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ABSTRACT

Backtrack algorithms for listing certain kinds of subgraphs of a

graph are described and analysed. Included are algorithms for

enumerating spanning trees, cycles, simple cycles, and other kinds of

paths. The algorithms have 0(V+E) space requirements and 0(V+E+EN)

time requirements, if the problem graph has V vertices, E edges, and

N subgraphs of the type to be listed.

Keywords: algorithm, circuit, cycle, enumeration, graph, path,

spanning tree, tree.
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by

Ronald C. Read and R. Endre Tarjan

Introduction

Certain applications of graph theory require the counting or

listing of the set of subgraphs of a graph which satisfy some particular

property. Examples include calculation of electrical circuit parameters

by using spanning trees [1], studying program flow by using the cycles

in a program flow graph [ 2], and organizing information according to

the cliques of an associated data graph [ 3]. One algorithmic technique,

backtracking, is particularly suitable for listing the kinds of subgraphs

which occur in some of these applications.

We may enumerate all subsets of a set S by choosing some ordering for

the elements of S and examining the elements in order. When we examine

an element, we decide whether to include it or not in the subset we are

constructing. After we decide whether to include the last element, we

list the set we have just constructed, then we change our decision about

the last element and list a new set. Whenever we have tried both

including and excluding an element, we back up to the previous element,

change our decision, and move forward again. This process is called

backtracking [ 4].

By listing all subsets of the edges of a given graph using back-
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tracking and testing each subset to see if it satisfies a desired

property, we can list all subgraphs which have the desired property.

However, very few of the possible subgraphs may satisfy the property.

If we can predict as we go along whether the subgraph we are constructing

can be completed to form a desired one, then we can restrict the back

tracking process, exploring only fruitful possibilities, and thus list

the desired subgraphs much more efficiently than if we do notrestrict the

backtracking. This paper presents and analyzes efficient backtrack

algorithms for listing spanning trees, cycles, simple cycles, and certain

other kinds of paths.

Definitions;

A graph G = is a collection of vertices f and edges E. V

denotes the nxamber of vertices and E the number of edges. The edges may

be either unordered pairs of distinct vertices (the graph is undirected)

or ordered pairs of distinct vertices (the graph is directed). An edge

is denoted by e = (v,w); v and w are adjacent, v and w are incident to

(v,w). Graphs do not contain loops (edges of the form (v,v))or multiple

edges, though it is easy to modify the algorithms to allow loops and

multiple edges.

Asequence of distinct edges p = (v^,V2)> ('̂ 2*'̂ ^)* •••» ^^n-l*^n^

in G is called a path from v- to v . If v = v , p is a cycle. If
in in

^1' ^2* ***' distinct, p is a simple path. If v^ =v^ and
V . V V - are distinct, p is a simple cycle. By convention, a path

2» n-1

may contain no edges, but a cycle must contain at least two edges. Two

cycles which are cyclic permutations of each other are regarded as the same

cycle. Agraph G' = (U', E') is a subgraph of Gif I/' £ 1/ and E' £ E. An

undirected graph is connected if there is a path between every distinct
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pair of vertices. The maximal connected subgraphs of a graph are its

connected components. A directed graph is strongly connected if for

any two distinct vertices v and w, there is a path from v to w. An

edge e of an undirected graph is a bridge if there are two vertices v

and w which have at least one path joining them and every path joining

them contains e. A tree is a connected undirected graph which contains

no cycles. A spanning tree of an undirected graph G is a subgraph which

is a tree and which contains all the vertices of G. A complete graph is

a graph with any two distinct vertices joined by an edge. A clique of

a graph G is a maximal complete subgraph of G. A directed, rooted tree

is a directed graph with one vertex, the root, having no edges leading

to it, all other vertices having one edge leading to them, and no cycles.

If there is a path from v to w in a directed rooted tree, then v is

called an ancestor of w and w is a descendant of v.

