

Copyright © 1974, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

PRELIMINARY DESIGN OF INGRES

V
PART I - QUERY LANGUAGE, DATA STORAGE AND ACCESS

by

Nancy McDonald, Michael Stonebraker and Eugene Wong

Memorandum No. ERL-M435

10 April 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

PRELIMINARY DESIGN OF INGRES
I

by

Nancy McDonald, Michael Stonebraker and Eugene Wong

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

Part I - Query Language, Data Storage and Access

Part II - Protection, Concurrency, and Graphics

Abstract

INGRES (j^nteractive jGraphics and Retrieval ^stem) is designed to be

a general purpose data base management system supporting a relational

view of data. This report documents the query language QUEL (QUEry

^Language) available to the user, the data management features provided,

the protection mechanism supported, the update concurrency allowed, and

the available commands for the display of geographic oriented data.

Research supported in part by the National Science Foundation Grant GK-10656X3,
the Army Research Office, Durham, Grant DAHC04-74-G0087, the Joint Services
Electronics Program Contract F44620-71-C-0087, the Naval Electronics
System Command Grant N0039-71-C-0255 and the Sloan Foundation.

Forward

Project INGRES has its origin in two related projects. One was a

computer-graphics system that had been developed by P. Macri and P.-P.

Varaiya to deal with map related data. The second was a workshop on

data base systems conducted by M. R. Stonebraker and E. Wong, the

objective of which was to design and implement a system incorporating

certain land-use data of the City of San Francisco. In late 1973,

certain common interests and goals became apparent to both groups, of

which the foremost was the need for a hardware system. Thanks to

financial support from the National Science Founcation, the Sloan

Foundation, the College of Engineering and the Department of Electrical

Engineering and Computer Sciences at Berkeley, sufficient funds were

obtained to purchase a PDP—11/40 based computer graphics system. It is

expected that the first version of a graphics and retrieval system will

be operational before the end of 1974. In this report we shall describe

the basic design goals and philosophy as well as the preliminary system

specifications.

Division of labor among the three listed co-authors was as follows:

M.R.S. wrote sections 1, 4, 5, 6, 7 and Appendix C, E. W. wrote sections

2, 3 and appendices A and B, N. M. was responsible for section 8.

P. P. Varaiya has been the principal moving spirit" in the project from

its inception. But for him, the project would not exist. Primary

responsibility for implementing the retrieval portion of the system is

borne by Karel Youssefi (Query Processor) and Peter Kreps (Access Processor)

The graphics portion of the system is being implemented by Nancy McDonald

and Barbara Cottrell. Members of the Database Workshop (EECS 298-15)

-2-

have implemented a preliminary version of the system commands given in

Appendix Cand have contributed ideas at every stage of the project.*

We are also grateful to Peter Groat of the Planning Department of the City

of San Francisco, to Dean E. S. Kuh of the College of Engineering

and to Chairman T. E. Everhart of the Department of Electrical

Engineering and Computer Sciences for their enthusiastic support.

A

In addition to those already mentioned, the members include W. Chang,
J.I. Chapela, J.M. Ford, P. Jahanian, P.O. Lehot, J.C. Liang, J.H. Liou.
J.N. Yang.

-3-

1. Introduction

INGRES (INteractive Grapics and ^trieval ^stem) is designed to be

a general purpose data base management system. As such it provides

facilities for controlled access to and efficient management of large

data bases. In addition, specialized facilities for the display of

geographic oriented data are provided.

1.1 Goals

The basic goals of the design are:

1. A design supporting a relational view of data.

2. A high level data definition, retrieval and update facility.

3. Data independence.

4. Sophisticated protection scheme

5. Efficient and flexible storage organization.

6. Flexible support of geographic oriented data.

7. Modular and extendable design.

8. A design implementable in one calendar year.

Goal 1 reflects our belief that a relational view of data [1,2,3] is

the most appropriate one. In particular, it is preferable to a

hierarchical view [4,5].

Goal 2 reflects our belief that interactions with a data base should

be conducted in the highest level language possible. Examples of other

high level languages include SEQUEL [6], VERS [7], Data Language/Alpha [8]

and Square [9]. Such languages typically free the programmer from

concern for how data structures are implemented and what algorithms are

operating on stored data. The language through which users interact

with INGRES is called QUEL (QUEry jLanguage) and is closely modelled after

-4_

the language ALPHA. The design of QUEL is strongly motivated by

implementation considerations. Eventually we plan to design an even

higher level language which will be compiled into QUEL, perhaps one

approaching natural English [10].

Goal 3 results from our belief that programs in QUEL should not be

rendered obsolete because of changes in the way data are physically sorted.

Such changes may be desirable from time to time for efficiency reasons.

Moreover, data bases tend to grow in the number of domains present. INGRES

ensures that user programs will continue to operate correctly over a

large class of storage transformations. For a further discussion of

data independence the reader is referred to [11].

Goal 4 reflects our conviction that large data bases require access

controls of a sophistication not found in existing systems [12]. One possible

user of INGRES, the Dean of the College of Engineering (for storage and

retrieval of student and faculty records) is particularly concerned about

security.

The diverse and time-varying data bases that INGRES must manage

require diverse storage organizations for efficient management. A

fifth goal of INGRES is the support of a class of organizations that will

efficiently accomodate most data bases.

Goal 6 reflects the fact that INGRES is an outgrowth of a far simpler

system [13] now operational at Berkeley. The germination of this project

resulted from user demands for a more powerful system.

Lastly, goals 7 and 8 reflect the pragmatic reality that support

for the project has been generously provided by the College of Engineering

and by a steering committee for interdisciplinary graduate education

-5-

through a grant from the Sloan Foundation under the assurance that

an operational system should be available by December, 1974.

1.2 Environment

INGRES will run as a normal user job on top of the UNIX [14]

operating system on a PDP-11/40 CPU [15]. In the sequel the reader

is assumed to be familiar with the features of UNIX. The imple

mentation of INGRES is being programmed in "C" [16] an extension of

BCPL [17]. It was chosen as the most suitable language currently

supported by UNIX.

Since our implementation of INGRES must be operational quickly,

we have designed INGRES to require as few changes to "C" and UNIX as

possible.

1.3 Report Organization

The remainder of this report is organized as follows. Section

2 and 3 indicate respectively the retrieval and update capabilities

of QUEL and the mechanisms used to decompose interactions. Then in

Section 4 the available methods for relation storage which are available

in INGRES are presented. Sections 5 and 6 provide a discussion of

the access controls and deadlock prevention mechanisms built into

INGRES. In Section 7 the miscellaneous data management commands are

described. Then, Section 8 documents the display oriented features

built on top of the basic system. Lastly, Section 9 presents a

summary and suggests conclusions and possible extensions.

-6-

2. Retrieval Capabilities in QUEL

The discussion commences with notational conventions adopted

throughout this and subsequent sections. Then we indicate the

format of QUEL retrieval statements.

2.1 Notation

Given sets (not necessarily distinct) a relation

R(D^,...,D) is a subset of the Cartesian product D^xD«x.,.xd .
12 n

In other words, R is a collection of n—tuples x =(x ,...,x)
1 n'^'

where x. ^ D for 1 £ i £ n. The sets D-,...,D are called the
In

domains of R, and R has degree n.

The only restriction put on relations is that they be normalized

[1]• Hence, every domain must be simple i.e. it cannot have members

which are themselves relations.

Clearly R can be thought of as a table with elements of R appearing

as rows and with columns labeled by domain names, as illustrated by

the following example.

