
 

 

 

 

 

 

 

 

 

Copyright © 1974, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



ACCESS CONTROL IN A RELATIONAL DATA BASE

MANAGEMENT SYSTEM BY QUERY MODIFICATION

by

Michael Stonebraker and Eugene Wong

Memorandum No. ERL-M438

14 May, 1974

ELECTRONICS RESEARCH LABORATORY

Collegia of Engineering
University of California, Berkeley

94720



ACCESS CONTROL IN A RELATIONAL DATA BASE

MANAGEMENT SYSTEM BY QUERY MODIFICATION

by

Michael Stonebraker and Eugene Wong

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

ABSTRACT

This work describes the access control system being Implemented

In INGRES (INteractlve Graphics and REtrleval ^stem). The scheme can

be applied to any relational data base management system and has several

advantages over other suggested schemes. These Include:

a) Implementation ease

b) small execution time overhead

c) powerful and flexible controls

d) conceptual simplicity

The basic Idea utilized Is that a user Interaction with the data base Is

modified to an alternate form which Is guaranteed to have no access

violations. This modification takes place in a high level Interaction

language. Hence, the processing of a resulting Interaction can be

accomplished with no further regard for protection. In particular, any

procedure calls In the access paths for control purposes, such as In

[1,2], are avoided.

Research sponsored by the Naval Electronic Systems Command, Grant
N00039-71-C-0255.



I. INTRODUCTION

The need for access control in a data base management system has

been discussed at length elsewhere [1,3,4,5] and will not be further

considered here. What is clearly required is an access control system

which is flexible and powerful, yet simultaneously does not require

undue execution time overhead. Moreover, desirable characteristics of

a system include implementation ease, simplicity, and small overhead for

storage of access control information.

This paper describes a system with all above characteristics

which is being implemented on a relational data base management system

under construction at Berkeley [6]. It has some points in common with

the access control system indicated in MacAIMS [7,8]. However, as will

be noted in the sequel, it has significant conceptual and implementation

advantages.

The basic notion pursued is one of interaction modification. Users

interact with a data base through a high level query language. Any such

interaction is immediately modified into an interaction which contains

no violations. The resulting interaction is compiled into a sequence of

simpler interactions which are executed without further concern for access

control. In particular, no controls on access paths to data need be

present.

In order to discuss the mechanism- involved, we must give an

indication of our query language. This language, QUEL, is discussed in

the next section. Subsequent sections indicate the access control

mechanisms appropriate to aggregate free interactions and to interactions

containing aggregates. In section V, the efficiency of the access

-2-



control mechanism is considered. Lastly, section VI draws conclusions

and comparisons to other access control schemes.

II. QUERY LANGUAGE

In this and subsequent sections, we discuss access control only

for RETRIEVE operations. Also contained in the query language, QUEL

(QUEry Language), are REPLACE, DELETE, and COMBINE^ statements for which

access control is handled analogously [6]. This section gives the

flavor of RETRIEVE statements in QUEL by doing several examples.

QUEL has points in common with Data Language/ALPHA [9], SQUARE [10]

and SEQUEL [11] in that it is a complete [12] query language which frees

the programmer from concern for how data structures are implemented and

what algorithms are operating on stored data. As such, it facilitates a

considerable degree of data independence [13]. Since basic entities in

QUEL are relations, we define them and indicate the sample relations which

will be used in the examples in this paper.

Given sets D^,...,D^ (not necessarily distinct) a relation

R(D-,...D ) is a subset of the Cartesian product D-xD»x...xD . In other
1 n 12 n

words, R is a collection of n-tuples x «= (Xj^,...,x^) where x^

1 £ i _< n. The sets D^,. called domains of R and R has degree n.

The only restriction put on relations in QUEL is that they be normal

ized [14]. Hence, every domain must be simple i.e., it cannot have

members which are themselves relations.

Clearly, R can be thought of as a table with elements of R

^The latter command is a generalization of the traditional insert
operation. The other commands have the obvious interpretation.

-3-



appearing as rows and with columns labeled by domain names as Illustrated

by the following example.

EMPLOYEE

NAME DEPT SALARY MANAGER

Smith toy 10,000 Jones

Jones toy 15,000 Johnson

Adams candy 12,000 Baker

Evans candy 14,000 Todd

Baker admin 20,000 Harding

Harding admin 40,000 none

The above Indicates an EMPLOYEE relation with domains NAME, DEPT, SALARY

and MANAGER. Each employee has a manager (except for Harding who Is

presumably the company president), a salary and Is In a department.

