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Abstract

In recent years, systems analysis has become a widely used technique

for dealing with problems relating to the design, management and opera

tion of large-scale systems.

A thesis advanced in this paper is that the conventional techniques

of systems analysis are of limited applicability to societal systems

inasmuch as such systems are, in general, much too complex and much too

ill-defined to be amenable to quantitative analyses. It is suggested

that the applicability of systems analysis may be enhanced through the

use of the so-called linguistic approach, in which words rather than

numbers serve as values of variables. The basic elements of this ap

proach are outlined and illustrated by examples.
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1. Introduction

One of the most significant concomitants of technological progress

has been—and continues to be—the accelerating growth in the degree of

interdependence both within and across all strata of modern society.

This phenomenon—which is becoming increasingly pervasive in its

manifestations—affects individuals, groups, organizations, industrial

enterprises, cities, countries and continents. Thus, the events in Ku

wait may have a profound impact on the jobs of workers in Detroit and

Dodge City; the strike of copper miners in Chile may curtail the produc

tion of electric motors in Schenectady; and the latest developments in

Washington may be the subject of informed discussions in the cafes of

Teheran, Vienna and Rio de Janeiro.

Reduced to its basic factors, the growth in the degree of interdepen

dence in modern society may be viewed as a confluence of several distinct

and yet interrelated developments: (a) The major advances in our ability

to communicate information at high speed, low cost and over long distances;

(b) the decline in cost combined with the increase in the speed of transpor

tation of raw materials and manufactured products; (c) the growing mobil

ity of people brought about by the enhancement in speed, comfort and

economy of traveling; (d) the sharing of energy and information resources

through power distribution networks, oil pipelines, radio and television

networks, data banks, computer networks, etc.; (e) the drive toward

greater efficiency which impels a centralization of decision-making and

exerts a pervasive pressure to merge small units into bigger ones; (f)

and last, but not least important, the growth in population density,



especially in the vicinity of urban centers.

In the case of physical systems, it is a well-known empirical fact that

unrestrained increase in the degree of feedback between the components

of a system leads to instability, oscillations and, eventually, catastro

phic failures. There is a warning in this that cannot be ignored: our

societal systems, too, are likely to become unstable if the growth in the

degree of interdependence within them is not accompanied by better planning,

coordination, and—what might be much less palatable—restraints on our

freedoms.1 Indeed, in some of the advanced societies with libertarian

traditions—in which there is an understandable aversion to planning and

control—we are already witnessing the manifestations of what might be

diagnosed as the crisis of undercoordination: vehicular and air traffic

congestion, deterioration in the quality of municipal services, decay of

urban centers, power blackouts, air and water pollution, shortages of

energy, unemployment, etc. And these may well be just the precursors of

far more serious stresses and strains which lie ahead—stresses which may

test to the limit the endurance of our democratic institutions.

Does it follow that the price of survival is the loss of the large

measure of freedom which we enjoy today in deciding on where to live, for

whom to work, where to travel, etc? Hopefully, the answer is in the neg

ative. But it is clear that in order to be able to survive without a

significant erosion of our freedoms, it will be necessary to develop a

much better understanding of the forces which shape—and the dynamics which

1 This is implicit in Skinner's controversial book "Beyond Freedom and
Dignity" [1]. See also H. Wheeler's "Beyond the Punitive Society" [2],



govern—the evolution of the highly interdependent large-scale system

which constitutes our modern society. For, it is only through such

understanding that we may be able to achieve that degree of coordination

which might be needed to preserve the equilibrium of our societal

structures without creating an oppressive environment in which an indi

vidual has few of the freedoms which we take for granted at present.

Although we have made a great deal of progress during the past two

decades in our ability to analyze the behavior of small-scale systems

whose behavior is governed by differential, difference or integral equa

tions, there are still many difficult problems which stand in the way of

our ability to comprehend, much less predict, the behavior of large-scale

societal systems. In part, the difficulties in question relate to the

fact that societal systems are orders of magnitude more complex than the

well-structured mechanistic systems which constitute the major part of

the domain of applicability of classical system theory. More importantly,

we still have a far from adequate understanding of the basic issues re

lating to conflict resolution, aggregation of preferences, choice of

time-horizons, decision-making under uncertainty, and many other prob

lems which arise when we deal not with machines—as in classical system

theory—but with human judgements, perceptions and emotions.

