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A NOTE ON THE ABSOLUTE STABILITY OF A CLASS
OF NONLINEAR SAMPLED-DATA SYSTEMS

by
E. I JuryT and B. W. LeeTT
INTRODUCTION

In a previous paper, L a stability theorem for a class of nonlinear
sampled-data feedback systems has been presented. This theorem
provided a sufficient criterion for absolute stability which involves the
plotting of the frequency response characteristics of the linear plant
part of the system. This criterion yielded a gain restriction comparable
to those obtainable from Lyapunov's direct method using the general

form of Lyapunov's function of the Lur'e type.

The purpose of this note is to present certain generalizations of
the preceding stability theoreml which would give a certain significance
to the various inequalities that are obtainable. From this generalization
we can obtain sufficient conditions for stability for certain specific sub-
classes of systems, which involves certain types of nonlinearities. An
illustrative example of sampled-data systems with dead-zone is studied
to illustrate the application of the material developed in this note.
Finally, a discussion on the possible future work on this problem con-

cludes the material of this note.

*This research was supported by the Air Force Office of Scientific
Research Contract AF-AFOSR 292-63.

TUniversity of California, Department of Electrical Engineering,
Berkeley, California

TTNoller Control Systems, Inc., Richmond, California



RECAPITULATION

The conditions for absolute stability of a class of sampled-data
systems characterized by a stable linear part and a memoryless non-
linear element is considered. A system of this class has the typical
configuration shown in Fig. 1, wherein the linear part is stable and

has a Laplace Transform representation given by:

G(s) = Gy(s) + v/s. (1)

Gl(s) in (1) is of m-th order, and has no singularity in the right half
of the s-plane or on the real frequency axis. Moreover, it is assumed

that

lim Gl(s) = 0. (2)
S—> 0

The z-Transform of (1) is given by:
* P z )
G(2)= Gy (2) + v 2, . (3)

The memoryless nonlinear gain function is assumed to be integratable

and, moreover, satisfies the following conditions:

(i) (0)=0
(ii) oo>K>-?(°_—o-) >0, Vo # 0. (4)
NOMENCLATURE

All sampled-data systems satisfying the above description for a
specific K > 0 will be denoted by I(K). Subclasses of I'(K) generated
by imposing various additional restrictions on the derivative of (o)
will be denoted by I(K, Kl’ KZ), where Kl’ Kz denote respectively

the lower and upper bounds of a closed interval on the real line in which



the derivative of ¢(¢) is restricted. As an example I(K, - K', K')
denotes a subclass of systems belongingto I'(K), i.e., systems

satisfying conditions (1) to (4), and the additional restriction

2| < k. (5)

1 defined in Ref. 1. As

another example, I'(K, - o K') denotes a subclass of systems in-

Note that this is identical to the subclass I
cluded in I'(K) and satisfies in addition the condition

o< 2 < K. (6)
In what follows, many of the computational steps parallel those developed
in detail in Ref. 1. Results demonstrated in Ref. 1 will be assumed and
used extensively. To facilitate this procedure, the same nomenclature
as used in Ref. 1 will be re-employed whenever possible. In general,
corresponding symbols, unless explicitly redefined here, will carry the

same definitions as in Ref. 1.
AN ABSOLUTE STABILITY THEOREM FOR TI(K)
Theorem l: A system belonging to a subclass of I'(K) is absolutely

stable with respect to the null é?l&éie& if a real B q, non-negative numbers
2)» 35, a5, a,, and auxiliary functions \pN’ q(n) and \{\Lq(n), exist

such that
(i) 4 (2), V. (2) exist VN > 0 real;
9% VN, q >0, Vq ;
o0
(G D>y, g0 Vg ()
n=

o(N)
2 q f (de’ - a4| aﬁ.)lz - (allg(N)l + a-z) P{(O)' - a3|§0l s

a(0)
¥ N < 0;



(iii) Re {G*(z) UK - g (2) Vg (2) / |¢§(z)|2}

20, V|Z| = 1;

where

)] £ sup |60, and KO 2 Max  (|x,(0)], e Ok (0)] ).
0<{<N i,j=l,...,m J

a(N)
It is of interest to note that ¢do represent a certain area as

a(0)
shown in Fig. 2.

