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ABSTRACT

A unified ﬁethod for the time weighted square ihtegral for both con-
tinuous and discrete free iinear system 1is preseutéd(v In’both cases, the
value of the integral is the quadrafic form of the initial condition
xo'Poxo, where P is a single matrix which is obtéinedveither by re-
cursive matrii équationa or by single matrix transformation. The strange
bi'a coeffiéienﬁs that appear in Man's paper [5], have a natural meaning

in the present work. Moreover, a simple formula for these coefficients

is developed;

Research sponsored by the National Science Foundation Grant GK-38205.



1.  INTRODUCTION

In a series of articles [1]-[4], MacFarlane déVeioped the method to
evaluate the total square integral of linear continuous free systems. The
analysis was.done in the time domain for various typeé §f functionals.
The value of ﬁhe integral is given in a quadratic form_bf the initial
condition: xo'Poxo, where Po is the~solution'of a sequence of Lyapunov's
type equations. Later [5], Man evaluated the infinite sum:

o r '
I = jé:o kx 'Qx , subject to: |
or1 = A%

o r
' o=
His solution %s given by x Poxo’ where Po ;g% ijj’ and Qj is given

recursively by Lyapunov's equationé.
However, in his words, "the coefficients bj must be determined sequen-
tially for r = 1,2... and no general formula is availgble which enables
the systematic determination of these coefficients.". |

We show iﬁ this work, that for both continuous and discrete time
systems, Po 18 5 solution of a sequence of Lyapunov's type equations, such

that in the diécrete case, the b,'s are hidden in thé sequence and are given

]
by a simple equation. The method is based on the ggngral solution of the
integral which is a special case of either random pfocess [7] or optimal

regulator.

2. CONTINUOUS TIME SYSTEM
(a) The General Solution

The infinite integral of linear continuous autonomous system is



given by [6 p.110-111]

(.
X = Ax
< J.= So x‘Q(t)x dt = xo'Poxo, where: Po A=P(O)f and: (1)
~:13(:) = P(t)A + A'P(t) +Q(t) , 1im P(T) = O

T

(b) Matrix Laplace Transform '

We aré-interested in J such that Q(t) = f(t)ic Q, where Q is a constant
matrix and £(t) is the time weight function.

We can write (1) as follows:

p=MP - q £(t) - (2)
For instance, n = 2:

p= co;. [pllplzpzzl s q= col. [qllqlzqzzl

2a11 2a21 0
M==] ap 85 +tay 3y
0 &, 28,,
The solution of (2) is:
Lt t .
p(t) = eMtp_(O) - S Mg £(ryar = M plo) -S e g f()dr]l  (3)
’ (] (o]

The boundarj condition for finite transfer time T is:

p(T) = 0 , hence:

p(o) = [Sm e ™M £(1)dr) q A%If(r)] v q (4)

This "matrix laplace transform" was obtained earligr {2] from another

point of view. As we shall see soon, the extension of (4) to discrete

time system is "%matrﬁ: transform".



(¢) Recursive Matrix Formulation

Here we operate directly on (1)

J = S E(t)x'Qx dt = xo'Poxo , where
o
(5)
-P(t) = P(t)A + A'P(t) + £(t) Q

(1) £(t) = 2: aiti , r is a positive integer
i=0

Differentiate (5) at P = Po:

o . () [} i - -

(6)
o o (o]

Equation (6) has the following property:

gi) =0¥4i>r, (P(i) A— diP at t = 0) , )]

Proof: See Appendix I.

Solving (6) recursively (backward), we obtain Po.
(11) £(t) =t

Substituting in (6): a, = 0, ¥i<r, a, = 1,'one obtains:

P§i>A + A'P(i) Péi*l)‘, 0.5‘1_5 r N
(8)

PP+ a2 11
[o} [+]

The last result agrees with [1].

(111) £(t) = 20t

Using'the'éaﬁe transformation as in feedback optimal regulator [6]:



K

A xe"t, one obtains 9)

J = S ezatx'Qx at = S x' Q x dt, and:
o

%:- x = (A+aDx (by: (1) and (9)). (10)

Hence:
= » ';' . . . ~ g o
J xo4P X (note: by (9): X, xo), where:

(11)
p(A + aI) + (A' + aI)P = -Q

' T
() £(e) = &2 Y ot
| i=0

r
Using (9) we obtain (10), and: f(t) = ) aiti.

i=0
Hence: J = xo'Poxo, where Po is obtained from (6) replacing A by

(A + aI).

3.  DISCRETE TIME SYSTEM
(a) The Genéral Solution
The infinite quadratic sum of linear discrete autonomous system is

given by [6 p.471-472]:

f
X1l 7 A%
- ' = '
<7 E;:) Xy Qkxk x, Poxo (12)
P, = A'P A+ Q , 1limP(kT) =0
Wt Sl - S vevul

(b) Matrix Z Transform

For Qk = fk°Q (Q-constant), we can write (12) as:

-5-



RPppp ™ P = 9% | %
For instance, n = 2:

p= ;ol.[pllplzpzzl 3 9= °°1°[q11q12q22]

2 2
a;; 283y 1
K=1a118)7  851%5%912%91 921922
2° 2
a1, 28158y ®22 |
The solution of (13) is:
p, = LE +KE + ... + K" g _lq+ K% Coaw
By boundary condition:
p(nT) '=--O, hence:
e |
p(0) = [Tt 1 qaz _[£1q | | (15)
-0 J g1 ' : .