Example 2.1

Six tuples from a landuse relation with three domains, parcel number,

parcel zoning, and parcel use are indicated

T , PARCEL ZONE USE1j3.I1G11S6 ^

1 Residential 1—family
2 Industrial Vacant
3 Commercial Restaurant
4 Commercial Mortuary
5 Residential Apartment
6 Commercial Go Go Club

-7-

Each column in a tabular representation of R can be thought of as a

function mapping R into D^. These functions will be called attributes.

An attribute will not be separately designated but will be identified

by names of the pair (relation, domain) defining it. Where no confusion

can arise only the domain name need be given.

Throughout this section the above relation along with two other

relations will be used for examples. These relations are:

PAR // UNIT // // OCCU

Census

and

City

115

4 12

5 12

5 2 4

5 3 3

5 4 6

6 14

C NAME STATE POPULATION

San Francisco Ca. 700000
Berkeley Ca. 100000
New York N.Y. 8000000

St. Louis Mo. 1500000

2.2 Format of RETRIEVE Queries

Queries to RETRIEVE are probably the most important ones in QUEL.

Each RETRIEVE-query consists of: one RANGE declaration, an optional ALIAS

declaration, an optional DESIGNATE declaration, and one or more RETRIEVE

Statements.

a. RANGE declaration

Form - RANGE: Relation Name (Symbol, ,Symbol):

Relation Name (Symbol, ,Symbol):

Relation Name (Symbol, Symbol)

-8-

Purpose - The symbols declared in the RANGE declaration are variables

which will be used as arguments for attributes. These are

called tuple variables. The purpose of the declaration

is to specify the relation over which each variable ranges.

Scope - The scope of each RANGE declaration is limited to the

current query.

Allowed Relations - The relations names allowed in a RANGE declaration

are: those of the relations in the data base to which the

current user has access, those of the relations that have

been obtained as results of previous queries in the current

sign-on session, those of the resultant relations of the

current query provided that no ambiguity arises.

b. ALIAS declaration.

Form - ALIAS: Name (alias): Name (alias): : Name (alias)

Purpose - To introduce abbreviated notations for domain names and

relation names.

Scope - Current query.

c. DESIGNATE statement

Form - DESIGNATE: (Name = A-function): (Name = A-function):

(Name = A-function)

Purpose - The main purpose of DESIGNATE statement is to name any

domain of the resultant relations of the current query which

is not an existing domain, (for example, DENSITY = X. POPULATION/

X. AREA). While a secondary benefit of a DESIGNATE statement

is abbreviation, it is a much less important one. Another

situation which requires renaming arises when two domains

-9-

of a newly created relation have Identical names.

Scope - The name assigned to any domain of a relation created by

the current query has the life of that relation, viz., the

current sign-on session unless the relation is made

permanent by a separate procedure.

Default Condition: - If no name is assigned when one is

needed, the newly created domain will be referred to as

COLU i, according to its position in the newly created

relation.

d. RETRIEVE statements

Form — RETRIEVE: Result Name: Target List: Qualification

Purpose — Each RETRIEVE statement creates a relation from one or more

existing relations and assigns to it the name specified by

"Result Name." Target List and Qualification will be

explained in later sections.

Limitation - There is no limit on the number of RETRIEVE

statements which can be included in a query. However, the

RETRIEVE statements in a given query must be so ordered

that no statement contains a tuple variable with a range

which is named in a subsequent statement, i.e., all the

ranges of a RETRIEVE statement must be well-defined as of

that point.

Scope - The relation created by a RETRIEVE statement and its name

survive for the current sign-on session, unless the relation

is made permanent by a separate procedure.

-10-

Example 2»2 Consider two relations

LANDUSE (PARCEL#, ZONE, USE)

CENSUS (PARCEL#, UNIT#, # OCCUPANTS)

where the domain names appear within the parentheses

a. Find those parcels with at least one unit having more than 6

occupants.

RANGE: CENSUS (X)

RETRIEVE: W : X. PARCEL#: X.#OCCUPANTS > 6

b. Find all parcels zoned commercial which have occupants

RANGE: CENSUS(X): LANDUSE(Y)

RETRIEVE: W: X. PARCEL#: (X. #OCCUPANTS > 0)

A (X. PARCEL# = Y. PARCEL#)

A(Y. ZONE = C)

c. Find all pairs of distinct parcels which are identically zoned.

RANGE: LANDUSE(X,Y)

DESIGNATE: PI = PARCEL#(X): P2 = PARCEL#(Y)

RETRIEVE: PAIR: .P1,P2 : (P^ P2) ^ (X.ZONE = Y. ZONE)

2.3 Attribute Function

If X is a declared tuple-variable with range R and D is the name of

a domain in R, then the notation X.D. stands for the attribute defined

by (D,R). Attribute functions are functions of declared tuple-variables

constructed from attributes by simple mappings and by arithmetrical

operation as defined below.

a. A constant is an attribute function.

b. An attribute is an attribute function.

-11-

oc. If f and g are attribute functions then f and log^g are attribute

functions.

d. If f and g are attribute functions, not necessarily having

identical arguments, then f+g, f-g, f*g, f/g are all attribute

functions. The argument of the resultant function is the union

of the variables in the arguments of f and g.

2.4 Aggregate-Free Qualification

Let CITY be a relation with domains CNAME, STATE, POPULATION. Let X

and Y be tuple-variables with range CITY. The condition "X. POPULATION

j< 1,000,000" specifies a subset of CITY, or equivalently a truth function

on CITY. The condition "X. POPULATION > Y. POPULATION," on the other

hand, specified a subset of CITY x CITY. For the condition

(X. POPULATION £ 1,000,000) and (X. POPULATION > Y. POPULATION)

to make sense the first subcondition (X. POPULATION _< 1,000,000) will

be interpreted as also specifying a subset of CITY x CITY. The entire

condition then nonarabiguously specifies the intersection of two sets of

CITY X CITY. These conditions typify the "Qualification" portion of a

RETRIEVE statement. In this section we shall specify the allowed

qualifications for RETRIEVE statements containing no aggregation operations

The necessary modifications to include aggregations are minor and will

be given later.

a. Atomic Formulas

Let f and g be attribute functions, not necessarily having identical

arguments, then f * g is an atomic formula for the following binary

-12-

operators;

f * g = f = g

f 1 g

f > g

f ^ 8 ^ 0

f > g ^ 0

f >_ g > 0

f > g > 0

Note that a formula such as f 8 ^ ^ appear to involve a ternary

operator, but it can be reexpressed asf-h^g-h^O. Negation of

an atomic formula is again an atomic formula, ("f * g)

b. Clause

A clause is a conjunction (logical and) of a finite number of atomic

formulas. The format for expressing a clause is given by

(atomic formula) ^ (atomic formula) ^ A (atomic formula)

An atomic formula is a degenerate clause.

c. Sentence

A sentence is a disjunction (logical or) of a finite number of

clauses to be expressed as: clause ^ clause n/ ... v clause.

A clause is a degenerate sentence.

A proposition is either an atomic formula, or a clause, or a sentence,

We shall say the preposition is atomic in the first case, conjunctive in

the second, and disjunctive in the third. The "qualification" in a

-13-

RETRIEVE statement is either a proposition or void. Clearly, the

qualification specifies a subset of the product of the ranges of the

declared variables.

Example 2.3 If the range of both X and Y is CITY, then (X. POPULATION

£ 1,000,000) A(x. POPULATION > Y. POPULATION) specifies the collection

of pairs of tuples (X,Y) in CITY x CITY which satisfy both atomic formulas

of the conjunctive proposition.