Proof: The auxiliary functions goN(n), aN(n), and §N(n) as

defined by (16), (17), and (18) of Ref. | will be assumed, whereas the

auxiliary function )\N(n) is redefined as follows:

() & opln) + A[gN(n) - gN(n-lﬂ - (MK - > £ (n)x,(0)

1=
+AENE 5 o (T)

where A is an arbitrary positive number. The z-transform of (7) is
given by:
* _ 3 % * z+l . %
Mg (2) = - GT(z)g(2) - o (2)/K + A(ZEL) g (2). (8)
To begin the proof, a suitable Popov function of N is defined by:

o]

p(n) £ Z [me) onlm) + by o(m) Vi q‘(nﬂ LZVN>0.  (9)
n=0

By applying the Lyapunov-Parseval theorem to (9), and following the



computational procedure employed in Ref. 1, it can be demonstrated

easily that condition (iii) of the theorem implies

p(N) <0, VN> O. (10)
Putting appropriate time-domain quantities into (9), and using (10),
condition (ii) of the theorem, and results demonstrated in Ref. 1,
inequality (9) leads to the inequality
2
p(N) > p(N) + q[F(N) - F‘Oﬂ + A £4(N)

— o~ o~
- 23, l6M| 2 - (CIEM)] +C,) [x(0)] - as|E,] <O

(11)

where
N
v £ an(n)a(n)[l - gobr]> o (12)
o=
o(N)
F(N) 2 ﬁ gdo > 0, (13)
0
A | '
C, = a,+p1+p', >0, (14)
é ] 1 0 15
CZ - a2+(ﬁl+52)l§0| Z ’ ( )

for q >0, inequality (l1) yields

~—~ 2 o~ o~
(A -a,) 6N ° - (C[&M)] +Cy) [X(0)]- a,|&,] - qF(0) < 0.

(16)

Since A may be an arbitrary positive number, the coefficiént of the

first term of (16) can be chosen positive. Then (16) is of the same type



of inequality as (45) of Ref. 1. Using exactly the same argument as

employed in Ref. 1, it can be concluded that

€M) < H(|gol, |x’<6')|,|a(o>|) RENTES

where H is a well defined positive function of the initial state
variables |§0| , ]X/(\6)| , and |¢(0)|. More important, this
function is specifically independent of N, which is necessary in
order to conclude that the system is stable in the Lyapunov sense,

i.e., given € >0, § >0 exist such that

|EM)| < H<e, |Cn)| = |o(n)| <e, (18)
whenever
1X(0)| < s, &yl <8 and [o(0)| <. (19)

Next, suppose q < 0; then - qF(0) is positive and may be discarded
from (l1). The term q F(N) is negative, however, and must be re-
tained. From (4), it follows that

e P > -8 K 2> S KAl oan( 2, 20)

Utilizing results from Appendixes I andII of Ref. 1, it can be demon-
strated that

o) |2 < 4 6002+ 4, |EN)] - [X(0)| + a4 |KTO) %, (21)

where dl’ dz, d3 are positive numbers independent of N. Putting

(20) and (21) into (11) yields, for the q < 0 case, the inequality:

-6 -



la] Kd Klg| d\ ~
(A '—z——l‘) |§TI<T)|2 - [(Cl "'—2——2) |£(N)|

lal Kd, ~ ~
+<c2+—2——) IX(O)U [X(0)| - a5|&4l < O- (22)

Again, since A may be an arbitrary positive number, the first co-
efficient in (22) can be made positive, provided K is finite. This is
assured for systems in I'(K) by condition (4). Hence, inequality (22)
is of the same type as (16) and results in the same type of bound on
|E(N)| as specified by (17), (18), and (19).

To show that the system is also asymptotically stable, it is

necessary only to obtain from (17) and (ll) the inequality

N
py(N) Z olale(a) | - 2] < ”f’(lgol . %00, |a(0)|) , (23)
n=0

—~

where f is also a well defined positive function of the initial state
variables and specifically independent of N. This is sufficient to ob-

tain the results

lim o(n) =lim ¢(n)=1lim §(n)=0, (24)
n— 0 n—» n— o

which imply asymptotic stability. This completes the proof of Theorem 1.

Corollary l: A system belonging to I'(c) is absolutely stable if

Theorem | is satisfied and q is non-negative.