Each column In a tabular representation for R can be thought of

as a function mapping R Into D^. These functions will be called

attributes. An attribute will not be separately designated but will be

Identified by the domain defining It.

The second relation utilized will be a DEPARTMENT relation as

follows.

DEPT FLOOR # // EMP

DEPARTMENT toy

candy

tire

admin

complaints

10

5

16

10

3

SALES

1,000

2,000

1,500

0

0

A QUEL query Includes at least one RANGE statement of the form;

RANGE Relation Name (Symbol,...,Symbol):

Relation Name (Symbol,...,Symbol):

Relation Name (Symbol,...,Symbol)

-4-



The symbols declared In the RANGE statanent are variables which

will be used as arguments for attributes. These are called tuple

variables. The purpose of the statement is to specify the relation

over which each variable ranges. Moreover, a query includes one (or

more) RETRIEVE statements of the form:

RETRIEVE: Workspace Name: Target List: Qualification

The following suggest valid QUEL statements.

Example 2.1

Find the salary of the employee Jones.

RANGE EMPLOYEE(X)

RETRIEVE W:X.SALARY:X.NAME= JONES

Here, X is a tuple variable ranging over the EMPLOYEE relation and all

tuples in that relation are found which satisfy the qualification

X.NAME= JONES. The salary attribute for all qualifying tuples is put

in a workspace named W.

Queries can involve more than one relation as the following

example indicates,

Example 2.2

Find the employees who work on the first floor.

RANGE EMPLOYEE(X):DEPARTMENT(Y)

RETRIEVE W:X.NAME: (X.DEPT«Y.DEPT) A(Y.FL00R//=1)

Here the qualification consists of two clauses connected by 'AND*. The

two relations involved are connected by the clause equating DEPT. The

meaning of the query is to find all tuples in the EMPLOYEE relation which

have a DEPT attribute equal to the DEPT attribute of some tuple in the

DEPARTMENT relation which has a FLOOR // of 1. For such qualifying tuples

the NAME attribute is returned to W. More than one tuple variable can

-5-



range over the same relation as follows.

Example 2.3

Find those employees who earn more than their managers.

RANGE EMPLOYEE(X,Y)

RETRIEVE W:X.NAME: (X.MANAGER=Y.NAME) A(X.SALARY>Y.SALARY)

One must find the manager of each employee, compare the salaries of the

two Individuals, and return those employees meeting the conditions

specified.

Example 2.4

Find the employees who make more than the average salary of all

employees.

RANGE EMPLOYEE(X)

RETRIEVE W:X.NAME;X.SALARY>AVE(X. SALARY)

Here, AVE(X.SALARY) Is an aggregate and Indicates the average value of

the salary field over all tuples In the EMPLOYEE relation. Valid

aggregation operators Include AVE, COUNT, MAX, MIN and SUM.

Aggregates can themselves be qualified as the next example

Indicates

Example 2.5

Find all employees whose salary Is smaller than the average toy

department salary.

RANGE EMPLOYEE(X)

RETRIEVE W:X.EMP:X.SALARY<AVE(X.SALARY;X.DEPT» TOY)

Here the aggregate Is to be taken only over those tuples which satisfy

(X.DEPT- TOY). Aggregates will be qualified or unqualified according

to whether their range Is restricted or not.

Por a complete description of QUEL the reader Is referred to [6]

-6-



III. ACCESS CONTROL FOR AGGREGATE-FREE INTERACTIONS

The mechanism for RETRIEVE operations will be indicated. How

ever, for COMBINE, DELETE and REPLACE the scheme is analogous. We

illustrate the basic approach by an example. Suppose the following

access restrictions are placed on user Smith.

Example 3.1

Smith can see only information on himself. This statement

specifies a subrelation of the employee relation which can be defined

by the following QUEL statement:

RANGE EMPLOYEE(X)

RETRIEVE W1:X.NAME,X.DEPT,X.SALARY,X.MANAGER:X.NAME= SMITH

Suppose Smith issues a RETRIEVE operation involving the EMPLOYEE

relation

Example 3.2

Find the salary of Jones.