Listing Spanning Trees

The problem of listing all spanning trees of an undirected graph

has an application in the solution of linear electrical networks [1 ],

and several algorithms have been published [1,5-9 ]. Many of them use

backtracking restricted in some way. If T is the number of spanning

trees of the graph, we would like to have an algorithm which runs in a

time bound polynomial in V,E, and T, and which requires as little storage

as possible. Suppose we generate all subsets of the edges of a graph

by backtracking, and list those which give spanning trees. This simple

algorithm was apparently first suggested by Feussner [ 7]. Some of

the subsets are spanning trees, but others are not. In fact, if the

original graph is a tree, such an unrestricted backtracking algorithm
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Ewill require at least k2 time (for some constant k) to find one spanning

treeI Thus, we must restrict the backtracking to get an efficient

algorithm.

One of the algorithms in the literature, Mcllroy's [5], is a minor

variation of unrestricted backtracking. McIlroy*s algorithm works vertex

by vertex, "growing" a spanning tree by adding one vertex at a time to it.

At a given step the algorithm picks a vertex adjacent to the current tree

and connects it to the tree using some edge. When the algorithm backtracks

to this vertex, it deletes the previous connecting edge from the graph

and picks another connecting edge. When no more possible connecting

edges remain to be chosen, the algorithm picks another vertex adjacent

to the tree and connects it. When no remaining vertices are adjacent

to the tree, the algorithm backtracks. This algorithm has a partial

check against looking for spanning trees in a disconnected graph, but

E
on a graph such as that in Figure 1 it will require k2 time to find one

spanning tree, if it starts at vertex 1, and it is not an efficient algorithm

in the worst case.

However, there is one algorithm in the literature which is very

efficient. The algorithm was described informally by Minty [6]; here

we give a version of the algorithm in Algol-like notation and a worst-case

running time analysis. The algorithm is based on two observations which

restrict the necessary backtracking. First, any bridge of a graph must

be in all its spanning trees. Thus, at any time during backtracking when

we are deciding whether to include or delete an edge which is a bridge,

we may automatically include it. Second, any edge which forms a cycle

with edges already included in the spanning tree must not be included as

a spanning tree edge. These two checks give rise to the following

algorithm for listing spanning trees:
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procedure SPAN; begin

procedure REC; begin

declare B, L set variables local to procedure REC;

81: find all bridges B which are not tree edges;

add all edges in B to current partial spanning tree;

82: find all edges L not in partial tree joining vertices already

connected in partial tree;

delete all edges L from graph;

if all edges in tree then output spanning tree else begin

let e be an edge not in tree;

add e to tree;

REC;

delete e from tree and from graph;

REC;

remove all edges in B from, tree;

add e and all edges in L to graph;

end;

end;

initialize current partial spanning tree to the empty set;

83: test to see that graph is connected;

if graph is not connected then output no trees else REC;

end;
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This algorithm is very easy to program. Step 81 may be implemented

using depth-first search; all the bridges of a graph may be found in 0(V+E)

time using such a search [10>11»12]. Step S2 may be carried out by using

any search process [nJ to find the connected components of the partially

constructed spanning tree, then labelling the vertices of each component

with distinguishing numbers, and finally adding to L each edge which joins

two vertices having the same number. The total time for these operations

is 0(V+E). Step S3 may also be carried out in 0(V+E) time using a search

[11].

If the problem graph is not connected, it contains no spanning trees,

and algorithm SPAN will indicate this in 0(V+E) time after step S3 is

completed. If the problem graph is connected, then E >_ V-1 and a

single call on REC requires 0(E) time plus (possibly) time for two nested

calls on REC. Each call on REC gives rise either to a spanning tree or

to two nested calls on REC. Thus, the nested calls on REC may be

represented as a binary tree with the bottom-most calls corresponding to

spanning trees. It follows that the number of calls on REC is 0(T), where

T is the number of spanning trees. The total running time of SPAN is thus

0(V+E+ET). SPAN requries 0(V+E) storage space plus (possibly) storage

space for the spanning trees. If the trees are used as they are generated,

SPAN requires 0(V+E) total storage space.

