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Abstract. When properly ordered, the respective eigenvalues of an w xn

Hermitian matrix A and of a nearby non-Hermitian matrix A + B cannot

differ by more than (log n + 2.038)11511; moreover, for all n > 4 examples
2 —

A and B exist for which this bound is in excess by at most about a factor

3. This bound is contrasted with other previously published over-estimates

that appear to be independent of rc. Further, a bound is found, for the

sum of the squares of respective differences between the eigenvalues, that

resembles the Hoffman-Wielandt bound which would be valid if A+B were

normal.
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SPECTRA OF NEARLY HERMITIAN MATRICES

0. Our Problem

How near are the eigenvalues of a nearly Hermitian matrix to those of

a nearby Hermitian matrix? To be specific, let the n*n matrix A be

Hermitian (A* = A) with eigenvalues a. arranged in ascending order

al ! a2 — "" ~ an» and let B be an arbitrary n*n matrix, and index

the eigenvalues (X.+ iy.) of A+B to have real parts X. in ascending
0 0 0

order X. < X < ••• < X . We seek bounds for differences like
i — z — — n

|X. +iu.-a.| or Z|X .+ iy .-a.|2 in terms of two norms of B, one of them
0 0 0 0 0 0

IIBII = /trace(B*B) = /ZE|2>..|2
2 1>Q

and the other

||S[| = max ||52|| /II211 = B's largest singular value .
ztO 2 2

Slightly sharper bounds will be obtained by exploiting the decomposition of

B = X + \Y into its Hermitian and skew parts

X= (B+B*)/2 and \Y = (S-S*)/2

whose norms are related to B*s via

iiBii 2 = imi 2 + ojo 2 , o*o < iibii , o*o < obii < iuo + m .
2 2 2 — ~ ~

We shall prove that

i) Every |X.-a.| < IUII + 0*11-(log n+0.038) and every |u.| < llrll, and
3 0 2 0 —

for every n >_k there are matrices A and B for which X = 0 and

the first inequality over-estimates some |X -—ot -1 by a factor less
0 0

than 3.



ii) Z)ij2 < [|J|J22 and /Ztt^- c^.)2 < 11*0,,+ /(ll^2 -Zu^2), and non-trivial
equality is possible.

But before these claims are proved in §2 and §3 of this paper, here is a

survey of what has already been published about our problem.

1. Survey

This survey is drawn from texts like Wilkinson's (1965, pp. 93-109)

and Householder's (1964, ch. 3).

If A+B were normal the Hoffman-Wielandt theorem (1953) would imply,

instead of ii above,

Z(X.-a.)2 + Ey.2 < (|B[| 2 ;
0 0 0 ~~ 2

our weaker hypotheses lead to an inequality weaker by a factor of 2 at

worst. If B were Hermitian the inequalities of H. Weyl (1911, Satz I)

would imply (with X = B, Y = 0 and all y.= 0) that |X.-a.| < HBO,
0 0 0 —

which is a special case of i above that shows how much may be lost when

Y * 0.

The best bounds pertinent to our problem which I have been able to

draw directly from the earlier literature (especially from Wilkinson (1965,

pp. 93-94)) involve the congruent truncated disks D. in the complex

(X + iy)-plane defined as follows (provided B^ 0);

D^. = {X +iy: IX +iy-o^l < [|B|| & |y| < ||J||} .

Each eigenvalue (X^+iy^) of A+B must lie in the closure of that

connected component of the union l~D. which includes D-. For example,
0 K.



Figure 1 describes a situation with n = 5 which confines (X1+ iy.) to

D , (X + ly ) to D_, and the remaining three (X.+ iy.)Ts to
1 j -> -> 0 0

D-UD-UD,. For another example, consider a situation wherein the D.'s

form one long chain in which each D. slightly overlaps its neighbours as
0

shown in Figure 2; without bounds like those proved in this paper there would

be no way to explain why all eigenvalues (X.+ ly .) do not flee like quick-
0 0

silver to one end of the chain or the other. But i above prevents each

(X. +iy,) from skipping past more than about Tlog n of D, *s Immediate

neighbours, and ii above restricts such long skips to at most a small fraction

(about 2/(log w)2) of those n eigenvalues.

2. Proof of claim i

Our problem is invariant under unitary similarity, so Schur's theorem

may be invoked to triangularize A + B by a unitary similarity and then,

without loss of generality, we may assume that A + B was given as upper

triangular at the outset. Say

A+B = k+\M+\U

where A = diagCX^X^ ... tXn) , M= diagCy1,y2,... ,yny) and U is upper

triangular with zero for its diagonal. By taking Hermitian and skew parts

we find

A + X = A + \(U-U*)/2 and Y « M + (U + U*)/2 .

The last equation will be used below and in §3; for now the appropriate

bound upon M is found from Bendixson's inequality (cf. Householder (1964,

p. 69)) which implies that every |y.| < II (A+B) - G4+B)*ll/2 = 0*0. The
0
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previous equation is ready for an application of Weyl's inequality; every

|X.-a.| < IIA-^0 = 8*-i(tf-0*)/2O
0 0

< l\X\\ + [\U-U*[\/2 .

Next set Z = M+U and invoke a theorem published recently (1973) by the

author; since Z*s eigenvalues y. are all real
0

[\U-U*\\ = [|Z-Z*II < IIZ +Z*IKlog n+0.038) = 2llYll-(log n+ 0.038)
— 2 2

which, with the previous inequality, vindicates claim i but for the provision

of an example.