(15) represents "Matrix 2 Transform." It should be noted that p(0)
is a function of K.

Example: £, = k') A k() (k-2)... (k-r+)
p(0) = r1K"(1-0) ") q | - (16)

(e) Recursive Matrix Formulation

Here we operate directly on (12)

= ] ' = [}
J Eo kak Qx] x Poxo’ where
a7”n

= A'P.
Pk A _Pk'l-lA + ka

or
(1) £ = 3 azkg’, r is a positive integer.
=0



Let E(-) be shift operator:

i
E"(R) AP

ki

(18)

The "derivative" in discrete time for fixed sampling time interval

is given by the following "difference":

) |
8 A E-D)'P,

i t
Ak is §he i

Another way of writing (19) 1is:

h

1 ,4-1  i-1
b T e~ A

Operating with (19) on the R.H.S. of P

(P =2
(o] (]

[~
o 0
[/

109 1 .
A .(Ao + AO)A + Qaq

o>
[}

N S N
| ]
A (Ao + AO)A + Q Z:a

N

3 L 2
+ M)A + Qz%(z -2)
2=2

2 402
4Ao A (8]

>4
[

vl o 1%L
A(A°+Ao )A + Qb

= "r
A Al A+ Q r!ar

(19)

difference at the kth sampling.

(20)

in (17), one obtains:

(21)

In our case, (21) has the following property:

i

Proof: See Appendix II.

A° = 0¥%¥41>r, and in particular A

r
5 (22)



The coefficients b,'s in (21) are given by:

i
T i p 0.1 e
b, A La X ¢-DI@-N I, 0<iz<x (23)
i 2=i’9' =0 3 . |

Solving (21) recursively (backward), we obtain ‘Po’

, '_n r
(11) fk, k
Substituting in (21): a, = 0, ¥i<r, a, = 1, one obtains:

fr =A2l.'

A’(Az + A

O =

A JA+ 1-Q

[

'A"('A}, + A%)A + 1.

N O 00 O

oOw o

At % + A
-0

OD
]

A + (2 - 2)q
' (24)

[

i+l
o

> sae
n

JA + bi'Q

(-]

aral 4
- [o]

A'A’I’A +'r! Q

r

= A
o

=1 O

where:

i j r, i o
b, A 2, (-1)7(1-3)" () ' , (25)
i j=o 3 _

(25) has a very simple pattern -~ See Appendir. III.

(i11) f

kj, K A k(k-1) (k=2) ... (k-r+1)

It is easy to verify that (E - I)ifo 0¥ 0<1ic<r,
or equivalently: b:l =0¥0<1i<r, and br = rl
Hence:

j A'PjA = : (26)
A' A, J>0

() ., 4 = 1 .
Eo:k x kak r!xo Prxo’ where: P
Pj—l



3.

2ak
k- ¢©

Let ;‘k A.xkemk = ik-l-l = (Aea);:k (... by X1 = Axk),

Noting that io =x_, we obtain:

(iv) £

3 a%.te?ékxi ka =§ i{:Qﬁk = i;?oio = x‘;ﬁoxo, where:
| ' | @7)
~ [+ P o
P = ;Ae.)Po(Ae ) +Q
W) £, =" Yok
_ =0

As in the continuous time case, replace A in (21) by (ae%).
REMARKS
In the discrete time, K is not necessarily nonﬁingular, however, for a

stable system (I-K) is nonsingular.

" The advantéges'and disadvantages of the recursive and transform forms:

(1) The.trahsform form has answer for all tr#nsformable weight
functions. | |
(11) We can use Laplace and Z transforms for tﬁe transform forms.
(1i1) If the system's dimension 1is n, M and K'a dimension is m = % n(n+l)
The matrix M in (2) is equal to -B, where B is given in [1]. |
The general form of the matrix_k is given in (3].
Equations (&).and (15) show that if discrete tiﬁe system X, ., = Ax is
obtained{f:cm continuous time system % = Ax, then K is related to B
K -ezBT |

where T i8 the sampling interval.



5.

5.

If we use the simple transformation:

~

Pr =P~ %

we obtain equivalent to equations (24), (25):

a a x! .1 & x! .
Jo xo(?o + Q)xo : Jr xoPoxo » T > 1, where:

i+l

o JA + biA'QA | : (28)

1_ aipal
by = A8+
1

j)

4
by A X D3 +1 - P
. J=o

By inspection, the Ibil's in [5] are identical to those of (28) (in the
direcﬁion of thevseéuence), however, no generél formula‘is presented
in [5] férZIbil's
In this papér (25) or (28) are natural ‘as a result of the binomial
pattern of the discrete differentiation. | |
It is 1ﬁpoftant to note that alternative form of (15) is:

e .

