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TWO SPECIAL CASES OF THE ASSIGNMENT PROBLEM

by

Richard M. Karp and Shuo-Yen R. Li
University of California, Berkeley, California.

The assignment problem may be stated as follows: given finite

sets of points S and T, with |s| > |t|, and given a "metric" which

assigns a distance d(x,y) to each pair (x,y) such that x ^ T and

y Gs, find a 1 - 1 function Q: T ->• S which minimizes I d(x,Q(x)).
xer

We consider the two special cases in which the points lie (1) on a

line segment and (2) on a circle, and the metric is the distance

along the line segment or circle, respectively. In each case, we show

that the optimal assignment Q can be computed in a number of steps

(additions and comparisons) proportional to the number of points. The

problem arose in connection with the efficient rearrangement of desks

located in offices along a corridor which encircles one floor of a

building.

1. The linear case

Suppose we are given two disjoint finite sets S (the sources)

and T (the destinations) of points in the open interval (0,X), with
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H(x)

n ].

Is I > |t| . Each destination xe Tmust receive a desk from some source
Q(x) ^ S. Asource can supply at most one desk, so the function
Q: T Sis one-to-one. We wish to choose Qto minimize |x-Q(x)|,

x^

which is just the total distance that the desks must travel.

Define H(x) = |s H (0,x]] - [t H (0,x)| , x ^ [0, X]

and define

e = 1S| - |t| = H(X) .

Then e > 0 ;

e is just the excess of sources over destinations, and the

"height function" H(x) gives the excess of sources over destinations

up to X.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

X= 20, S = {5,6,7,8,11,12,14,18,19}, T = {1,2,9,13,15,16,17}

FIGURE 1 : The function H(x)
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The case e = 0

Here |s| « It], and we seek a one-to-one assignment of sources

to destinations. This problem is trivial to solve, but we discuss it

in order to extract the following theorem. X

Theorem li The cost of an optimal solution is |H(x)|dx .

0

Proof I Consider any assignment Q. For any x ^ [0,X] such that

X ^ S '-I T , define

Lq(x) «= l{y e TI Q(y) <x<y}|
and

Rq(x) " |{y^T I y<x< Q(y)}

Thus, using the terminology of the desk-moving application, L^Cx)

is the number of desks passing x from left to right, and Rq(x) is

the number of desks passing x from right to left. Define

fqCx) «= Lq(x) - Rp(x); fpCx) may be interpreted as aflow equal to the
net number of desks passing x from left to right.

Now observe that

f^CO) «= 0

f^ is constant in each interval which does not contain an element of
S U T.

fp(x^) =fp(x) +1, x^S
and

f^Cx"^) =fp(x") -1, x€t
where the notation fpCx"^) stands for lim f^Cx +e),etc.

But these are the same properties that determine H(x) on [0,X] - (S Ut),
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Now

also

80 f (x) is Identically equal to H(x) on this domain.
X X

XIx - Q(x)1=IL(j(x)dx +I RQ(x)dx
x«0 x=0

X

(1)

LQ(x)dx + RQ(x)dx > fqWldit^ lH(x)ldx (2)

x®0 x=0 x«0 x=0

with equality holding in (2) if and only if. at every x. either

L(x) » 0 or R(x) = 0; i.e., if and only if there is no cancellation

of left-to-right flow against right-to-left flow.

Hence. |h(x)| is a lower bound on the cost of any assignment.

x«0

and this lower bound is achieved by any assignment in which no flow

cancellation occurs. Such an assignment is easy to construct; one

way is by the following "left-to-right ordering rule'

Write •

and

Then set

T = {x ,X2,...,x^} where < Xj < ••• < Xj,

{yj.y2."-(y„} "l>ere y^ < y2 * ••• * Xn •

Q(V k ^ 1, 2, • •., ni

•

The case e > 0

Now suppose that supply exceeds demand; i.e., |s| - [t] = e > 0.

Then the problem is to decide which e elements of S are to be left

unused; once this is determined, the optimal assignment is obtained
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by the method used when e « 0.

Let E be a subset of X such that |e| •= e.

Define

H®(x) = l(s-E) n (0,x]| - It n (o.x)] xS [o.x] .

Equivalently,

H^(x) = H(x) - |e n (0,x] 1

Then it follows from Theorem 1 that the cost of the best solution

which omits the sources in E is

X

Î (x) 1dx .

x=0

Our problem is to determine

min

{E I E £ S and [e]® e}
x=0

H (x) dx

An E yielding the minimum in (3) will be called optimal.