Algorithm SPAN is almost as efficient as is theoretically possible.

Any spanning tree algorithm must look at the entire problem graph and must

list all spanning trees. Thus, any spanning tree algorithm requires at

least k(V+E+VT) time for some constant k. Ignoring constant factors, SPAN

E
is within a factor of — of being as efficient as theoretically possible.
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We believe that it is possible to construct an algorithm with

a time bound closer to the theoretical lower limit by using a reference

tree idea [ 13] coupled with a good algorithm for computing equivalence

relations [14-16], but the improvement afforded by such an algorithm would be

minimal for two reasons. First, the algorithm would be

significantly more complicated than SPAN (the constant factor in the

running time would be much greater). Second, if E/V is large,

the number of spanning trees is very large, as demonstrated in the

theorem below.

Theorem li

A connected graph G with V vertices and E edges has at least

-1 + /1+8(E-V+1)
2 spanning trees, where t =

Proof:

Pick any particular spanning tree J of G and delete all the edges

of J from G to form a graph G*. Let J' be a graph consisting of a set

of trees, one spanning each connected component of G'. If J' contains

t edges and the connected components of G' have n^, n^, ...» vertices.

then

k k n.(n.-l)
t = I (n -1) and I ^ E - V+ 1.

1=1 ^ 1=1

K K

This implies t(t+l) = (n.-l))^ + \ (n.-l)
i=l i=l ^

k 2 k
^ I [(n -1) + (n -1)] = I n. (n -1) > 2(E - V + 1).

i=l ^ _ i=l ^ ^

- 1 + /I + 8(E-V+1)
Thus, t >
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By combining each subset of the edges of J' with an appropriate

subset of the edges of J, we may form 2^ different spanning trees of G.

This proves the theorem.

Corollary 2:

span's worst case running time is within a factor of

k log (TN-2) log log(T+4) of best possible, for some constant k.

Proof;

If graph G is disconnected or E < 2V, SPAN's running time is

best possible to within a constant factor. If G is connected and

E > 2V, T > 2^ where

t =
- 1 + /I + 8(E-V+1)

It follows that log T(log T+1) ^ 2(E-V+1). Thus, (log T)^ E-V+1,

log T ^ / E-V+1 , and log log T > y log V. Since T£

log T _< V log V. Combining, we have

log Tlog log T>i log Tlog V>i i >Ti-
£. Z V — zV — 4V

The corollary follows.

Theorem 3:

Given any V and E, there is a connected graph with V vertices, E

edges, and fewer than t^ spanning trees, where

t =
3 4- /9 + 8(E--V)

2
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Proof:

Construct a graph of V vertices and E edges consisting of a spanning

tree plus edges between vertices in a fixed set of t vertices. This graph

has fewer than t^ spaxining trees. We can construct such a graph if

+ V- t > E; that is, if t^ - 3t - 2(E-V) > 0. But,

t >

guarantees this.

Theorem 3 shows that the bound in Theorem 1 is reasonably tight.

Listing Simple Cycles

Backtracking is also very useful for listing the simple cycles

(and certain other kinds of paths) in an undirected or a directed graph.

A list of simple cycles is useful in optimizing computer programs, and

several published papers contain algorithms [17-27] • The two most

common approaches are to use some kind of restricted backtracking or to

represent cycles as elements in a vector space whose basis is a set of

fundamental cycles. Prabhaker and Deo [24] discuss these and other

methods.

The vector space approach has two significant drawbacks. First,

it is only applicable to undirected graphs. Second, for each of the

algorithms in [22,25] it is possible to construct a graph with a small

number of cycles for which the given algorithm requires an exponential

amount of time to list the simple cycles. This second drawback

(inefficiency) is shared by the algorithms described in [17,18,20,26,27].