2.5 Aggregation

The following aggregation-operators are recognized in QUEL:

COUNT, COUNT\ SUM, SUM', AVG, AVG', MAX, MIN. These operators can be

used in a number of different ways as explained below.

a. Unary Operators on a Clause

A clause CL (i.e., a conjunctive proposition) containing tuple

variable, X-,X«,...,X can be viewed as a truth function CL(X-,X«,...,X)
1 ^ n 1 z n

which is 1 if (X^,X2,...,X^) satisfies the proposition and 0 otherwise.

Suppose the range of X= (X^,X2,...,X^) is (R^jR^,...,R^). Then

C0UNT(CL(X^,X2,...,X^))

« The number of points in R^xR2x...xR^ such that CL(X) = 1

COUNT is the only aggregation operator defined as a unary operator on

a clause.

b. Unary Operators on an Attribute Function

Let X ~ (X-, ,X„,... ,X) be tuple variables with range R.xR x,..xR ,
J- z n i Z n

Let f(X) be an attribute function.

-14-

COUNT (f(X)) = The number of points in R, x r x ... x r .
12 n*

(f is immaterial here.)

COUNT'(f(x)) = The number of different values of f(X) which occur

as X ranges over R. x r x ... x r .
12 n

SUM(£(X)) = The sum of all values of f(X) as Xranges over

R, X R X .. . X R .
12 n

SUM'(f(X)) = The sum of all distinct values of f(X) as Xranges

over Rj^ XR^ X... Xr^. (Duplicate values are

eliminated before summing.)

AVG(f(X)) = SUM(f(X))/COUNT(f(X))

AVG'(f(X)) = SUM'(f(X))/COUNT'(f(X))

= The largest value of f(X) for Xe r x ... x r .
1 n*

~ The smallest value of f (X) for X^R x.,.xr.
~ ~ 1 * * * n*

No^: 1. One gets garbage for SUM, SUM', AVG, AVG' if f is not

numerical-valued. At some later time more extensive type

checking may be introduced.

2. One gets nonsense for MAX and MIN if the values of f are not

ordered.

3. For any aggregation-operator E, E(f(X)) is a number and not

a function. The presence of Xmerely indicates the range.

Sc—Binary Operators on (Attribute Function; Claused

Suppose f(X) is an attribute function and CL(X) is a clause with

identical arguments. Let Sbe the set in x ... xR^ for which CL(X) =1,
Then, for any aggregation-operator E, E(f(X); CL(X)) has the same

meaning as E(f(X)). except that Sreplaces R^ x ... x in its definition.

MAX(f(X)

MIN(f(X))

-15-

If the attribute function and the clause do not have identical

arguments, say f(Y) and CL(Z), then Z(f(Y); CL(Z)) is interpreted as

Z(f(X); CL(X)) where X is the union of the variables in Y and and

f CL are extensions of f and CL to Xobtained by treating them as being

constant on the added variables. Some care must be exercised in using

aggregation in this way, since it has consequences which may not be

obvious.

Note: Z(f(X); CL(X)) or E(f(Jf); CL(^)) is a constant not a function.

The variables are dummy variables used to indicate range.

^—Binary Operators on (Attribute Function; Attribute Function)

Let f(X) and g(X) be attribute functions with identical arguments.

Let the range of Xbe x x ... ^ R^. The distinct values of g

partition R^ x R^ x ,,, x R^ into subsets of the form

Sa = ^1' g(X) =

For any aggregation-operator Z=(COUNT, COUNT', SUM, SUM', AVG, AVG', MAX,

MIN) we define Z(f(X); g(X)) as follows:

(i) Z(f(X); g(X)) is a function on R, x r x ... x r
12 n

(ii) Z(f(X); g(X)) is constant on each set and

2(f(X); g(X)) = Z(f(X); g(X) = a)
X^S
— a

Note: (1) In the defining equation in (ii) the right hand side is of the

form Z(attribute function; clause).

(2) Unlike previous cases, i:(f(X); g(X)) is a function of the

variables X.

-16-

(3) Since S(f(X); g(X)) is constant on any set of X on which

g(X) is constant, it is a function of g(X).

Functions of the form E(f(X); g(X)) will be called aggregate-functions.

On the other hand Z(clause), Z(attribute function), and Z(attribute

function, clause) are all constants and will be called aggregates.

If f and g have different arguments, say If and Z, then Z(f(Y); giZ))

will be interpreted as Z(f(X); g(X))> where X is the union of variables

in _Y and Z, f and g are extensions of f and g to X* Again, we call

attention to the fact that Z(f(Y); g(_Z)) may have non-obvious implications

and must be used with some care.

Let ^ = (g^,g2,...,g^). It is easy to see how Z(f(X); g(X)) = Z(f(X);

gj^(X), g2(X)> •••» gjj^(X)) be defined. It is constant on any set

of X for which jg^(X) is constant, and

Z(f(X); ^(X)) = Z(f(X); ^(X) = a)

^(X) = a

Examples to follow will make use of the two relations

CENSUS and LANDUSE given in section 2.1.

Range; LANDUSE(X): CENSUS(Y)

Ex. 2.4 Count the number of parcels in LANDUSE zoned commercial

COUNT (X. ZONE = C)

Ex. 2.5 Count the total number of units in CENSUS

COUNT (Y. UNIT//)

Ex. 2.6 Count the number of different parcels included in CENSUS

COUNT'(Y. PAR//)

-17-

Ex. 1,1 Find the total number of occupants in CENSUS

SUM(Y. //OCCU)

Ex. 2.8 Find the average number of occupants per unit in CENSUS

AVG(Y. //OCCU)

Ex. 2.9 Find the average number of occupants per unit in parcels zoned

residential.

AVG(Y. //OCCU; (Y. PAR// = X. PAR//) A (x. ZONE = R))

Ex. 2.10 Find the total number of occupants in parcels zoned commercial.

SUM(Y. //OCCU; (Y. PAR// = X. PAR//) A (x. ZONE = C))

Ex. 2.11 For each parcel find the total number of units.

COUNT(Y. UNIT//; Y. PAR//)

In QUEL nested aggregations are not allowed in the same statement.

For example, the statement

COUNT(Y. OCCU > AVG(Y. OCCU))

makes sense, but is illegal in QUEL. In order to perform such an

operator, we need two statements. This can be done in various ways.

One example is the following:

RANGE: CENSUS(Y): MEAN(Z)

DESIGNATE: AV = AVG(Y. OCCU)

RETRIEVE: MEAN: AV

RETRIEVE: W: COUNT(Y. OCCU > Z. AV)

Another example of achieving the same thing using legal QUEL statements

is given below.

RANGE: CENSUS(Y): CROWD(Z)

Ex. 2.12 RETRIEVE: CROWD: Y. PAR//, Y. UNIT//, Y. //OCCU:

Y.//OCCU > AVG(Y./jbCCU)

-18-

RETRIEVE: W: COUNT(Z.//OCCU)

As a further example Involving nested aggregation, consider the

query: "Find the average number of occupants per parcel In CENSUS."

The following QUEL query does the job.