(3)

zz

3

0 1^ 2

FIGURE

I

5 6 7 8 9 11 12 13 14 15 16 17 18 19

2; An optimal choice of E for a linear assignttfent problem.
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E « {7,11} Is optimal for the example of Figure 1. The heavy

curve describes the function H and the dotted stair-shaped curve has

jumps at 7 and 11. The total area between the curves is

X

|H^(x)|dx

0

til
Theorem 2; Let E be optimal. Let denote the k smallest

element of E. Then

H(y^j^)) = k » k = 1, 2, ..., e.

Proof: We show by contradiction that H = 0, k •=» l,2,...,e.

Suppose ^ 0 ^ similar). Then the

Optimal flow pattern includes some left-to-right flow past i.e.,

there is an x ^ T such that Q(x) <7(1^) < xJ but this contradicts

optimality, since it would be better to eliminate Q(x) instead of

and ship a desk from y^^^^ to x.

Thus H®(y(k)) =0. But H^(y(k)) - H(y(k)) - i 80 tl*®'
H(y(|j^P = k. •

We shall be interested in sets E C s such that

|e| = e (4)

and the necessary condition for optimality

HCy(k) ) = k = 1, 2, ..., e (5)

is satisfied. ^

We give a useful expression for

x=0

(|h^(x)| dx. For y GS, define

X

P(y) "

x"y

|H(x) - H(y) + 1|-|H'<x) - H(y)|dx
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20

FIGURE 3: Expression of P(y) as an alternating sum of areas
of unit-height rectangles (y = 8).

The following theorem justifies considering P(y) as the profit

associated with including y in the set E.

Theorem 3: Let E= •••.VeJ £ S be a set satisfying (4) and

(5). Then

X

(x) Idx = |H(x)ldx - 2 P(y)
y€E

(6)

x=0 x=0

Proof; Consider an interval I = (t,t+A) containing no element of

S UT. Assume that y^^^ < t < t+A < We compute the

contributions of the interval I to each side of (6).
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t+A t+A

(x)Idx = |h(x) - Jl|dx ^ A|H(t) - Z

x-t x=t

The contribution to the right-hand-side is:

rom X

x=0

Dm

|h(x) A |H(t)|

A (-|H(t) - k + l|+ |H(t) - k|),
k = 1, 2, ^

0, k = £+1, ..., e.

Here we have used the fact (from Theorem 2) that ~ Thus

the

a s

{y|j

and

the:

otal contribution to the right-hand side is the telescoping sum

(|H(t)| + I |H(t) - k|-|H(t) - (k-l)|) = A|H(t) - A
k-1

•

From (6) we see that an optimal E is a set which, among all sets

sati fying (4) and (5), maximizes ^ P(y). We shall show that such
y^E

is easily determined. For any integer k such that

G S and H(y) = k} is nonempty, define y^^ by:

(i) e s

(ii) H(yj^) = k

(ill) P(y^) =max {P(y) |y ^ Sand H(y) = k}
(iv) If y e s, H(y) - k and P(y) = P(y*)

*

y > yk
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*

Thus yj^ is leftmost among points in S of height k that give a maximum
*

profit. In particular, yj^ is defined for k = 1, 2, e.

Theorem 4t The set E = {y^, y y^} is optimal.
•k

Proof: The only point that is not obvious is that E satisfies (5);

k k

i.e., that yj^ < k = 1, 2, ..., e - 1.

We shall prove this by contradiction. First we remark that, for any

fixed t, the function

|t-w+l|-|t-w|

is a monotone nondecreasing function of w;

hence, for^ any fixed H, a and b, a < b,

b

(|h(x) - w+ i|-1h(x) -w|)dx

is a monotone nondecreasing function of w.

Now assume for contradiction that there is a q, l^q^^~ 1»
A A

such that y^^^ < y^ .

Let

y^ = max {yjy ^ S and H(y) =q and y <
A

and let ^q+1 ° ^ ^ =q+1 and y>y^}

Then, for x ^ [y^, ^q+l^ ' ^

and for x^ [y*, y^^^) , H(x) 1 q (8)
Then y* ^q+l

PCyJ^i) - P(yq+i) = (|H(x)-q|-|H(x)-q-l|)dx + (|H(x)-ql-|H(x)-q-l| )dx ^ 0

y y*^q+1 q

-9-



and

p(yq) - P(yq) =
.q+1

(|H(x)-q+l|-|H(x)-q|)dx + (|H(x)-q+l|-|H(x)-ql)dx < 0

By (8),

By (7),

q+1

q+1

(|H(x) - ql - |H(x) - q - 1|) dx < 0

*

q

*

q+1

(1h(x) - q + l| - |H(x) - ql) dx >. 0

and finally, by the monotonicity property stated at the beginning of

the proof.

