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ABSTRACT

A unified method for the time weighted square integral for both con

tinuous and discrete free linear system is presented. In both cases, the

value of the integral is the quadratic form of the initial condition

x 'P x , where P is a single matrix which is obtained either by re-
ooo o °

cursive matrix equations or by single matrix transformation. The strange

b.'s coefficients that appear in Man's paper [5], have a natural meaning

in the present work. Moreover, a simple formula for these coefficients

is developed.

Research sponsored by the National Science Foundation Grant GK-38205.



1. INTRODUCTION

In a series of articles [l]-[4], MacFarlane developed the method to

evaluate the total square integral of linear continuous free systems. The

analysis was done in the time domain for various types of functionals.

The value of the Integral is given in a quadratic form of the initial

condition: x 'P x , where P is the solution of a sequence of Lyapunov's
o o o o

type equations. Later [5], Man evaluated the infinite sum:

00

Jr " 2 k'St'Vk ' sub3ect to:
j=0

r

His solution is given by x 'P x , where P^ - £ b.Q4> and Q4 is giveno o o o *J j j J

recursively by Lyapunov's equations.

However, in his words, "the coefficients b. must be determined sequen

tially for r - 1,2... and no general formula is available which enables

the systematic determination of these coefficients."

We show in this work, that for both continuous and discrete time

systems, P is a solution of a sequence of Lyapunov's type equations, such

that in the discrete case, the b,'s are hidden in the sequence and are given

by a simple equation. The method is based on the general solution of the

integral which is a special case of either random process [7] or optimal

regulator.

2. CONTINUOUS TIME SYSTEM

(a) The General Solution

The infinite integral of linear continuous autonomous system is
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given by [6 p.110-111]

x = Ax

J • 1 x'Q(t)x dt - x 'P x , where: P^ A P(0), and:
1 o o o o —

-P(t) - P(t)A + A'P(t) +Q(t) , lim P(T) - 0

(1)

(b) Matrix Laplace Transform

We are interested in J such that Q(t) - f(t) • Q, where Q is a constant

matrix and f(t) is the time weight function.

We can write (1) as follows:

p - MP - q f(t) (2)

For instance, n • 2:

p - col. [PUP12P22^ ; q " co1' ^11*19*0*1llln12,t22

M

2au 2an 0

a12 all + a22 a21

l12
2a

22

The solution of (2) is:

p(t) . eMtp(o) -C eM(t"T)q f(x)dx «eMt[p(o) -C e"Mx qf(x)dx]
Jo Jo

The boundary condition for finite transfer time T is:

p(T) « 0 , hence:

f e"MT f(x)dx] qi^lfd)] •qp(o) - [I e
'O

(3)

(4)

This "matrix laplace transform" was obtained earlier [2] from another

point of view. As we shall see soon, the extension of (4) to discrete

time system is "Q^ matrix transform".
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(c) Recursive Matrix Formulation

Here we operate directly on (1)

J » 1 f(t)x'Qx dt « x 'P x , where

-P(t) » P(t)A + A'P(t) + f(t) Q

r

I
i»o

(i) f(t) « £ "A »r is a positive integer

Differentiate (5) at P B P :

,(1+1) = _p(i)A _A,p(i) .Q±, 0<i<r
o o o x i — —

p<i+u _ _p(i> _ A,pa) •
o o o

Equation (6) has the following property:

P(i) =0Vi>r, (P(1)A^-7 at t- 0) (7)o o -dti

Proof: See Appendix I.

Solving (6) recursively (backward), we obtain P .

(ii) f(t) = tr.

Substituting in (6): a = 0, V i < r, a « 1, one obtains:

P(1)A +A-P(1) --P(1+1)', 0<i<r
O O O » — —

(8)

P(r)A + A'P(r)= -r!Q
o o

The last result agrees with [1].

(iii) f(t) - e2at

Using the same transformation as in feedback optimal regulator [6]:
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x A xe , one obtains

( e2atx'Qx dt » ( x' Q x dt, and:

j^ x - (A +ctl)x (by: (1) and (9)).

Hence:

J » x 'P x (note: by (9): x • x ), where:oo * * * 0 0'»

p(A + al) + (A» + aI)P » -Q

(iv) f(t) - e2at £ a.t1
i-0 X

(9)

(10)

(11)

iUsing (9) we obtain (10), and: f(t) - £ a.t .
i«0 x

Hence: J • x 'P x , where P is obtained from (6) replacing A by
o o o o

(A + al).

3. DISCRETE TIME SYSTEM

(a) The General Solution

The infinite quadratic sum of linear discrete autonomous system is

given by [6 p.471-472]:

ViDAxk
00

J• £ \\\mW.
k-o

P. - A'P, .-A + Q. , llmP(kT)
k lcfl k kT-H»

(b) Matrix Z Transform

For Q^ » ffe*Q (Q-constant), we can write (12) as:
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Kpkfl - pk - qfk

For instance, n = 2:

p » col. [p.-p-.p,.,] ; q - col.[qliqi9q00]
ll*12r22 ir*12^22

lll 2alla21 '21

K alla12 alla22+a12a21 a21a22

l12 2a12a22 l22

The solution of (13) is:

p - [f + Kf, +...•+Kn-1f Jq + knp
*o o 1 n-1 n rn

By boundary condition:

p(nT) - 0, hence:

00

P(0) »[£Kjf4] qAZ ^(fjl-q
o - K

(15) represents "Matrix Z Transform." It should be noted that p(0)

is a function of K.