Reference [19] contains bad example graphs for the algorithms of

3 + /9 + 8(E-V)
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Tiernan [17] and Weinblatt [18]» bad examples for the other algorithms

are easily constructed.

The three reasonably efficient algorithms in the literature [19,

21, 23] all use the same type of backtracking, though restricted

in slightly different ways. Suppose we somehow number the vertices

of the problem graph from 1 to V. Then we can pick the smallest numbered

vertex on a cycle to be a unique "start" vertex of the cycle. For a fixed

start vertex, we choose an edge leading from the vertex. This starts a

path in the problem graph. To extend the path, we pick an edge leading

from the last vertex on the path. We do not allow the path to intersect

itself or to contain vertices smaller than the start vertex. If the last

vertex on the path has an edge leading to the start vertex, we output a

cycle. When we have tried all possible ways of extending a path, we

back up, delete the last edge on the path, and try another possibility.

To ennumerate all simple cycles, we try this backtracking procedure with

each vertex as a starting vertex. Tiernan was the originator of this

algorithm, which is sometimes very inefficient because many ways of

extending a path may not lead to a simple cycle [19].

However, it is possible to put restrictions on the backtracking

and get an efficient algorithm. The algorithms in [19, 21, 23]

are all of this type. If the problem graph has C simple cycles,

Ehrenfeucht, Fosdick, and Osterweil*s algorithm [21] has an

0(VE(C+1)) time bound, Tarjan's [19] has an 0(VE(C+1))

time bound, and Johnson's [23] has an 0(V + E + EC) time

bound. All three algorithms have 0(V+E) space requirements in

addition to storage space for the output. A new algorithm with an
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0(V+E+EC) time bound appears below. This algorithm was developed

independently of Johnson's and rivals it in simplicity and theoretical

efficiency.

To improve Tiernan's essentially unrestricted backtracking procedure,

we need a way to select possible cycle starting vertices and a way to

restrict the backtracking. Suppose we explore the problem graph using

depth-first search [10], numbering the vertices from 1 to V as we reach

them during, the search. The search divides the edges of the graph into

four sets: a set of edges forming a directed rooted tree; a set of

edges from descendants to ancestors in the tree, called cycle arcs; a

set of edges from ancestors to descendants in the tree, called

forward arcs; and a set of edges joining unrelated vertices in the

spanning tree, called cross arcs. The tree spans all vertices

reachable from the start vertex, which is the root of the tree. Tree

edges and forward arcs run from smaller to larger numbered vertices; cycle

arcs and cross arcs run from larger to smaller numbered vertices [10]. Each

cycle arc is an edge of at least one simple cycle, and each cycle must end

in a cycle arc. This follows from results in [28]. Thus, the set of

cycle-starting vertices is exactly the set of vertices with entering cycle

arcs, a set which we can determine in 0(V+E) time using depth-first

search [10]. We may also use this search to divide the graph into strongly

connected components, each of which may be processed separately for cycles.

For each cycle start vertex, we carry out a backtracking procedure

to build up a simple path which may be extended into a simple cycle.

After adding a new vertex to the current path, we carry out a backwards

exploration from the start vertex to determine those vertices
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connectable to the start vertex by a path containing none of the vertices

on the current simple path. We then extend the current simple path by adding

one of the connectable vertices, avoiding possible extensions which don*t

give rise to cycles. If there is only one way to extend the path,we

extend the path in this unique way, avoiding any more backward searching

until we are presented with a choice of two alternatives. The complete

algorithm is presented below in an Algol-like notation. It uses two list

structure representations of the problem graph G: for any vertex v,

A(v) is the set of vertices w such that (v,w) is an edge of G,

and B(v) is the set of vertices u such that (u,v) is an edge of

G.
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procedure CYCLE; begin cdnanent s is current cycle start vertex;

procedure BACKTRACK (v); begin comment vertex v is end of current path;

declare C a set variable local to procedure BACKTRACK;

mark all vertices unscanned and unconnectable;

mark s connectable;