RANGE EMPLOYEE(X)

RETRIEVE W:X.SALARY:(X.NAME=JONES)

The above statements will automatically be modified into:

-RANGE EMPLOYEE(X)

RETRIEVE W:X.SALARY: (X.NAME«JONES)A(X.NAME=SMITH)

Here Smith's query has been intersected with the portion of the EMPLOYEE

relation to which he is allowed access as indicated in Figure 1.

The algorithm which controls this query modification is the

following. For each user, U, a set of access control interactions,

2I = {Ij^,...I^} is stored. Each 1^ is logically of the form

2
These interactions are inserted modified and deleted by a data base
administrator or by someone whom he designates.

-7-



RANGE Relation Name (S3niibol,..., Symbol):...: Relation Name

(Symbol,...,Symbol){RETRIEVE >1
COMBINE I
DELETE f * Target List ; Qualification
REPLACE J

The target list contains attributes from a single relation or the key

word *ALL'. The qualification portion is any valid QUEL qualification

containing any number of tuple variables or the key word 'NO ACCESS*.

For each tuple variable, X, appearing in a given user interaction,

R, the following algorithm is executed.

Access Control Algorithm

1. If RELATION, the relation which X references, is a workspace, then

exit.

2. Find all attributes in the target list or the unmodified qualification

statement of R referenced with X. Call this set S.

3. Find all access control interactions with the same command as R and

with a target list containing all attributes in S. Denote these by

Ij^ == {I^*,... ,1^*} and their qualifications by Q^^*,... ,Q^*.
It ic itA. Replace Q, the qualification in R, by QACQj^ VQ^ V...VQ^ )

The resulting QUEL statement can be executed normally. Moreover,

the resulting query has the following properties.

i) each tuple variable is restricted to a subrelation to which

the user has access,

ii) each tuple variable can range over all subrelations to which

the user has access,

iii) the workspace in which the result appears contains only

-8-



Information which the user Is allowed access to. Hence he

can have unrestricted access to it.

iv) the tuple variables in an access control interaction only

indicate range. The name of the variable in the appropriate

target list of an access control interaction is changed to X.

Others which appear are given new unique names and appropriate

range statements.

A modification to the above algorithm is made for efficiency purposes.

It is expected that all interactions with the same command will have

the following nesting property.

A set I = of interactions is properly nested if for

any two interactions 1,1 el with target lists T , T such that
. m' n ® m' n

T ^ T , then W ^ W as follows,
m n n m

RETRIEVE W :T :Q
n n n

RETRIEVE W :T :0
m n ^

The larger the set of attributes which are specified in a target list,

the more restrictive is the allowed access, as indicated in Figure 2.

We assume that all protection interactions for a given user with

the same command will be properly nested and can therefore safely add

step 3A to the algorithm.

3A. Delete from I all interactions with a target list

containing the target list of another interaction

in Ij^.

We now present an example of the algorithm at work. The restric

tions are intended more to demonstrate the possibilities than to appear

realistic.

-9-



Example 3.3

Jones can see all salaries as long as his query does not include

name or department in the target list or qualification. Moreover, except

for employee Baker, he can see names, departments and managers if salary

is not present. Furthermore, he can see names, managers and salaries

for all employees who earn more than their managers. Lastly, he can

see all attributes for departments which sell more than the average

department.

These restrictions may be stated in four access control inter

actions.

RANGE EMPLOYEE(X,Y):DEPARTMENT(Z)

1) RETRIEVE X.SALARY

2) RETRIEVE X.NAME, X.DEPT,X.MANAGER; X.NAME^BAKER

3) RETRIEVE X. NAME, X. SALARY, X. MANAGER:Y. NAME«X. MANAGERAX. SALARY

>Y.SALARY

4) RETRIEVE ALL:Z.SALES>AVE(Z.SALES)

Example 3.4

Suppose Jones issues the query: Find all salaries

RANGE EMPLOYEE(X)

RETRIEVE W: X.SALARY

The algorithm finds S = {SALARY} and 1) and 3) contain S. However,

step 3A eliminates 3); hence, the resulting query is unchanged from the

original since 1) has no qualification statement.

Example 3.5

Now Jones issues the query: Find the manager of employee Adams.