SPECIFIC SUBCLASSES OF I(K)

Theorem | is a general result and can be used to obtain theorems re-

lating to the absolute stability of systems belonging to specific subclasses



of I'(K). As the first case in point, Theorem 1 will be used to prove
a slightly restated version of the theorem presented in Ref. 1 for the
subclass ~ I'(K, -K',K'). It should be noted that the restated version
is slightly more general in that g need no longer be non-negative but
can be any finite real number. The significance of this generalization

and its meaning will be discussed in a separate section.

Theorem 2: A system of subclass I'(K, - K' K') is absolutely
stable with respect to the null solution if a real number q (positive

or negative) exist such that

Re G (z)|1 + q(z - 15] +1/K - <|q| K'/Z) |(z - 1) G¥(2)|% >0, (25)

is satisfied for all |z| = 1.

Proof: For all systems of subclass I'(K, - K', K'), the nonlinear
gain function ¢(o) satisfies conditions (4) and (5). These conditions
imply that function ¢(o) satisfies, between sampling instants n -1

and n, the following inequality:

a{n)
1 2
q ¢(n - 1)Vo(n) +J&££ (Vo-(n)) > qf ¢(n)do(n), (26)
o(n-1)

the validity of this assertion is illustrated in Fig. 2, where both the
cases q> 0 and g < Oareconsidered. For suitable auxiliary functions

qJN, q(n) and VN, q(n), (26) suggests the following definitions:

le’ q(n) éq ‘PN(n -1+ K—"Zl'q—"(vo'(n))

m
--K'Zq ( Vfi(n)Xi(O)-ygoﬁno)» (27)

1=



m

Vy, (1) = Vo) - (z V£ (n) X,(0) - ¥ éoﬁn(g- (28)
-

The z-transforms of (27), (28) are given by

boe, o(#) = a2y (2) - %iL(z - 1)6*(z)«p§(z>, (29)
and
vI’fL o2 = - ( 2 I)G*(z)‘p;(z). (30)

This shows that condition (i) of Theorem | is satisfied.

As for condition (ii),

2 a(N)
Z ¥N, q(n) VN, q(n) > qf pdo + q ¢(N) Vo (N +1)
n= o(0)
) (b1+bz |§7§)|) [%(0)| - bylEgl, (31)

where inequalities (43) and (44) of Ref. 1 have been used. By .

direct computation, it can be shown that

~-h

|V o (N + 1)] < m by |X(0)] +(h4 +h/(l-e 0)) £, (32)

and
lpN)| = |E(N) - &(N -1)] <2|&(N)]. (33)

Hence,

q 9(N)V o (N + 1)

"R g2
>-|q| {2|:h4+ he/ (1-e ﬂ |E£(N)]
+ 2mb | €00 - 0T | (34
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Combining these results yields

o0
4, o™ Vi, o)
o=
o N) —~ —~—
> pdo - a,|E(N)| 2. (allg(N)l + az) X(0)] - asléol .
o(0)
(35)
where

-h,
a4= 2|q|[h4+h6/(l-e ﬂ,

a3 = b3,
a, = bl'
a, = b2 + 2 mh3.

This shows that condition (ii) of Theorem | is also satisfied. As for
condition (iii), (29) and (30) can be used to verify that this condition re-

duces to criterion (25), which completes the proof Theorem 2.

Theorem 3: A system of subclass I(K, - o, K') is absolutely
stable with respect to the null solution if a non-negative q exist such

that criterion (25) is satisfied for all |z| = 1.

The proof of this theorem is identical to that of Theorem 2, with
the exception that inequality (26) and hence (35) hold only if q > 0.
This assertion is illustrated in Fig. 3 and accounts for the restriction

on q.