D MENCQRTO

3=o
The difference between MacFarlane's recursive point of view and the one
presented here 1s'£hat the first is integral form, and the second is
differential form. Therefore, it is difficult to extend his procedure

to the dié¢rete time case (See Appendix IV).

CONCLUSIONS

The main'contribution of this work is in introducing unified method

to evaluate the total square integral (sum) for linear continuous (discrete)

free system.

New résul;s are reported for the discrete case, while for the

continuous éésé>phey are identical to [1], [2].

-10-



The coefficients that appear in [5] without general formula, have

natural meaning in this work with simple pattern.
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APPENDIX

Proof of equation (7): By differentiation (2) r+l times, we obtain:

P=Mp-gq ) aiti
1=0
r
B=Mp-q 3 iotit:l .
=1 *
(r+l) _ I'Ip(r) - qu_r!
(r+2) _ pgp(r#1)

and at t = 0
= Mpo - qa  ° or (0! A1) |
‘= Mpo - qal c 1l = szo - Mqao - qal

(M) L () o . _ror-l -2 L
P, Mp - qu rt =M ""p quao M @, - M" qa,2! = ... -qo_r!

p (D) oy (FHD)

o

.
.
.

el 13 e -
But: p(o) = [S e-M-r Z ai'rid'r]q = (a_riM ‘(ﬁl)-!» o _l(r-l)!M r+...)q
' o i=0 r o r
T T | ol T |
or: M P, (atr! + ur_l(r DIM + ... + .aOM )q (29)

(r+l1)
o

(x+l) =

» -and so:
0 .

substiﬂtuting (29) in p , we obtain p

péi)EO ¥yi>r.

-13-



II. Proof of equation (22).

r+l

We wish to show that Ao = (.

For this end, we proceed in equation (21) one step further.

Using the fact (E—I)r+1 f° = (0, one obtains

-0 o o

etc.
The last equation can be written as

r+l

ATHL o qraTt2 4 4o p02 zTF2 2 0 ark aTH2 gk
() o o ' o
Likewise
ATF2 a3 L
o] o
or: A:+1 = a2 A:+3 A% + (higher order of A).
Likedise
A:+1 = a'd A§+4 A3 + (higher order of A).
’ © ™ o *
AT o 1 ar® A A%y 4 o0qa) = AT A7 AT + 0(A) (30)
[o) (o] .0
: Koo .
A (o] (o] o OE =
Ueing (19): & = By, 87 = Byyeeuly = Byoof] = B 0
Using (20): AL =all_ sl oo w4, so that: 47 =0

. w:nm mlﬂ *° ﬂalwﬂlwa
Once more by (20): Al A0+ &, 20 = A, 2A1 —Az

4

lin (%’A;) =0,

ko

*O(A) is the rest of the series ("higher" order of A), where each component

1s sinply A'"A A”. Thus, if A'"A] A" = 0, so is Al

14~



80 finallj, if the matrix A is stable, equation (30) becomes

s T
. o]

III. A simple pattern for equation (25).

Steg'lﬁ Write.“Pascal Triangle" for (x-y)n:

1i=0 1
1 1 -1
2 1-21
3 1-33-1
4 1-46-41
5 1 -5_10_-10_5 -1

Step 2: Multiply the ith row, from right to left, term by term by
B SR L0
Step 3: bi equal to the sum of these termé.
‘Example: 1 = 5: Pick the dashed rectangular and form:
bg = 1(57) - 5(47) +10(37) - 10(2") +5017) - 1(0%).

in (28), 1in step 2, multiply by lr,2r,3r,... .

Note: .For the b,

IV. The discrete analogy to [1]:

= . ‘ . 1 - ! = ' | - -'
r o.’Let. X0 A (E-D{xPix, } = x  Poxy, - xPix

BY: Mgy = A B e S ST
| or: Q = A'PlA - Pl ; and: ‘ ‘ (31)
T oxog = wlppx - wEy, <o xpy, O
xr = 1: Let: (E-D{k(xP.x )} A xPix + 0 -r e, Qx, (33)
0= %[k(xl'(Plxk)]: z f:‘, x' (B H)x, + f .kxf(ka , or: |

k=0 k=0

-15-



f: 'Qx, = - 2, x!(P,+Q)
L o = o L %
Let: xl'((P1+Q)xk A (E-I){xl'cPZXk} =

= ! | o AL R .
Xer1T2%14 ~ Fi2¥k T ¥ Doty T ¥ Fa¥ye OFF

Q+ P, =A'R,A-P,, and: (34)

&E% xl'((Q+-P1)xk = - x&szo , and by (33):

(eHl)xy  Poxy o = kgPox, = (RH)xA'P A% - kg Pix = xPix + x00 + logQx,

hence: (k+1)A'PlA - kP, = Pl + (k+1)Q., or:

1

Q= A'PlA - P | | (35)

and: D, lxiQx, = x'P,X_ (36)
k=0

(Note: We solve (35) and (36) recursively.)

r = 2: Let: (E—I){kz(xl'(Plxk)} = xl'crlxk + 2kxl’(P1xk + xl'(ka + 2kxl'<ka + kle'(ka

and so on ...

-16~
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