Ri^GE EMPLOYEE (X)
RETRIEVE W: X.MANAGER:X.NAME=ADAMS

Here, S = {MANAGER,NAME) and the algorithm selects 2) and 3) as

-10-



applicable. Hence, the query Is modified to:

rAnge employee(X,Y)

RETRIEVE W:X.MANAGER:X.NAME«ADAMSA(X.NAME9^BAKERV(Y.NAME

=X.MANAGERAX.SALARY>y.SALARY))

Example 3.6

Suppose Jones then Issues the query: Find all employees who

earn more than their managers.

RANGE EMPLOYEE(X,Y)

RETRIEVE W:X.NAME: (X.MANAGER'=Y.NAME)A(Y.SALARY<X.SALARY)

Here, S = {MANAGER,NAME, SALARY), S . = {NAME,SALARY}. As a result,
X y

3) Is added for both X and Y, yielding

RANGE EMPLOYEE(X,Y,Z,U)

RETRIEVE W:X.NAME:(X.MANAGER=Y.NAME)A(Y.SALARY<X.SALARY)

A(Z.NAME«Y.MANAGER)A(Y.SALARY>Z.SALARY)

A(U.NAME=X.MANAGER)A(X.SALARY>U.SALARY)'

The reader can observe that the effect of the modified query Is to

retrieve those employees who make more than their managers and who

have managers who make more than their managers. This Is less than

what the user requested. However, he can retrieve everything he

desires by the following query.

Example 3.7

RANGE EMPLOYEE (X)

RETRIEVE W:X.NAME,X.SALARY

Here, S » (NAME,SALARY) and the algorithm appends 3) yielding the desired

result.

RANGE EMPLOYEE(X,Y)

RETRIEVE W:X.NAME,X. SALARY:Y. NAME=X.MANAGERAX. SALARY>Y. SALARY

The reader can note that allowing access control Interactions with

-11-



multivarlable target lists and modifying the access control algorithm

could alleviate the too strict control placed on Example 3.6. However,

such an algorithm would be quite complicated because different

qualifications would be added, depending on which variables in a user

query were associated with which variables in an interaction target list.

If, for example, 3) had a Y. variable in the target list, different

appendages would be applied, depending on association of user variables

to interaction variables. The only reasonable policy in this situation

would be to append the logical "OR" of all such possibilities. Efficiency

and complexity considerations suggest that the added generality is not

worthwhile.

IV. PROTECTION FOR INTERACTIONS CONTAINING AGGREGATES

When users issue interactions containing aggregates, an additional

policy consideration appears, as illustrated below.

Example 4.1

Suppose Adams can retrieve only salaries for employees in the

toy department and has an access control interaction, as follows.

RANGE EMPLOYEE(X)

RETRIEVE X.SALARY:X.DEPARTMENT=TOY

Moreover, suppose he issues the following query.

Example 4.2

Find the average company salary.

Ri^GE EMPLOYEE (X)

RETRIEVE W: AVE(X.SALARY)

Two policies can be taken in this situation.

1) The access control clause can be added inside the aggregate.

-12-



producing

RANGE EMPLOYEE (X)

RETRIEVE W:AVE(X. SALARY;X.DEPARTMENT=TOY)

Adams would then retrieve the average salary of employees in

the toy department (which is probably not what he wants).

^ 2) The retrieval can be allowed, unprotected since the user is

obtaining a statistical quantity on a relation of presumably

reasonable size.

In general, the following mechanisms can be potentially enforced

concerning aggregates.

1) allow aggregates without restriction

2) allow aggregates without restriction if the minimum number

of values aggregated exceeds some threshold

3) allow aggregates without restriction if they are unqualified

(i.e. are aggregates over a whole relation)

4) allow aggregates only with access control qualifications

appended inside the function.

It can be readily shown that mechanisms 1) and 2) allow the

persistent user information from specific tuples to which he may not be

permitted access. The following query is representative of potentially

unauthorized access using aggregates allowed under mechanism 1).

Example 4.3

Find Smith's salary

RANGE EMPLOYEE (X)

RETRIEVE W:AVE(X.SALARY;X.NAME=SMITH)

With mechanism 2), the following potentially unauthorized access can

take place.