*®
Theorem 4: A system of subclass I'(K, -K', ) is absolutely stable

* A special case of this theorem in which K' = 0 has been suggested by
Ya. Z. Tsypkin.
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with respect to the null solution if a non-negative qf exist for which

Re G'(z) ( )+ /K -B9 )z -1 6%@)1% > 0, V2| =

(36)

Proof: For any system of I'(K, -K', +o), the nonlinear gain

function ¢(o) satisfies (4) and

“K'< < tw (37)
Then for q >0
o(n)
q ¢(n) Vo (n) + 53 (Vo- (n))z > q p(n) d o(n), (38)
oc(n-1)

the validity of which is illustrated in Fig. 4. This suggests taking
VN, q(n) as defined by (28) and a new I.|JN, q(n) defined by
A K'q
by, oM S opln) + 52 Vay(n)

m

- %‘E(ng(n) %,(0) - YgoanO)‘ (39)

i=1
The z-transform of (39) is readily determined to be

NORFPMORES q( ) Glz) ¢'(2), (40)

which implies that condition (i) of Theorem 1 is satisfied. Since

- ¥y, o(#) Vi, o2 Lotz ? = q(z 1) c¥(z) - B2 |(z-1) 6¥(2) |2,
o . . (41)

This theorem is true for both positive or negative q if the subclass is
v(K, -K',K'). 4

-11-



condition (iii) of Theorem | reduces to criterion (36) for the case in

point.

From (38), one obtains

[v¢]
prN, o(7) Vg, o)
o=
o (N) —
> ¢da-<bl+b2|§(N)|) |%(0)]| - bylégl, VN>0,/q>0
o(0)

(42)
hence, condition (ii) is also satisfied. This proves Theorem 4.
SIGNIFICANCE OF NEGATIVE q

For I(K, -K', K'), Theorem 2 allows the possibility for q to be
negative. By taking the limiting case as T—>-0, in the manner as pre-
scribed in Ref. 1, a corresponding generalization of Popov's theorern2

applicable to a class of continuous systems is also valid.

To investigate the significance and applicability of criterion (25)

when q is negative, suppose for z = exp (jw),
G(z) = X(w) +jY(w), 0< w < 2m. (43)
Letting q = 0 in (25), the criterion for absolute stability reduces to
* —_—
ReG (z) = X(w) > -I/KO, (44)
where KO may be viewed as a first estimate of K. Inequality (44) is
recognized as Tsypkin's criterion3 for I'(K), and this was shown by

examples in Ref. 1 to be generally conservative when applied to

I(K, -K', K'). Further, suppose that for some 2z, = exp(j\Tvo), 0< 50517,

-12-



G

X(w

o) = Min  ReG(z). (45)

z| =1

Without loss of generality, X(‘;O) may be assumed negative, for
otherwise (44) would have yielded the result K = Ko = . Then,
from (44),

X(WO) = - l/KO. (46)

To realize a less conservative estimate for K than implied by (46), it
is clear from an inspection of criterion (25) that this is possible only
if

la|] K
Re q(z - 1) G'(zg) - —2 | (2 - 1 G¥(zg)|? > 0. (47)

For the case q <0, a necessary and sufficient condition for (47) to

hold is:
(i) 0<(1/2Ky) (tane, -.Jtanzeo - 8) < Y(Wp) < (1/2K) (tang,,

+hanZe, - 8), 0, = 90° - W,/2; (48)

(ii) 0 < W, < 38.94°.

Condition (48) implies that q < 0 needs to be considered only if a point

on the unit circle within the first 38. 94 degree sector of the z-plane is
mapped by G*(z) into the critical point [x(\Tlo), Y(v?o)] , and the critical
point is within the sector, specified by (i) of (48), in the second quadrant
of the G*(z)-plane. This is illustrated in Fig. 5. For most systems of
I’(K) condition (48) can not be satisfied. Indeed, attempts to construct

an example satisfying (48) thus far have not been successful. This, 6f
course, does not imply that examples may not exist, but it is an indication

that the applicability of negative q may be limited to rather special cases.

-13-
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For the limiting case as T—>0, i.e., for continuous system

2,4,5

satisfying the requirements of Popov's theorem the limiting

condition corresponding to (48) is simply

Y(wg) > 0, (48a)
where
G(jw) & X(w) + j Y(w), ¥ real w, (48b)
and
X(wo) = Min Re G(jw). (48c)
0 <w< oo

This condition indicates that for continuous sytems, the case q < 0 will
be applicable only if the point [X(wo), Y(wo)] on the frequency locus of
the linear part of the system is located in the second quadrant of the

G-plane. This is illustrated in Fig. 6.