Take the lower triangular nx n matrix

L =

0

1 0

1/2 1 0

1/3 1/2 1

1

n-2

1

1

n-3
1

• •

• •

n-1 n-2

•1/2 1 0.

. 1/3 1/2 1 0 4

and assemble A = L+ L* and B = L-L*, In the aforementioned paper (1973)

+ 11the author demonstrated' that 2 log n > IU0 > 2 log n - 2 log 2 + j + —

and that ||B[| < tt. Consequently A has at least one eigenvalue a t 2 log n,

but all the eigenvalues (X .+ ly .) of A+B = 2L are zero, so
0 0

|X -a I> 0Bfl •-(log'n - log 2+ r + i-). Compare this with assertion i,

noting that in this example X = 0 and Y = B and that (log «)/(- log n) k 2.27,

tThat paper contains an error due to faulty use of a slide rule. The asser
tion there that "(2/ir)log n? 0.92 iog2n" should read "4 (log2n)/2.27'\
Hence the phrase "about 8% when n is large" should read "a factor less
than 3 when n > 4" on pp. 235, 238 and 239.



3. Proof of claim ii

Continuing the analysis in §2, observe first that

IlYll 2 = \\M+(JJ + U*)/2\\ 2
2 2

= llA/fl 2 + ^-IIi/II 2 because Af is diagonal and V above the diagonal

> llA/ll 2 - Zy .2 , as claimed in ii above.
2 J

we find

^W2 < 0A- A\\
2

= II*- l(V' -u*c)/2ll
2

< \\X\\
*

+ 0(0--i/)*/

= lUII + m
2
//2

by the Hoffman-Wielandt theorem

= 0*11 + AUYO - Ey.2) as claimed in ii.
2 1 0

These inequalities reduce to something slightly stronger than the Hoffman-

Wielandt theorem when A+ B is normal because then U = 0 so £y .2 = IlYll 2
«7 2

and hence E(X.-a.)2 < 0*0 2, whereas the Hoffman-Wielandt theorem in its
0 0 — 2

raw form would imply only that the sum Zy .2 + E(X.-a.)2 < 0*0 2+IlYll 2
0 0 0 ~~ 2 2

= llBll 2. On the other hand, if we do not know separate bounds for 11*0
2 2

and IlYll but only one bound for llBll we can still exploit ii as follows;
2 2

£(X.;-a.)2 + 2Zy.2 < (0*0 +/(IlYll -Eu..2))2 + 2Ey 72
0 0 J — 2 2 0 J

- 2ll*ll22 + 2llY022 - (ll*ll2 - /<0JT02-Zu.2))

< 2(II*II22+I|Y022) = 2llB022 .

Although the last inequality is not as tight as that in ii above, both

inequalities can be made non-trivial equalities by an example:

2



A =

0 1

1 0

, a, = -1, a0 = 1; B =
iyx 0

-1 IP,
, 0*ll22=j,

IlYll 2 _ 2+V + y2 » mz =l+ yx2 + y22; A+B =
iyx 1

0 ly,

Xx = X2 = 0, and /2 = /Z(A.-a.)2 - 0*02 + /(OYll 2-Zy .2) , and finally

Z(X -a.)2 + 2Zy.2 = 2llBll 2.
0 0 0

4. Caveat

Sometimes our problem of §0 comes with the additional information that

all of (4 + B)'s eigenvalues are real. By itself this information confers

little advantage for the estimation of max.|X.-a.| or Z(X.-a.)2 beyond
0 0 0 0 0

what is already available from i and ii above, as we see from the two examples

A+B given above; both examples can have all eigenvalues real (i.e. zero).

But whence comes the knowledge that all of G4+B)'s eigenvalues are

real? Frequently this is inferred from the existence of a positive definite

Hermitian matrix H for which A+B = HA. If bounds are known for !l#ll

and 0H 1|| then the eigenvalues X. of A+ B compare with the eigenvalues
0

a. of A as follows (cf. Weyl (1912, Satz IV)); for each j either
0

1/Otf Ml < A./a. < llBll or A. = a. = 0. These inequalities, if available,
0 0 0 0

are generally sharper than the ones proved earlier in this paper.

Less often we may know that V = F(A + B)F 1 is Hermitian for some

similarity F whose condition number

k = IIFII-IIF"1!!

is known not to be large. In this case we may prove

all |A.-a.| < K-llBll ,
0 0



which is better than i above whenever K < log n and also a sharper bound

than Wilkinson's (1965, pp. 87-88) whenever the bounds for two different

A.'s overlap. The following proof of the foregoing inequalities is adapted
0

from an unpublished earlier report by the author (1967).

The polar factorization F = QH provides a Hermitian positive definite

H= (F*F)1/2 with flffO = 0F0 and 0iTl0 = ll/"1!! as well as aunitary Q,
and Y = Q*VQ has the same eigenvalues A. as have V and A+B. Weyl's

0

inequalities will yield the desired result |A.-a.| _< K-IlBll if we can
0 0

prove IlY-40 £ K»|IB||. But first let a; be a normalized (x*x « 1) eigen

vector of Y-A for which (Y -A)x = ±||Y -A\\x. Then

OFOMIBH - m^F~lVF-A\\ = Ifll'llT^JfH-iM)! > UYB-flAll

> \x*(YH-HA)x\ = \x*(YH-HY)x + x*H(Y-A)x\

= \x*(YH-HY)x ± \\Y-A\\x*Hx\ = |imaginary ± real|

> \\Y-A[\x*Hx > OY-ylil/OB"1!! = IIY-dll/ll*1"1!! .
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