-13-



Example 4.4

RANGE EMPLOYEE(X)

RETRIEVE W:COUNT(X.NAME^EVANS)

RETRIEVE W:AVE(X.SALARY;X.NAME^EVANS)

RETRIEVE W:AVE(X.SALARY;X.NAME>EVANS)

Let A^, A^ and A^, respectively, be the responses to the above RETRIEVE

statements. It is easily computed that Evans' salary is

A^*A2-(A^-1)*A3

Because these potential violations can occur using mechanisms

1 and 2, and because preventing such violations requires some sort of

complex monitoring of the interaction stream, we are allowing the choice

of mechanisms 3) and 4) for each possible aggregate operator. We are

aware, however, of the following anomaly concerning mechanism 3).

Example 4.5

Suppose Adams is allowed to access only tuples of those employees

in the toy department. Suppose also that he issues the queries:

RANGE EMPLOYEE(X)

RETRIEVE W:AVE(X.SALARY)

RETRIEVE W:AVE(X.SALARY;X.NAME>AAAAA)

The first query would be answered with the true average salary

of all employees since it is an unqualified aggregate. On the other

hand, the second query is qualified and therefore would be further

qualified to the following:

RANGE EMPLOYEE(X)

RETRIEVE W:AVE(X.SALARY;X.NAME>AAAAAAX.DEPARTMENT=TOY)

Therefore, the average salary in the toy department is returned.

Hence, two logically identical queries will yield different

answers. This price must be paid for the increased flexibility allowed

-14-



by mechanism 3) above mechanism 4).

The reader can now note the obvious extensions which must be

made to the algorithm of the previous section in order to properly

enforce access control for interactions containing aggregates.

V. EFFICIENCY CONSIDERATIONS

Efficiency considerations can only be discussed in view of the

search strategy employed to decompose QUEL interactions. The search

strategy used resembles that in [15]. Basically, it breaks a query into

a sequence of queries each involving only a single tuple variable. These

single variable queries involve only a single relation and can be direct!v

executed (in the worst case by a sequential scan of a relation tuple by

tuple). Often the relation will be stored in such a way that a complete'

scan is not needed. Also, any redundant indices which can be used

profitably to speed access are utilized.

Usually, the addition of access control qualification will result

in a decomposition to the same sequence of one-variable interactions that

would occur without access control. Each such interaction is further

qualified by one or more protection statements than would otherwise be

the case. Such a one-variable interaction will usually be at least as

efficient to process as one without protection. In fact, these added

protection clauses may allow redundant indices to be employed to speed

access that would not otherwise be usable. Hence the cost of protection

is usually negligible. Adhering to the following two conditions essentially

insures this statement.

1. The following single variable condition holds: A set of

interactions, K, with target lists T= {T^,...,T^} has the

-15-



single variable condition If for all T , T e T such
m n

T Ht .7-aT. eT«T Ht.
m n ^ 1 m n

This condition Insures the truth of the following statements:

a) contains a single Interaction as a result of steps

1-3A of the algorithm.

b) In step 4 a user Interaction Is further qualified by one

qualification clause.

c) One qualification clause Is appended for each variable In

the query.

2. Access control qualifications do not contain two or more

tuple variables or the operator "OR".

Here, Inefficiency usually results If new variables must be added to

the original query (as occurred In Example 3.6). In all probability,

more tuple variables would require a longer sequence of one—variable

queries. Also, for processing convenience, when "OR" Is present In a

qualification statement, two one-variable queries are Issued and the

set union Is taken on the results. Hence, one variable queries do not

contain "OR". As a result. Inclusion of additional "OR" operators to

the unmodified query result In a longer sequence of one variable queries.

This latter Inefficiency, however. Is specific to our search strategy

and could potentially be avoided. It Is felt that little generality Is

lost by adherence to the two rules above, which guarantee small or

negligible efficiency overhead. More general schemes are, of course,

allowed but execution speed may be slowed significantly.

VI. COMPARISONS AND CONCLUSIONS

The reader should note the differences between this access control

-16-



scheme and that proposed by CODASYL [2], That proposal Inserts procedure

calls Into access paths to check access privileges. It involves both

inefficiency (checking at each call to an access method) and less

flexibility (it is hard to enforce complicated control such as that

in Example 3.3 in this manner). The reader can also note that our

protection scheme is appended at the highest level possible and not burje i

deep within the system. We believe this to be the proper approach.

We also note the differences between our scheme and that of

MacAIMS [7,8]. MacAIMS requires several different modes of protection

(i.e. manipulate, statistical, print, none). That scheme must keep track

of when access to a relation changes from one mode to another (i.e. sub-^

setting away information the user cannot see). Our scheme handles alJ

access in a unified manner, and no such conversions are ever made.