It is known that for systems whose linear part has low pass
characteristic and contains only real poles and zeros, condition (48a)
can not be satisfied, and therefore, for these systems the case q<0
is of no practical significance. However, an example in which (48a) is
satisfied is a system with pure time delay and a under-damped second-

order resonant dynamic.
A SYSTEM WITH DEADBAND NONLINEARITY

A number of examples illustrating the applications of either Theorem
2 or Theorem 3 was considered in Ref. 1. To illustrate the application
of. Theorem 4, a sampled-data system with deadband nonlinearity will be
considered. Specifically, consider a sample-data system of I(K, 0, + o)

with a deadband type of nonlinear element described by:

-1, for -0 o< -a,
olo) = 0, for -a< o<+ta, (49)

+1, for +ac< o < t+oo

-14-



and a linear part whose z-transform is given by:

3
L

Gl(z)= o - (50)

The problem is to relate the deadband width « to condition for

asymptotic stability.

For this example, K'= 0, and criterion (36) reduces to

1

] -
Re G (z) (1+qZ——)+1/K >0,z| =1, 9> 0. (51)

By letting q =0, Tsypkin's criterion yields
K< 2/3, and a> 3/2, (52)

for absolute and hence asymptotic stability. For q > 0, it can be

shown by direct computation that

: * -
Max Min Re GYz) 1+g2=1)% -1 (53)
0 |z =1
Hence Theorem 4 insures asymptotic stability for
K< 1l and >l (54)

For comparison, the necessary and sufficient conditions for

asymptotic stability, obtained by phase-plane construction, are:

K<?2 and a > 0.5. (55)

-15-
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It may appear that result (54) is still conservative compared to (55).
An important difference which must be made clear is that result (55)
insures complete stability for the nonlinearity defined by (49) only,
whereas, result (54) insures complete stability for all forms of non-
linear functions in I(K, 0, o), which includes, among others, (49)
as a specific example. This is the important difference between a

system which is completely stable and one which is absolutely stable.
CONCLUSION

In this note a certain inequality which is applicable to stability
test of nonlinear discrete systems has been demonstrated. The im-
portance of this theorem liesin the fact that various inequalities for
subclasses of systems can be readily obtained. Furthermore, the
significance of negative q in the new inequality as well as in Popov's

theorem has been discussed.

It is indicated that generally, for physical systems, the appli.cability
of negative q may be limited to rather special cases. This point,
however, requires further exploration. By restricting q to positive
values, the range of application of the theorem proposed in Ref. 1 can

then be extended to other types of nonlinearities.

Further research in extending the proposed inequalities to cover
a certain practical type of nonlinearities is being presently attempted.
Also, the problem of obtaining a criterion for absolute stability, which
contains both the nétessary and sufficient condition will be one of the

challenging topics for further investigations.
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r(t)

+ o(t) zero
olo) —c)(e—» ordrer 1 o C(t)

_ hold S(S+1)
Fig. 1
qe(n-1)+K'qVo(n)
qe(n)
qp(n-1) |la| @(n-1)
la| ¢(n)
qe(n-1) - K'qVe(n)
o(n-1) |o(n)

a(n-1) o(n) - =

Q>0

qe(n-1)+ |q| K'Ve(n)
qe(n)

qe(n-1)

q<0 qe(n-1) - |q|K'Ve(n)

Fig. 2. Area inequality - Theorem 2.

_1qe(n-1)+ K'|q|Va(n)

gqe(n-1)
qe(n)
q>0
valid o(n)
-
. qe(n)
ot valid ao(n-1) + |g|K'Vo(n)
q< 0
q¢(n-1) -—

Fig. 3. Area inequality - -Theorem 3.

qe(n-1)

=— q¢(n) + K'qVo(n)

qe(n)
q>0

o(n-1) o(n)

Fig. 4. Area inequality - Theorem 4.
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Q>0
180° f ' -
ing )
38.94° /. o . Sinw,
0 " 1- o, -
Cosg,, s - 180° \ o
a> 0 G (eV)
z-plane G (z) - plane
Fig. 5. Conditions for applicability of negative q - S.D.S. case.
[ ((’Jm G(jw)
q>0
w=w
Y w = o
Xfwg) = Min  X(w){™ —“’% o
Osuseo | — - Re G(jo)
Xg) \J
Q>0 A Gljw) = X(w) + j¥(w),
Fig. 6. Condition for applicability of negative q - extended Popov's theorem.
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