Cl: while some vertex x ^ s is connectable and unscanned do^ begin

for u ^ B(x) and u ^ s ^

if u not on current path then mark u unconnectable;

mark x scanned;

end;

let C = {v I V ^ A(v) and v is connectable};

C2: for w ^ C ^ begin

mark all vertices unscanned and unconnectable;

mark s connectable

C3: while some vertex x ^ s is connectable and unscanned do begin

for u ^ B(x) and u ^ s ^

^ u is not on current path then mark u connectable;

mark X scanned;

end;

add w to current path;

while w s and A(w) contains exactly one connectable vertex x ^ begin

w:«=x;

add w to current path;

end;

if w = s then output cycle else BACKTRACK (w);

delete vertices after v from current path;

end;

end;
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C5: do a depth-first search of problem graph. Divide graph into strongly

connected components. Locate vertices with entering cycle arcs.

Mark these as cycle start vertices;

for each strongly connected component do

for each cycle start vertex s ^ begin

C6: BACKTRACK (s);

end;

end;

In this algorithm. Step C5 may be implemented to run in 0(V+E) time

as described in [10 ]. Steps C1 and C3 are backward searches which

require 0(E) time. Because of the checks in steps Cl, C3, and C5, the set C

will be non-empty when calculated during any call of BACKTRACK. Furthermore,

because of Step C4,in any nested call of BACKTRACK the set C will contain more

than one element. (The nested calls on BACKTRACK are those not initiated

in Step C6.). Each nested call on BACKTRACK thus gives rise either to

two or more simple cycles or to two or more new nested calls on BACKTRACK. There

fore the total number of calls on BACKTRACK is 0(C) where C is the

number of simple cycles. Suppose we charge the 0(E) time spent outside

the while loop C2 during a given call on BACKTRACK to that call, and we

charge the 0(E) time spent during one execution of while loop C2 to the

resultant simple cycle or nested call on BACKTRACK. Then the total time

required by algorithm CYCLE is 0(V+E+EC). CYCLE requires 0(V+E) storage plus

space for the output cycles. If the simple cycles are used as they are

generated, CYCLE requires 0(V+E) total storage space.
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CYCLE may easily be modified so that it lists all cycles (no

duplicate edges) or all simple paths from some set of start vertices

to a set of finish vertices, or all paths (no duplicate edges) from a

set of start vertices to a set of finish vertices. The time bounds

for these variations of the algorithm are the same as that for the

original algorithm: 0(V+E+EN), where N is the number of objects

to be listed.

Conclusions:

This paper has presented algorithms for listing spanning trees,

cycles, and other kinds of paths in graphs. The algorithms all have

0(V+E+EN) time bounds, where N is the number of objects to be listed.

The algorithms are both theoretically efficient and easy to program.

They are based on restricted backtracking.

Several other less-understood problems may be susceptible to the

type of analysis performed here. Perhaps the most interesting of these

is the problem of enumerating all the cliques of an undirected graph.

Many algorithms appear in the literature (see [29]); the best theoretically

seems to be Bierstone's [3,30] which is not a backtracking algorithm but

which has a worst-case time bound proportional to. N if the problem graph

contains N cliques. This is the only algorithm for which a worst-

case time bound polynomial in the number of cliques has been proved. Since

the number of cliques may be quite large, this algorithm may be inefficient.

Experimental evidence [29] suggests that a recursive algorithm due to Bron

and Kerbosch is generally faster, even though no good theoretical bound on

its running time is known. It is an open question whether there is a clique

listing algorithm with a worst-case time bound linear in the number of cliques.
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Figure 1: An example on which Mcllroy's algorithm is inefficient,