Ex. 2.13

RANGE: CENSUS(X): TEMP(Y)

DESIQIATE: POP = SUM(X.//OCCU; X. PAR//)

RETRIEVE: TEMP: X. PAR//, POP

RETRIEVE: W: AVG(Y. POP)

2.6 A - Functions

We define a scalar to be a constant, or an aggregate, or any

arithmetical combination of constants and aggregates. We define an

A-functlon as follows:

(a) A scalar Is an A-functlon

(b) An attribute function Is an A-function

(c) An aggregate function is an A-function

(d) The class of A-functions Is closed under the mappings:

g
f , log^g (f,g = A-functions)

(e) The class of A-functions Is closed under binary operations:

+ - * /•» » »/ •

2.7 Qualifications

To modify the definitions given in section 2.4, we only need to

modify the atomic formulas: If f and g are A-functions, then f*g is an

atomic formula for all the binary operators * specified In (2.4a).

Conversely, any atomic formula must be of this form.

As before, a clause is a conjunction of atomic formulas and a

-19-

sentence is a disjunction of clauses. Collectively, atomic formulas,

clauses, and sentences will be referred to as propositions. The

qualification portion of a retrieve statement is either void, or is a

proposition.

We note that clauses serving as operands in aggregates can

involve only attribute functions.

2.8 Target List

The target list of a RETRIEVE statement has the form

A-function , A-function , , A-function

where the A-functions may appear either as formulas defining them, or as

names defined in a DESIGNATE statement.

Suppose X^, X^ are the declared tuple variables, with ranges

Rl> 1^2* •••» Then the "Qualification" defines a subset S of

^ ^2 ^ ^ Each A—function in the target list can be viewed

as a function on R^ x R2 x ... x R^, whether or not all the tuple

variables appear explicitly in the function. We now interpret the

resultant relation of the RETRIEVE statement as being constructed by:

(a) evaluating the A-functions in the target list on S in the order

specified, and

(b) ordering and eliminating duplicate tuples resulting from (a)

A formal description of the syntax of the retrieval queries is

given in Appendix A. A query parsing algorithm is indicated in Appendix

B.

2.9 Special Keywords and Conventions

Si m AXfL

-20-

Let X, Y be tuple variables with range R and let D^, D2,

be the domains of R. When used in the target list X. ALL means X.D^,

X.D2,...9X.D^ . When used in the qualification X.ALL = Y.ALL means

(X.D^ = Y.D^) A (X.D2 = Y.D2)A ...A(X.D^ = Y.D^).

b. ID

The keyword ID is the name for a tuple-enumerator. In QUEL all

relations, unless otherwise specified, are assumed to be sorted in

ttl
the order of the domains. X.ID is equal to i for the i— tuple.

c. COUNT (R)

A count of the number of tuples is maintained for every existing

relation, and every newly created relation. If R is the name of a

relation, COUNT(R) yields the number of tuples in R.

2.10 Decomposition

The processing of a RETRIEVE query begins by removing the disjunctions

and repeating the query for each clause. The results will then be

merged. Basically, the processor prefers to deal with queries containing

only conjunctive propositions (i.e. clauses) in their qualification.

The next step in the processing is to replace each query by a sequence of

1-variable queries. This decomposition is a vital part of the system.

The most difficult problem in the decomposition is to deal with

aggregates and aggregate—functions. Several ways of solving their

problem were considered. The particular procedure adopted was chosen on

the basis of programming simplicity and may not be the most efficient

in terms of overall execution speed. The basic idea in the approach is

to replace aggregate-functions by attribute functions defined on newly

-21-

created relations.

The principal components in the decomposition procedure are illustrated

below.

.<; Aggregates ^\Yes
Evaluate and Replace

Aggregates
N. Present? ^

No

Out <- ^One-Variable'\^

s

No

f

Out^

Remove One-Variable

Atomic Formulas

Are

Aggregate-Funct iong
Present?

Tuple
Substitution

Remove One-Variable

Atomic Formulas

-22-

Evaluate and Replace
Aggregat e-Functions

Grouping some of the components makes the sub algorithms a little

more evident.

ONEVAR

AGFREE

The subprocess AGFREE in turn is represented by

TUPSUB

\ /

ONEVAR

-23-

AGREV

AGREV

The details of the component processes are explained below.

a. QNEVAR

(1) The query being presented is examined to determine whether it

involves only one variable. If so, the sub-procedure ends. If

not, go on.

(ii) For each variable X determine C(X) = conjunction of all atomic

formulas involving only X. If C(X) is void for every X, the sub-

procedure ends, otherwise go on.

(iii) Let R be the range of X. Determine X.Aj^,X. A^,... ,X. the

attributes involving X appearing in the remainder of the query

(target list or qualification) after C(X) is deleted.

(iv) Issue the query

RANGE: R(X)

RETRIEVE: R': X.A^,X.A^,...,X.A^: C(X)

(v) Delete C(X) from the qualification and change R to R' in the

original query

End

b. TUPSUB (Tuple Substitution)

Note: the query being presented can be assumed to be free of

aggregation operators, to contain no one—variable, formula, to involve

at least two variables.

(i) Determine X, the tuple variable with a range say R having the

least count among all ranges of the query.

(ii)) Determine the attributes in the query which depend on X, say

X.A^,X.A2,...»X.A^.

-24-

(iii) For 1 ^ i ^ COUNT(R), issue the query

RANGE: R(X)

RETRIEVE: W : X.A,,X.A«,...,X.A : X.ID = i
1 1 z m

(iv) A special arrangement is made to return by value, and the

values so returned are substituted into the query for

X• ^*̂ 2>••• >̂ •A^^ •

(v) X is deleted as a variable in the query

c* AGREV (for aggregates)

Any aggregate can be assumed to be of the form

E(attribute function; clause)

because COUNT(clause) = COUNT(1;clause) and E(Attribute function)

= E(attribute function; Void). Note also that the variables in an

aggregate are dummy variables used only to indicate range. Whether the

same variables appear elsewhere or not is iiranaterial.

(i) If the aggregate involves only one variable, say X, then a one-

variable query is issued, the value returned as substituted into the

original query. If X appears nowhere else in the query, it is eliminated.

(ii) If the aggregate involves several variables, say X = X^,...,X^,

then the aggregate must be of the form E(f(X.A); CL(X)), where A are

domain names and CL is a clause. Denote the ranges of Xby R^,R^,...,R^.

Issue the queries

RANGE: R,(XJ ; R«(X-): ... : R (X)
^ 1 1 Z Z mm
^1

RETRIEVE: V: X-A: CL(X)

RANGE: V(Y)

<^2
RETRIEVE: W: Ef(Y.A))

-25-

(iii) Observe that is a multiple-variable query but free of

aggregation operators, and hence can be decomposed by AGFREE.

On the other hand is a one-variable query.

(iv) The value returned is substituted in the original query and

components of X not appearing elsewhere in the original query

are eliminated.

d. AGREV (For Aggregation-Functions)

Unlike aggregates, the variables in an aggregate-function are not

dummy variables.

(i) If the aggregate function involves only a single variable, say

X with range R, then it must be of the form

KfCX.A); g(X.B))

where A and ^ are domain names. Issue a query

RANGE: X(R)

DESIGNATE: C = E(f(X.^; g(X.B)):

D = g(X.B)

RETRIEVE: W: D,C

If X appears nowhere else in the original query, change its range from

R to Wand replace the aggregate-function by X.C.• If X does appear some

where else in the original query, add W(Z) to its range declaration,

replace the aggregate-function by Z.C and add the atomic formula g(X.B)

= Z.D to the qualification.