(|H(x)-q+l|-|H(x)-q|)dx > (|H(x)-q|-|H(x)-q-l|)dx .

q+1

But these inequalities are mutually inconsistent, and the required

contradiction is reached. •

For any integer k, define

X

- 00 undefined

n(k) - y^ defined.

Corollary 1; The cost of an optimal solution is

|H(x)|dx - I n(k) .
k=l

x=0
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2. The circular case

Now we suppose that the sources and destinations lie on a circle of arc

length X; each point in S U t is assigned a coordinate x ^ (0,X)

given by its clockwise displacement from an arbitrary zero point

which is not in S U T. The distance d(x,y) = min (r(x,y),r(y,x)),

where r(x,y) is the clockwise displacement from x to y; i.e..

The case e = 0

X _< y

y

ry - X, X <

r(x.y) =|y +X- X. X>

The discussion of this case closely parallels the discussion of

the linear case when e = 0. Exactly as in the linear case, define

H(x) = |s n (o,x]1 - |t n (o,x)| , x e (o.x).

Theorem 5: The cost of an optimal solution is

min

h

X

|H(x) - h| dx (9)

x=0

where h rhnges through all integers.

Proof: >First we prove that (9) gives a lower bound on the cost of

an optimal solution. Let Qbe any assignment. For any x ^ (0,X)

such that X ^ S U T, define

Eq(x) = I r(y,x) <r(y,Q(y)) £r(Q(y),y)}|

L.(x) = |{y ST I r(Q(y).x) < r(Q(y),y) < r(y,Q(y))}l

and

f^Cx) = Lq(x) - Rq(x) .
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ThuS) Rp(x) is the number of desks that pass x in a counterclockwise
direction, and Lq(x) is the number that pass x in a clockwise direction.
Now observe that:

is constant in any interval which does not contain an element

of S U T

and

fqCx ) = fqCx ) + 1

fQ(x") - fqCx ) - 1

, X G S

x^ T

Hence,
fgCx) = H(x) + f^CO)

and

I d(x,Q(x)) =
x^

X

Lq(x) + Rp(x) i fQ(x)|dx

x=0

X

x=0

x=0 x=0

X

|h(x) + 1^(0) |dx >_ min
^ h

x=0

|h(x) - h|dx.

Now we show that there is a solution which achieves the lower
* *

bound (9). Let h be a minimizing h. Define f(x) = H(x) - h .

Also, there is at least one point x where f(x) = 0. For,otherwise,

f never changes signj and if, for instance, f(x) ^ 1 for all x,

then „ X X
X

|h(x) - (h + l)|dx f(x)-l dx < f (x)Idx

x=0 x=0 x=0

|h(x) - h |dx ,

x=0
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contradicting the optimality of h .

Choose any x ^ S T such that f(x) = 0.

Let the elements of T, in clockwise order starting at x, be

*1* *2* ***' *n' elements of S, in clockwise order
starting at x, be y^, y2» •••> y^* Q assignment given

by Q*(xJ = y,. k= 1, 2, n; i.e., Q matches elements in clock-
KL IC

wise order starting at x. Then for all x,

Lp* (x) = max (f(x),0)

Rq* (x) =-min (f(x),0)
*

and the cost of the assignment Q is

1f(x)Idx

x=0

The case e > 0

Just as in Section 1> define

H^(x) = |(S-E) n (0.x]I - 1Tn (0,x)l , Xe (o.x] ,

where E denotes a subset of S such that |e| - e.

Then it is immediate from Theorem 5 that the cost of an optimal

solution is X

min min |h^(x) - hjdx (10)
h E J

x=0

-13-
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Theorem 6; The optimal value of (10) is

min

h

x=0

h+e

|h(x) - h|dx - I nw (11)

Proof: The proof parallels the proofs of Theorems 3 and 4, which

deal with the linear case when e > 0. We give the proof in a some

what telegraphic style, since no essentially new ideas are involved.

First we show that (11) gives a lower bound on the cost of an optimal

solution. Let (h,i) be the minimizing pair in (10). Then the

optimal assignment Q : T -»• (S-E) satisfies

and

L (x) - R (x) = f (x) = H®(x) - h ,
Q Q Q

R (x) • L (x)

Q Q

X e [o,x] - (s u T)

X G [0,x] - (S U T)

Here L (x) denotes the clockwise flow past x, and R (x), the
Q Q

counterclockwise flow past x. Equation (12) asserts that

there is no cancellation of clockwise flow against counterclock

wise flow. For each y G i, f (y) ° 0; else we could improve Q
Q

by using y in place of some element of S - E.
tilThus, if y^j^^ denotes the k smallest element of E, then

H(y^j^)) = ii+k.