Second, since we have a higher level query language than MacAIMS, we

can enforce more complex controls (such as constraints which Involve

aggregation). Third, because users have unrestricted access to workspace-;

which 'they create, we avoid any necessity of dealing with the problem of

truth mentioned In [7,8]. We admit that our scheme does not Include

checks on terminal number, time of day, etc. which appear In [7,8]. How

ever, It Is simple to Include them.

Finally, the advantages of our scheme are:

- Little storage space is required to store access control

interactions.

- Implementation Is trivial.

- Query modification Is required to support "views" [6,16].

Hence, access control modification can be done at the same time. The

-17-



query need only be modified once.

- Success of this scheme does not require any complex

operating system or hardware protection support (such as in [17,18]

Hence, it can be widely applied.

- There is small or negligible overhead in most cases.

-18-



REFERENCES

1. Hoffman, L., "The Formulary Model for Access Control and Privacy,"

Stanford Linear Accelerator Center Report #117, May, 1970.

2. "CODASYL Data Description Language," NBS Handbook #113, U.S. Dept.

of Commerce, January, 1974.

3. Browne, P. and Steinauer, D., "A Model for Access Control," Proc.

1971 ACM-SIGFIDET Workshop on Data Description, Access and

Control. San Diego, Calif., November, 1971.

4. Weissman, C., "Security Controls in the ADEPT-50 Time Sharing

System," Proc. 1969 Fall Joint Computer Conference.

November, 1969.

5. Friedman, T., "The Authorization Problem in Shared Files," IBM

Systems Journal. No. 4, 1970.

6. McDonald, N., Stonebraker, M., and Wong, E., "Preliminary

Specification of INGRES," Electronics Research Laboratory

Report #470, University of California, Berkeley, California,

May, 1974.

7. Owens, R., "Evaluation of Access Authorization Characteristics of

Derived Data Sets," Proc. 1971 SIGFIDET Workshop on Data

Description. Access and Control. San Diego, California,

November, 1971.

8. Owens, R., "Primary Access Control in Large Scale Time-Shared

Decision Systems," Project MAC Report TR-89, M.I.T.,

Cambridge, Mass., July, 1971.

9. Codd, E., "A Data Base Sublanguage Founded on the Relational

Calculus," Proc. 1971 SIGFIDET Workshop on Data Description.

Access and Control. San Diego, California, November, 1971.

-19-



10. Boyce, R., et al., "Specifying Queries as Relational Expressions:

SQUARE," IBM Technical Report RJ1291, IBM Research Laboratory,

San Jose, California, October, 1973.

11. Chamberlin, D. and Boyce, R., "SEQUEL: A Structured English

Query Language," Proc. 1974 ACM-SIGFIDET Workshop on Data

Description. Access and Control. Ann Arbor, Michigan, May, 1974

12. Codd, E., "Relational Completeness of Data Base Sublanguages,"

Courant Computer Science Symposium. Vol. 6, Data Base Systems.

Prentice Hall, New York, May, 1971.

13. Stonebraker, M., "A Functional View of Data Independence," Proc.

1974 ACM~SIGFIDET Workshop on Data Description, Access and

Control, Ann Arbor, Mich., May 1974.

14. Codd, E., "A Relational Model of Data for Large Shared Data Banks,"

CACM. Vol. 13, No. 6, June, 1970.

15. Rothnie, J., "An Approach to Implementing a Relational Data

Management System," Proc. 1974 ACM-SIGFIDET Workshop on Data

Description, Access and Control. Ann Arbor, Michigan, May, 1974.

16. Boyce, R. and Chamberlin, D., "Using a Structured English Query

Language as a Data Definition Facility," IBM Research Report

No. RJ 1318, IBM Research Laboratory, San Jose, California,

December, 1973.

17. Graham, R., "Protection in an Information Processing Utility,"

CACM. Vol. 11, No. 5, May, 1968.

18. Lampson, B., "Dynamic Protection Structures," Proc. 1969 Fall

Joint Computer Conference. November 1969.

-20-



allowed

retrieved

1

y//m

requested7

The Access Control Scheme at Work

Figure 1

-21-



result of I

W
m

result of J

Two Properly Nested Interactions

Figure 2

-22-