(r)Example: ffe * kvw A k(k-l) (k-2)... (k-r+1)

p(0) - r!Kr(I-K)"(r+1)-q

(c) Recursive Matrix Formulation

Here we operate directly on (12)

00

J - £ *&'<** "Wo' Where

Pk =AW + V

(1) f, •• £ ot.k , r is a positive integer.
£=o
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(15)
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(17)



Let E(>) be shift operator:

E (P.) 4 P,.4
k "** kfi

(18)

The "derivative" in discrete time for fixed sampling time interval

is given by the following "difference":

£ A (E-DS, (19)

A, is the 1 difference at the k sampling.

Another way of writing (19) is:

Ai Ai-1 Ai-1
\ " Vl ~ Ak

Operating with (19) on the R.H.S. of P, in (17), one obtains:

P - A°
o o

A° - A' (A° + AX)A + Qo
o o o o

r

a«l

< A2 -A»(A2 + A*)A+Qja,(2l-2)
£«2

A1 - A'(A1 + A±+1)A + Qb.
o o o ' ^ 1

Ar - A'Af A + Q r!a
L ° 1 r

In our case, (21) has the following property:

i r rA = 0 V i > r, and in particular A- * Afl

Proof: See Appendix II.
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The coefficients b.'s in (21) are given by:

b< A £a,[£(-l)J<l-j)£<J)], 0<1<r (23)
1 £=i * j-0 3

Solving (21) recursively (backward), we obtain P .

(ii) fk- kr
Substituting in (21): a = 0, ¥ i < r, a • 1, one obtains:

/• _ .o
P = A
o o

A° - A'(A° + AX)A+ 1-Q
o o o

A1 « Af(AX + A2)A+ 1-Q
o o o

A2 - A'(A2 + A3)A + (2r - 2)Q
o o o

: (24)

A*; -A'(A*+ A*+1)A + b,-Q
o o o 1

Ar • A'A^A + r! Q
o 1

^ 1 o

where:

1

b,4E(-DJ(H)r(j)

(25) has a very simple pattern - See Appendix. III.

(iii) *.fk•- k(r) Ak(k-l) (k-2) ... (k-r+1)

It is easy to verify that (E - I)1* =0¥ 0 <_ 1<r,

or equivalently: b. i 0 V 0 < i < r , and b «• r!

Hence:

£k(r)x'kQxk -r!xQ'Prxo, where: P -A'P A=< (26)
° ... • ° [a'P^A, j>0

-8-
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(iv) fk=e2ak

Let \kxye1 "*\n a (Ae0)^ (••• by xfcn "' Aa^),

Noting that x • x , we obtain:
o o

oo oo

J »£e *\ Q^ -LxJ^ «*;**o B*0Vo' where:

P - (Aea)P (Aea) + Q
o o

x
e v -r • 2ok v« **(v) fk * e 2*a£k

A»o

As in the continuous time case, replace A in (21) by (Ae ).

(27)

4. REMARKS

1. In the discrete time, K is not necessarily nonsingular, however, for a

stable system (I-K) is nonsingular.

2. The advantages and disadvantages of the recursive and transform forms:

(1) The transform form has answer for all transformable weight

functions.

(li) We can use Laplace and Z transforms for the transform forms.

1
(iii) If the system's dimension is n, M and K'a dimension is m • -z n(n+l)

3. The matrix M in (2) is equal to -B, where B is given in [1].

The general form of the matrix K is given in [8].

4. Equations (4) and (15) show that if discrete time system x^ * Ax is

obtained from continuous time system x • Ax, then K is related to B

by:

K-eBT

where T is the sampling interval.
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5. If we use the simple transformation:

P « P - 0
K K TC

we obtain equivalent to equations (24), (25):

J • x*(P + Q)x ; J • x'P x , r > 1, where:
ooo or ooo —

A1 - A' [A1 + Ai+1]A + b.A'QA (28)
o o O 1

b±A E (-Dj(i +1-j)r6

By inspection, the |b.|*s in [5] are identical to those of (28) (in the

direction of the sequence), however, no general formula is presented

in [5] for |b±|»s

In this paper (25) or (28) are natural as a result of the binomial

pattern of the discrete differentiation.

6. It is important to note that alternative form of (15) is:

00

p0 -"£ f1(A')jQ(A)j.
j»o J

7. The difference between MacFarlane's recursive point of view and the one

presented here is that the first is integral form, and the second is

differential form. Therefore, it is difficult to extend his procedure

to the discrete time case (See Appendix IV).