(ii) If the aggregate function involves several variables, say

jC = X^,X2,... ,X^, with ranges Rj^,R2,... ,R^, it must be of the form

-26-

lC(f(X.A); 5.(X, B)). Issue two queries

RANGE: (X,): R„(X.): ...: R (X)
n 112 2 m m
^1

RETRIEVE: V: C,D

RANGE: V(Z)

^2 DESIGNATE: E = KfCX.A); ^(X-l))

RETRIEVE: W: Z.D,E

Note that is multi-variable but aggregation-free, and can be

decomposed by using AGFREE. In the original query if X appears nowhere

else, we replace X by Z with range W and Z(f(X.A); ^(X*jB)) by Z.E. If

one or more components of X appears elsewhere in the original query,

we add W(Z) to the range declaration, replace the aggregate-function by

Z.E. and add ^(X.B) = Z.D to the qualifications.

Next, we turn to a consideration of the three forms of update

statements.

3. Update Statements

In addition to RETRIEVE, QUEL permits three operations: REPLACE,

DELETE and COMBINE, which are basically update operations. The meaning

of REPLACE and DELETE are obvious, while COMBINE is a generalization of the

operation usually called "insert." In one of its simplest applications,

COMBINE is used to form the union of relations with identical domains.

3.1 DELETE

RANGE DECLARATION

DELETE: RESULT NAME: TARGET LIST: QUALIFICATION

-27-

The target list in a DELETE statement is restricted to contain only

attributes of a single declared tuple variable and X, i.e.,

X. Domain Name, X.Domain Name, X.Domain Name

The interpretation of the operation is as follows:

(i) Take the relation which is the range of X and delete from it the

tuples which satisfy the QUALIFICATION.

(ii) Project the result of (i) on the domains named in the TARGET LIST.

Note: One can use the convention X.ALL as the TARGET LIST, if only

deletion and not projection is desired.

Example 3.1

Delete from LANDUSE those parcels which appear in CENSUS to have

multiple units.

RANGE: LANDUSE(X): CENSUS(Y)

DELETE: LANDUSE': X.ALL:

(X.PAR# = Y.PAR//)

A (COUNT'(Y.UNIT//; Y.PAR//) > 1)

3.2 REPLACE

RANGE DECLARATION

REPLACE: RESULT NAME: TARGET LIST: QUALIFICATION

The TARGET LIST of a REPLACE statement has th6 form

X.Domain Name = A-Function, X.Domain Name = A-Function, ...,

X.Domain Name = A-Function

where X must be the same variable in each term. The A-functions can be

functions of declared variables other than X, and of attributes

of X which do not appear on the left hand side of any term. On the set

-28-

S specified by the QUALIFICATION, each term in the TARGET LIST must

represent a single-valued correspondence. That is, on any subset of S

such that the attribute specified by the left hand side of a term is

constant the A-function on the right hand side must be a constant,

(i) In the relation say R , which is the range of X, determine the

sub-relation which satisfies the QUALIFICATION.

(ii) Replace on the sub-relation found in (i) the attribute values as

specified by the TARGET LIST.

(iii) The resultant relation is R modified according to (ii).

example 3.2

Replace in LANDUSE the zoning classification of any multiple-unit

parcel by M.

RANGE: LANDUSE(X): CENSUS(Y)

REPLACE: LANDUSE': X.ZONE = M:

(X.PAR// = Y.PAR//)

A (ROUNT'(Y.UNIT//: Y.PAR//) > 1)

3.3 COMBINE

RANGE DECLARATION

COMBINE: RESULT NAME: TARGET LIST: QUALIFICATION

Again only the TARGET LIST is different from RETRIEVE statements. The

TARGET LIST in a COMBINE statement has the form

(Domain Name,,Domain Name)(tuple variable, tuple

variable)

-29-

The range of each of the tuple variables must contain every domain

named in the TARGET LIST. We interpret a COMBINE statement as

follows:

(i) For each variable named in the TARGET LIST, form a relation with

domains as specified and using the QUALIFICATION

(ii) Form a union of all the relations obtained in (i) with tuples
ordered.

jSXAMPLE 3.3 Find the set of all parcels which are either zoned

industrial or has more than one unit.

RANGE: LANDUSE(X): CENSUS(Y)

COMBINE: P: PAR//(X,Y):

(X.ZONE = I)

A(COUNT'(Y.UNIT//; Y.PAR//) > 1)

Relation Storage in INGRES

All entities to be physically stored by INGRES are relations. In all
cases a relation is stored in a single UNIX file and will be either

permanent or temporary (workspaces). Each relation is given a unique
identifier which is also the file name in which it is stored. Three
things are noteworthy concerning relation storage

a) the access methods supported

b) the handling of variable length values

c) the use of indexes

^•1 Access Methods

At the moment five different means of storing a relation are available,
The user need not be concerned about which one is currently in use.

-30-

The methods supported are

a) hash tables [18,19]

b) sorted tables

c) unsorted tables

d) compressed sorted tables

e) lists

Each storage structure has an associated access method and all access

methods accept the same set of nine commands from higher level software,

except that command 5 cannot make sense with hash access. New access

methods can be easily added by implementing these commands for a new

storage structure. This set of commands is as follows

1. Return the tuple from a specified relation offset from the last

tuple returned by a positive or negative integer constant. (Each

access method must include an ordering of its tuples to allow such

requests. For sorted tables and lists it must be the obvious ordering.)
2. Return the tuple from a specified relation with the smallest

key value greater than or equal to an offered key. This key is (an
arbitrary number) Kbytes long and is compared against the leftmost

K bytes of tuples in the relation.

3. Return the first tuple that exactly matches an offered key; Again

a key is the leftmost K bytes of a tuple.

4. Reset (i.e. set the last tuple returned to the zeroeth tuple).

5. Insert an offered tuple at the end of a specified relation.

6. Insert an offered tuple at its correct position in a specified

relation.

-31-

7. In a specified relation delete all tuples with a key equal to

an offered key.

8. Delete the last tuple retrieved

We now discuss the storage structure supported by each access method,

a) Hash access

We are implementing a straightforward hashing method utilizing

division as a randomizing algorithm [20, 21]. Collisions will be

resolved by rehashing to a new address. The hash table will be

expanded when nearly full by selecting a larger modulus and rehashing

the table. Since the number of tuples in a relation is expected to

change slowly a more sophisticated scheme(for example [22]) does not

appear warranted.

b & c) Sorted and unsorted tables

These are implemented in the obvious way,

d) Compressed tables

A sorted table may be compressed to save storage space if a severe

penalty in access time is tolerable. Basically, the compression algorithm

makes use of the fact that a tuple differs from its successor only in

a certain number of right hand bytes, and only the difference need be

stored for unique decipherability. Since the length of each tuple

stored must also be recorded, expansion rather than compression results

if the leftmost byte of a tuple never matches its predecessor. The

compression scheme is most advantageous if the domains of a relation

are arranged so that those with a small number of possible values

are to the left.

-32-

e) Lists

The current implementation is a simple two-way linked list [23].

A structure similar to a B-tree [24] may be used in its stead in the

future.

4.2 Handling Variable-Length Values

It was decided for programming ease that the above access methods

would deal only with tuples of a fixed length. Thus, domains (such as

person - names) which are typically of variable length character strings

must be made fixed-length. Two schemes are allowed in INGRES;

1) padding with blanks

2) coding.

When there is a large variance in length, the first scheme is space-

wasting. Hence, a coding routine is also provided. This routine

accepts the following five commands.

a) Return the fixed length code corresponding to a specified

variable length data item.

b) Return the data item corresponding to a specified code.

c) Insert a given data item and return a new code for it.

c) Delete the code offered and its associated data item.

e) Delete the data item offered and its associated code.

Since conversion between codes and data items must go in both

directions, a coding tree is an appropriate mechanism. Conversion in

each direction occurs in a time proportional to log n where n is the

number of data items in the tree. For programming ease we are

implementing a binary tree similar to the one in MacAIMS [25].

