines. These

n

possibilities go far beyond the highly constrained manipulations possible

with existing computers and translators for computer languages. For

instance, the explanation of biological evolution by interpreting genetic

transformations as "bootstrap" translation operations appears promising.

This subject is being pursued.
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