5. CONCLUSIONS

The main contribution of this work is in introducing unified method

to evaluate the total square integral (sum) for linear continuous (discrete)

free system.

New results are reported for the discrete case, while for the

continuous case they are identical to [1], [2].
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The coefficients that appear in [5] without general formula, have

natural meaning in this work with simple pattern.
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APPENDIX

I. Proof of equation (7): By differentiation (2) rfl times, we obtain:

r

p - Mp - q £ °4t
1=0 1

r . -

t> - Mp - q £ ia.t1 x
i=l x

p(rfl) -MP(r) -qarr!
p^2) - Mp(r+1>

and at t • 0

f p » Mp - qa »0l (0! U)

P0 '- MpQ - qax • 1! - MpQ - MqaQ - qax

< p(r+1> «Mp(r)- qa r! - if*1} -Mrqa -Mr"1qa. -Mr"2qa02! - ... -qa r!
*o ro • r ro n o n 1 ^2 . r

p<*«) - *<**>
*o *o

^ :

But: p(o) - [I e~MT £ a^dxjq - (o r|:M"(pfl)+ ar-1(r-l)!M"r+.. .)q
Jo i^O

or: if*1* - (arr! +a (r-l)IM1 +... +aQMr)q (29)

substituting (29) in p^ ^ , we obtain p*r+1' =0, and so:

p*1* =0 ¥ 1 >r .
*o
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II. Proof of equation (22).

r+1

We wish to show that A • 0.
o

For this end, we proceed in equation (21) one step further.

T*+1
Using the fact (E-I) f • 0, one obtains

»r+l Al/Ar+1 , »r+2XA
A =» A*(A + A )A
o o o

etc.

The last equation can be written as

Ar+1 AlAr+2 A . Al2 Ar+2 A2 , ' A,k Ar+2 Ak
A • A A A + A A A+...+A A A+...
o o o o

Likewise

a^*2 At Ar+3 A ,
A • A* A A + ...
o o

Or: A1*1 « A'2 A14"3 A2 + (higher order of A).
Q O

Likewise

Ar+1' - A'3 A*4"4 A3 + (higher order of A),
o o

A1*1 - lim (A'k Ak+1 Ak) + 0(A) - A'" A* A°° + 0(A) (30)
° K-*» ° °

Using (19): A° -PQ, aJ -?v...A° -PR...A° -Pw« 0

Using (20): A1 - A1"1 - A1"1 =0 ¥ 1, so that: A~ -0
00 00

*

Once more by (20): A~» A~+ A^» 2Ao •» A~» -|a~= |a~ »lim (£ a£) «0,

*
0(A) is the rest of the series ("higher" order of A), where each component

oo oo' oo -Oo oo oo _ .TtI
is simply A' A A . Thus, if A' A A =» 0, so is A^ .

o o o
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so finally, if the matrix A is stable, equation (30) becomes

A = 0
o

III. A simple pattern for equation (25).

Step 1: Write "Pascal Triangle" for (x-y) :

1 - 0 1

1 1-1

2 1-2 1

3 1-3 3-1

4 1-46-41

5 jl"-5"i6"-lV5 -l]

Step 2: Multiply the 1 row, from right to left, term by term by

0r,lr,2r ....

Step 3: b. equal to the sum of these terms.

Example: i = 5: Pick the dashed rectangular and form:

b5 «= l(5r) -5(4r) +10(3r) -10(2r) +5(lr) -l(0r).

Note: For the b. in (28), in step 2, multiply by lr,2r,3 ,... .

IV. The discrete analogy to [1]:

r^_0: Let: x^ A (E-lMx^} =^lVkH- ^

By! "fcfi =^k : " *iP*i*\ - *k*l\ '

or: Q - A'PjA - P. , and: (31)

]£ x/Qx, • x'P,x - x'P,x « - x'P-x (32)
f*n k k. » 1 » olo olo
k«0

r » 1: Let: (E-lMMx^P^)} A^x\ +^^k +^^ (33)
00 00

0 - [kU'P^)]^ =£ "W^K + £ ^0^ >or:
k»0 k=0
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E kx^ =- E ^^i+Q)^
k^O k=0

Let: x^(P1+Q)xk A (E-I){x^P^} =

= XiH-lP2Vl " XiP2*k " "k^V'k " X£P2V °r:
r

Q+ V± - A»P2A - P2 , and: (34)

00

E xi(Q+Pi)xk =" xoP2xo ' and by (33):
k=0

(fcfl)x^1P1xfc).1 - kx^P1xk = (H-Dx^A'P^ - kx^ =x^ +x^ +kx^,

hence: (k+DA'PjA - kPj^ - Px + (k+l)Q , or:

Q» A'P,A - Px (35)

and: £'k*^ - x?p0 (36)
k»0

(Note: We solve (35) and (36) recursively.)

r « 2: Let: (E-lM^^P^)} =x^P^ +Zkx^P^ +xjp^ +2kx^Qxfe +k^Qx^,

and so on ...
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