-33-

Schemes exist which ensure that binary trees do not become excessively

unbalanced [26, 27, 28]. Unfortunately, balancing a coding tree

requires the codes to be changed, a time-consuming process. Therefore,

the decision was made to balance the tree dynamically only when one

is forced to do so. This will happen when the insertion of a new data

item causes the maximum depth of the tree to be exceeded. For convenience,

an off-line utility will be provided to periodically inspect trees for

poor balance and to correct them.

A decision has yet to be made as to how many coding trees will be

maintained. In [25] all character strings are in one tree. At the

other extreme each coded domain can have its own tree.

The latter situation is undesirable since a comparison of values

for two different coded domains then requires the values to be decoded.

The former situation will create one very large tree which will of

necessity be very deep. Hence decoding, will be costly.

We shall adopt an intermediate position whereby groups of domains

which are often compared will be coded in the same tree. Some domains,

however, will have an individual tree. These include coded domains in

indices.

4.3 Indices

An index can be created for any group of one or more domains in

any relation. Although mechanisms exist for making good choices [29,

30], no attempt will be made to automate the selection process. INGRES

will depend on commands from the "owner" of a data base to create

indices. An example of indexing is now provided.

-34-

Example 4.1

An employee relation with four tuples is indicated below together

with an index for one of the domains

EMP

Name Salary Dept.

SMITH 1000 English tuple 1

JONES 1500 Chemistry tuple 2

ADAMS 1000 Biology tuple 3

EVANS 1500 Engineering tuple 4

Salary

1000

1500

Pointer

1.3

2.4

The pointer domain is variable-length so it is coded into an

individual coding tree. The index relation is then stored and

accessed just like any other relation. Normally, however, a sorted

table is the expected storage choice for indices.

Groups of domains can be indexed as the following index relation

indicates.

Sal

1000

1000

1500

1000

Dept

Bio

English

Chem.

Eng.

Pointer

3

1

2

4

When INGRES responds to a one-variable query, it attempts to use

any redundant Indices that will speed access.

-35-

References

[1] Codd, E. F., "A Relational Model of Data for Large Shared Data

Banks," CACM, Vol. 13, No. 6, (June 1970).

[2] Codd, E. F., "Relational Completeness of Data Base Sublanguages,"

Courant Computer Science Symposium May, 1972.

[3] Codd, E. F., "Normalized Data Base Structure: A Brief Tutorial,"

Proc. 1971 ACM—SIGFIDET Workshop on Data Description Access and

Control, San Diego, Ca., Nov. 1971.

[4] Information Management System/360, Program Description IBM Corp.,

SH20-0634.

[5] Information Management System/360, General Information Manual IBM

Corp., GH20-0765

[6] Chamberlin, D. and Boyce, R., "SEQUELA Structured English Query

Language," IBM Research, San Jose, Ca.

[7] Early, J., "High Level Operations in Automatic Programming," Dept.

of Computer Science, Univ. of California, Berkeley, Tech. Report 22,

October 1973.

[8] Codd, E. F., "A Data Base Sublanguage Founded on the Relational

Calculus," Proc. 1971 ACM~SIGFIDET Conference on Data Description

Access and Control, San Diego, Ca., Nov. 1971.

[9] Boyce, R. F. et al., "Specifying Queries as Relational Expressions:

SQUARE," IBM Research, San Jose, Ca., RJ 1291.

[10] Codd, E. F., "Seven Steps to Rendevous with the Casual User," IBM

Research, San Jose, Ca. RJ 1333, January, 1974.

[11] Stonebraker, M., "A Functional View of Data Independence," submitted

for publication.

-36-

[12] Feature "Analysis of Generalized Data Base Management Systems,"

Codasyl Systems Committee, May, 1971.

[13] Macri, P., "BUDS: Berkeley Urban Data System," Electronics Research

Laboratory, Univ. of California, Berkeley, Technical Memorandum

M412, Nov., 1973.

[14] Ritchie, E. and Thompson, K., "The UNIX Time-Sharing System," Proc.

6th Operating Systems Symposium, Yorktown Heights, N. Y., Nov. 1973.

[15] PDP 11/40 Processor Handbook, Digital Equipment Corp.,1972.

[16] C Reference Manual (unpublished)

[17] Richards, M., "BCPL: A Tool for Compiler Writing and System

Programming," Proc. AFIPS SJCC, 1969.

[18] Maurer, W. D., "An Improved Hash Code for Scatter Storage," CACM

Vol. 11, No. 1, January, 1968.

[19] Morris, R., "Scatter Techniques," CACM, Vol. 11, No. 1, January,

1968.

[20] Lum, V. "General Performance Analysis of Key-to-Address Transformation

Methods Using an Abstract File Concept," CACM, 16, No. 10, October

1973.

[21] Lum, V. et al., "Key-to-Address Transform Techniques: A Fundamental

Performance Study on Large Existing Formatted Files," CACM, 14,

No. 4, April 1971.

[22] Knott, G. D., "Expandable Open Addressing Hash Table Storage and

Retrieval," Proc. 1971 ACM-SIGFIDET Workshop on Data Description

Access and Control, San Diego, Ca., Nov. 1971.

[23] Knuth, D. E., The Art of Computer Programming, Vol. 1, Addison-

Wesley, Reading, Mass., 1968.

-37-

[24] Bayer, R. and Mc Creight, E. M., "Organization and Maintenance

of Large Ordered Indices," Proc. 1970 ACM-SIGFIDET Workshop on

Data Description Access and Control, Houston, Texas, Nov. 1970.

[25] Goldstein, R. C. and Strnad» A. L., "The MacAIMS Data Management

System," Proc. 1970 ACM-SIGFIDET Workshop on Data Description

Access and Control, Houston, Texas, Nov., 1970.

[26] Adelson-Velskii, G. M. and Landis, E. M., An Information

Organization Algorithm, DANSSSR, No. 2, 1962.

[27] Nievergelt, J.,"Binary Search Trees and File Organization," Proc.

1972 SIGFIDET Workshop on Data Description Access and Control,

Denver, Colorado, Nov. 1972.

[28] Walker, W. A. and Gotlieb, C. C.,"Hybrid Trees: A Data Structure

for Lists of Keys" Proc. 1972 ACM SIGFIDET Workshop on Data

Description Access and Control, Denver, Colo., Nov. 1972.

[29] Stonebraker, M., "Retrieval Efficiency Using Confined Indices,"

Proc. 1972 ACM-SIGFIDET Workshop on Data Description Access and

Control, Denver, Colo., Nov. 1972.