A calculation like the one used in the proof of Theorem 3 yields
X X

e

|h (x) - h|dx

x=0

|h(x) - h|dx - I P(y^\) •
k=l

x=0

-14-
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Since P(y(k)) 1 n(i» +I')' follows that (11) gives a lower bound.
Now we show that the lower bound given by (11) can be realized.

Let h be the minimizing h in (11). Let

2* = { y j A= h + 1, h + 2, ...» h + e} .

An easy calculation similar to the proof of Theorem 4 shows

% <y * < ... <y * »
h +1 h +2 L +e

X

|h^ (x) - h*|dx =

x=0

*

h +e

X

lH(x) - h*ldx - I P(y^)
jl=h*+l

x«0^

|h(x) - h [dx - 5] n(«.)a min
il,=h*+l ^

h+e

|h(x) - hjdx - I n(£)
A=h+1

x=0

E = (yj. yj)

x=0

4rC

h = optimal h = -1

(same data as in previous figures)

•

figure 4: An optimal solution to an assignment problem on a circle
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3. Computational complexity

We describe the computation of the minimizing h and E in the

circular tase with e > 0. Enough detail is given to demonstrate

that the entire computation can be performed in at most 20|s|

arithmetic steps (additions and comparisons of numbers). One can

show similarly that, in the linear case, the entire computation can

be carried out in a number of steps proportional to Js].

Define

h = max H(y) = max H(x)
yGS x€[0,X]

and

h . = min H(y) - 1 = min H(x)
yen x!e[0,X]

For k = h^£j^ » +1, ..., h^^^^ ,

Let

S(k) « {y I y ^ S and H(y) = k}

and T(k) « {y | y ^ T and H(y) = k} .

Define

and

- rs(k)U{o} k<0
" \S(k) k>0

T(k) U {X} k < e
T(k) - I^TCk) k >e .

One can regard ^(k) as the set of abscissa values at which the

function H reaches the value k from below, and T(k) as the set of

abscissa values where it decreases from k (with the convention that

H(0~) = H(X^) =-«»). Clearly, these crossings from below and above

alternate; thus |2f(k)| = |T(k)| , and the pth smallest element of

2»(k) is less than the pth smallest element of ?l(k), but greater than
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the (p-^l)th smallest element of ?l(k).

For any XGS(k), let x* denote min {y|y ^ ^(k) and y > x} ;

similarly, for x ^ ^(k), let x* = min {y|y ^ S(k) and y > x} ;

also, let X' « X, and for any x, write (x')* as x".

In what follows,

B(k) is the measure of {x|h(x) ^ k} ,

A(k) is the measure of {x|h(x) = k} ,

X

and

1(h) |h(x) - h|dx

x»0

h+e

Prof(h) = J n(k)
k^h+1

The computation is determined by the following formulas:

P(X) - 0

P(y) = 2y' - y - y" + P(y") , y ^ S

n(k) " max P(y) , ^nax
y€s (k)

y, = min {yjy ^ S(k) and P(y) = II(k)}, k = "*

B(k) « ^ (y* -* y) > k - h^^y, , ...» )\aax
y^(k)

A(h. ) = )
* max max

A(k) = B(k) - B(fcfl) k = +1..... -1

• ^raax

1(h) - I(h - 1) + X- 2Bj^ h = +1, +2...., h

-17-
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h . +e
min

Prof (h ) = I
k=h, +1

min

Prof (h + 1) = Prof (h) + n(hfe) - n(h) h = , .... h^-1

Val (h) = 1(h)- Prof (h), h =

V = min Val (h)
h

h = min {h | Val (h) • V}

•k it ^
E = {y ^ i ' ' ' i y •/(

h +1 h +e

Note that h* is especially easy to determine when e = 0. In

that case, h is characterized by

B(h*) ^ ^ and B(h +1) <̂

In other words, h is the median value of H(x).

Finally, we can drop the assumption that one desk is available

at each source and one desk is required at each destination. If

source y supplies a. desks, and destination x requires b^ desks,
j J

with E a > E b,, then the entire theory carries through with
j — i

trivial changes, and the computational work for the circular problem

is as follows:

n^ + 0(n log n) additions

i n^ + 0(n log n) comparisons
4

3j^ multiplications

where n = IS U t| .
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