[30] Stonebraker, M., "The Choice of Partial Inversions and Combined

Indices," Journal of Information and Computer Science, (to appear)

-38-

RETRIEVE QUERY

DECLARATION

RETRIEVE SEQUENCE

RANGE DECLARATION

ALIAS DECLARATION

DESIGNATE

DECLARATION

RETRIEVE STATEMENT =

TARGET LIST

APPENDIX A ~ SYNTAX

DECLARATION

RETRIEVE SEQUENCE

RANGE DECLARATION

RANGE DECLARATION

ALIAS DECLARATION

RANGE DECLARATION

DESIGNATE DECLARATION

RANGE DECLARATION

ALIAS DECLARATION

DESIGNATE DECLARATION

RETRIEVE STATEMENT

RETRIEVE STATEMENT

RETRIEVE SEQUENCE

RANGE: RELATION-NAME(VARIABLES):

; RELATION-NAME(VARIABLES)

ALIAS: NAME(ALIAS):

: NAME(ALIAS)

DESIGNATE: NAME =A-FUNCTION:

: NAME = A-FUNCTION

RETRIEVE: RESULT-NAME: TARGET LIST:

QUALIFICATION

A-FUNCTION

NAME

A-FUNCTION, TARGET LIST, NAME, TARGET LIST

-39-

QUALIFICATION

PROPOSITION

CLAUSE

ATOMIC FORMULA

F(f,g)

A-FUNCTION

M(f.g)

VOID

PROPOSITION

CLAUSE

CLAUSE V PROPOSITION

ATOMIC FORMULA

ATOMIC FORMULA A CLAUSE

(A-FUNCTION * A-FUNCTION)

F(A-FUNCTION, A-FUNCTION)

~ ATOMIC FORMULA

f > g > 0

f 2: 8 > 0

f > g 2. 0

f 2. 8 >: 0

SCALAR

ATTRIBUTE FUNCTION

AGGREGATE FUNCTION

M(A-FUNCTION,A-FUNCTION)

A-FUNCTION $ A-FUNCTION

lc>8f8

-40-

SCALAR

ATTRIBUTE FUNCTION

AGGREGATE FUNCTION

ATTRIBUTE SEQUENCE

AGGREGATE

ATTRIBUTE

I

/

CONSTANT

AGGREGATE

CONSTANT

ATTRIBUTE

M (ATTRIBUTE FUNCTION,ATTRIBUTE FUNCTION)

ATTRIBUTE FUNCTION $ ATTRIBUTE FUNCTION

E(ATTRIBUTE FUNCTION;ATTRIBUTE SEQUENCE)

ATTRIBUTE FUNCTION, ATTRIBUTE SEQUENCE

COUNT(CLAUSE*)

Z(ATTRIBUTE FUNCTION)

EATTRIBUTE FUNCTION; CLAUSE*)

VARIABLE. DOMAIN NAME

COUNT

COUNT'

SUM

SUM'

AVG

AVG*

MAX

MIN

-41-

CLAUSE*

ATOMIC FORMULA*

ATOMIC FORMULA*

ATOMIC FORMULA* A CLAUSE*

(ATTRIBUTE FUNCTION * ATTRIBUTE FUNCTION)

~ ATOMIC FORMULA*

Terminal Symbols

KEY WORDS RANGE, ALIAS, DESIGNATE, RETRIEVE

NAMES

CONSTANTS

VARIABLES

LOGICAL CONNECTIVES V, A> "

COMPARISON OPERATORS =, >, >., (>,>0), (>:,>0), (>,lO) *(>1,^0)

MAPPINGS f®, logjg

ARITHMETICAL OPERATORS +, -, *, /

AGGREGATION OPERATORS COUNT, COUNT', SUM, SUM', AVG, AVG', MAX, MIN

PUNCTUATIONS

PARENTHESIS

GROUND SYMBOL

()

0

-42-

APPENDIX B -• PARSING

A RETRIEVE query is already a string containing only terminal S3rmbols

except for A-functions and proposition. First, we shall reduce a

proposition to a string containing terminal s3rmbols and A-functions,

then each A-function to a string containing only terminal symbols.

a. Proposition

We shall construct a binary tree as follows:

Proposition = Clause

or

Clause*^^ Proposition

Clause = Atomic Formula

or

Atomic

Formula

Atomic Formula =

or

Atomic

Formula

A-function

Clause

A-function

The binary tree so constructed will have leaves that are either

ground symbol 0 or A-functions. The nodes of the binary tree will be

arranged in postorder.

-43-

b. A-Function

A-Function = Constant

or Aggregate

or Attribute Function

or Aggregate Function

A-Function A-Function

Aggregate =

Aggregate =
Function

or

A-Function A-Function

COUNT or COUNT*

or

or

Clause

Attribute

Function

Attribute

Function

Attribute

Function

Clause*

Attribute Sequence

-44-

Attribute Sequence

or

Clause*

or

Atomic Formula*

or

Attribute Function

Attribute Function

Atomic Formula

Atomic Formula*

Atomic Formula*

Attribute

Function

Attribute Sequence

Clause*

Attribute

Function

Thus, each A-Function is represented by a binary tree in which the

leaves are 0, and attribute functions. The nodes can put in postorder

to yield a string of primitive symobls and attribute functions,

c. Attribute Functions

Attribute Function = Constant

or attribute

or

Attribute Function Attribute Function

-45-

or

Attribute

Attribute

Function

Variable

-46-

Attribute

Function

Domain Name

APPENDIX C - COMMANDS IN INGRES

Before a discussion of the data management commands can commence

we need to discuss the file structure being implemented.

C.2 File Structure

Figure C.l indicates the proposed directory and file structure.

Before a discussion of each individual file, the readers are reminded of

the following assumptions,

1) In order to provide any semblance of controlled sharing, INGRES

must run in special execute mode.

2) Most INGRES files will have protection status: owner read, owner

write, no other access.

3) As a result of 2), there will be one super user (here called XXX)

who is the only user allowed to access INGRES files outside of

INGRES. This user will sometimes be called DATA CZAR.

4) INGRES will allow several data bases and each is to be protected

independently. In Figure C.l two data bases, LAND and COLLEGE,

are indicated.

5) File names in UNIX are the concatenation of the names along the

path to a file from the root. Hence, the object code for INGRES

is in the file/XXX.INGRES.

6) UNIX file names are 8 alphanumeric characters, the first of which

is alphabetic.

7) The same file can have several path names. Hence, sharing of

the various files indicated in Figure C.l is allowed.

-47-

We now discuss each file in Figure C.l in turn.

INGRES - contains object code for our management system. It has

special execute protection status. This code will be

loaded into the virtual machine of each user of our system.

DATADIR - directory file. Contains pointers to all data bases known

to INGRES.

LAND -

WISDOM -

HASH -

REALITY -

REALDIR -

CODE -

directory file. Contains pointers to the 3 directories and 3

real files which exist for each data base (in this case,

LAND).

This file contains descriptive information about each

relation in the data base

This file contains the hash transformation parameters used

to access any hashed relation.

This file contains format information on all real relations

in the given data base.

directory file. This file contains pointers to all data

base files. We adhere to the convention that a relation

is stored in a file with the name of the relation's unique

id (to be presently discussed).

directory file. This file contains pointers to all files

that serve to code the values of some attribute in the given

data base.

-48-

I \
o I

W
IS

D
O

M

IN
G

R
E

S

H
A

S
H

IR
E

C
T

IO
l^

D
A

T
A

D
IR

L
A

N
D

C
O

L
L

E
G

E

R
E

A
L

D
IC

R
E

A
L

IT
Y

C
O

D
E

z

M
A

P
P

R
O

T
E

C
T

V
IE

W

z
:
a M

F
ig

u
re

C
.l

T
h

e
IN

G
R

E
S

F
il

e
S

tr
u

c
tu

re

U
S

E
R

S

:e
m

c
a
t

M
A

C
R

O
D

I
R

D
I
R

_
\

USERS - directory file. There is one entry for each authorized user.

YYY - directory file. This file contains pointers to the 4 files

and 2 directories unique to a user (here, YYY) of a data

base.

PROTECT - This file contains protection information limiting the

"view" of the given user.

VIEW - This file indicates the "view" that the given user has of

the data base. For the DATA BASE ADMINISTRATOR REALITY

= VIEW.

TEMCAT -

MACRO -

DIR -

MAP -

This file contains format information concerning temporary

files (workspaces).

This file contains derived relations (or MACROS) for use by

the current user. Many relations in VIEW will have their

derivation listed here.

directory file. This file contains pointers to all temporary

files for the user.

directory file. This file contains pointers to all maps

saved by the user.

We will now turn to a detailed discussion of the formats of REALITY,

TEMCAT and VIEW.

-50-

Formats

REALITY, TEMCAT and VIEW are coded identically and as indicated in

Figure C.2. A description of each field now follows.

header

SPARES

NUMS -

OWNER -

18 bytes

8 bytes of unused space for future needs

(FORMAT C8). This field contains the first unused unique

ID for this data base. The first character is a Z; the rest

are alphanumeric. Any process needing a unique ID reads this

field then increments it by 1. Consequently, at least 36**7

unique file names can be generated starting with ZOOOOOOO.

This sequence will last for several years. This field is not

defined for TEMCAT or VIEW.

(FORMAT C8). This field contains the UNIX ID of the owner of

the relations cataloged. The owner of the files in REALITY

is defined to be the DATA BASE ADMINISTRATOR for the given data

base. This user has less power than the DATA CZAR but more

than other users.

relation header - 64 bytes

UNIQ ID ~ (FORMAT C8). This field contains the unique file name where

the relation is stored.

REL #1 NAME - This field contains any alias that a user may assign to this

relation. (FORMAT C16)

INDEX - (FORMAT C8). A relation and any index for it are chained

together on a one-way circularly linked list. This field

contains the next member of this chain (in particular its

-51-

s

1

P

2

A

3

R

4

E

5

S

6 7 8

N

9

U

10

M S

0 W N E R

U N I Q I D

R E

•

L // 1

A L I A S

I N D E X

S P E C I

N 1 N 2

S P A R E

S P A R E

U N I Q I D

A L I A S

A T T R I // 1

C 0 D E

S P A R E

Figure 2.

-52-

24 byte
header

\64 bytes
relation

header

40 bytes
attribute

info

relation ID). This field is not defined for VIEW.

SPEC - (FORMAT C7). This field indicates how the relation is stored.

In particular:

= relation stored as unsorted table

sort = relation stored as a sorted table

comp = relation sorted and compressed

list = relation stored logically sorted in a list

$NN = relation stored as a hash table. NN indicates how

many bytes are to be concatenated and used as a hash

key (FORMAT I).

I - Indicates whether this relation is an index or not (FORMAT Cl)

0 = relation is an index (follow chain to find out for what)

7^ 0 = this relation is not an index

N1 - (FORMAT 21). This field contains the number of attributes

in the current relation.

N2 - (FORMAT 21). This field contains the number of tuples in the

current relation. This is not defined for VIEW.

attribute information - 40 bytes per attribute

ATTRI //I ALIAS - This field contains any alias that the user may assign

to an attribute. (FORMAT C 16).

UNIQ ID - (FORMAT C8). This field contains the unique id (unique

within the realtion) for the current attribute.

CODE - (FORMAT C8). This indicates how the attribute is coded:

1 6
SQQQQQQQ = attribute is tree coded with a 2 byte code (2 possible

values)

LQQQQQQQ = attribute is tree coded with a 4 byte code (2^^ possible

values)

-53-

Here QQQQQQQQ is the last 7 bytes of the file name in which codes

are to be looked up. Of course, the first byte is "Z"

C(L) - character string of length L

F = 4 byte floating point number

2F = 8 byte floating point number

1=2 byte integer

21 = 4 byte integer (not yet supported)

It is likely that other codes will be added later.

C.2 User Commands

1. HELP (data base)

In WISDOM helpful textual material is stored concerning the data

base opened. HELP is to print out this helpful information as an aid

to the beginning user.

2. VIEW

This command empties user VIEW and replaces it with the view

allowed by PROTECT. Aliases are obtained from REALITY,

3. RELEASE (relation ID or alias)

This command changes the owner of the indicated relation to that of

the current user. If the current user is not the DATA BASE ADMINISTRATOR,

only workspaces in the current user's TEMCAT can be released. The DATA

BASE ADMINISTRATOR can release a relation in any users TEMCAT or in

REALITY.

4. INDEX (Relation id or alias, SPEC, attribute id or alias, ..'

attribute id or alias)

-54-

This command creates an index for the indicated attributes of the

specified relation and catalogs it. The storage mechanism is that of

SPEC and defaults to a sorted table. Only the DATA BASE ADMINISTRATOR

can use this command.

5, CREATE (SPEC, attribute alias, code, ..., attribute alias, code)

This routine creates an empty field and catalogs appropriate

information in TEMCAT. Returns a unique relation id.

6, LINK (file name, length, SPEC, attribute id, code, ..., attribute

ID, code)

This has the same general effect as CREATE in that it catalogs a

new relation. In addition, however, it links to DIR the file specified

and changes its name to a valid INGRES relation id. This command is

the opposite of RELEASE. Moreover, the file linked must be in the correct

format for the appropriate access method.

7, MODIFY (mode, relation id or alias, SPEC, attribute id, code, .,,,

attribute id, code)

Mode = 1 catalog the relation into REALITY from TEMCAT. This mode

is allowed only to the DATA BASE ADMINISTRATOR

Mode = 2 recatalog the relation in TEMCAT

Mode = 3 recatalog the relation in REALITY. This mode is allowed

only to the DATA BASE ADMINISTRATOR

Mode = 4 recatalog in VIEW

The appropriate catalog entries are changed for the relation specified.

The catalog entries for each attribute specified are changed to reflect

-55-

a new code indicated. If a "drop" is indicated in code the attribute is

deleted. If Mode 9^ 4 the storage structure of the affected relation is

changed to conform to the new catalog entry.

8. PERMUTE (relation id or alias, attribute id or alias, ..., attribute

id or alias)

This routine permutes the attributes in a relation usually in

preparation for sorting in a specific order.

Again, only the DATA BASE ADMINISTRATOR can perform this operation for

relations not in TEMCAT.

9. SORT (relation id or alias)

This routine sorts the indicated relation into collating sequence.

It is only defined if the relation is a list or a table. The same

restrictions apply concerning authorization to execute this command as

for PERMUTE.

10. DELETE (relation ID or alias)

This command destroys a relation. The same restrictions as in

PERMUTE apply.

11. ALIAS (relation id or alias, attribute id or alias, new alias)

This command creates a new alias for a given attribute. If an

attribute is not specified the new alias is applied to the relations

specified.

The following two commands are available only to the DATA BASE

ADMINISTRATOR.

-56-

12. Protect (user, protection statement)

This command inserts a protection statement in a given users

PROTECT file

13. DPROTECT (user, protection statement)

This command deletes a protection statement form PROTECT

14. RPROTECT (user, relation)

This command reads and displays the protection statements applied

to a given relation and a given user. A user can only display the

protection information applied to himself. The DATA BASE ADMINISTRATOR

can read everyones protection information.

15.. PROMPT (relation id or alias or blank)

If X = 15 this routine is to display the user aliases of all relations

in TEMCAT and VIEW.

If X y5 this routine is to display user aliases of all attributes

in the relation with user alias or actual ID of X.

16. FORMAT (relation id or alias)

This command displays all format information concerning a relation

in TEMCAT or VIEW

17. CREATE DATA BASE (name)

This command creates a data base with the current user as DATA BASE

ADMINISTRATOR. Only a few users will be allowed to execute this command.

18. DESTROY (data base)

The DATA BASE ADMINISTRATOR can destroy an entire data base using

this command.

-57-