To make system theory more relevant to societal problems, we may have

to make radical changes in our basic approaches to systems analysis. In

particular, we may have to accept what to some may be a rather unpala

table conclusion, namely, that in the case of societal systems relevance

is incompatible with precision. In more specific terms, this means that

we may have to accept much lower standards of rigor and precision in our

analyses of societal systems than those which prevail in system theory—



if we wish such analyses to have substantial relevance to real-life prob

lems.

In retreating from precision in the face of the overpowering com

plexity of societal systems, it is natural to explore the use of what

might be called linguistic variables, that is, variables whose values

are not numbers, but words or sentences in a natural or artificial lan

guage. The motivation for the use of such variables is that, in general,

verbal characterizations are less precise than numerical ones, and thus

serve the function of providing a means of approximate description of

phenomena which are too complex or too ill-defined to admit of analysis

in conventional quantitative terms. Actually, we use such variables in

ordinary discourse, e.g., when we assert that "Paris is very beautiful,"

"David is a highly intelligent man," "Harry loves Ann," "The economy is

in a state of recession," "Reduce speed if the road is slippery." etc.

In these assertions, the italicized words may be viewed as the values of

linguistic variables, with each such value representing a label of a

fuzzy subset of a universe of discourse. In this sense, a statement

such as "Stella is young" may be interpreted as the assignment of a lin

guistic value young to a linguistic variable named Age, and a collection

of such statements constitutes a system of assignment equations from

which other assignment equations may be deduced by a process of logical

inference.

What we suggest is that in the case of societal systems the use of

linguistic variables may offer a more realistic—if less precise—means of

systems analysis than the conventional approaches based on the use of

quantified variables. In effect, our contention is ttet the classical



techniques of systems analysis—which were conceived *.nd developed for

dealing with systems which have well-structured mathematical models—

are unsuitable for the analysis of the behavior of societal systems. To

cope with such systems, we must forsake our veneration of precision and

be content with answers which are linguistic rather than numerical in

nature. This, in essence, is the spirit of what might be called the

linguistic approach—an approach in which the concept of a linguistic

variable is employed both as a means of approximate characterization of

system behavior and as a basis for approximate reasoning involving the use

of a fuzzy logic with linguistic truth-values.

In what follows, we shall present in a summarized form some of the

basic concepts which play a central role in the linguistic approach.

More detailed expositions of these concepts may be found in [3] and [4].

2. Elements of the Linguistic Approach

As was stated in the Introduction, linguistic variables serve as a

means of approximate characterization of phenomena which are too complex

or too ill-defined to be amenable to description in numerical terms.

More concretely, a linguistic variable is characterized by a quintuple

(9(»T(90, u» G» M> ln which OC is the name of the variable; T(Q() is
the term-set ofQ(,that is, the set of names, X, of linguistic values of

Q(; and M is a semantic rule for associating a meaning, M(X), with each

name (linguistic value) in T(Q(>. Generally, M(X) will be assumed to be

a fuzzy subset of U.

As an illustration, consider a linguistic variable named Age. The

term-set, T(Age), or simply T, of Age may be represented as follows



T(Age)= young + very young + not young + very very young + not very young (1)

+ ... + old + very old + not old + ... + not very young and not

very old + ... extremely young + ... + more or less young + ...

in which + denotes the union rather than the arithmecic sum.

The universe of discourse for Age may be taken to be the interval

[0,100], with the numerical variable u which ranges over U = [0,100]

constituting the base variable for Age. Then, a value of Age, e.g.,

young may be viewed as a name of a fuzzy subset of U which is characterized

by its compatibility function,c :U -• [0,1], with c(u) representing the
2

compatibility of a numerical age u with the label young. For example,

the compatibilities of the numerical ages 22, 28 and 35 with young

might be 1, 0.7 and 0.2, respectively. The meaning of young, then, would

be represented by a graph of the form shown in Fig. 1, which is a plot

of the compatibility function of young with respect to the base variable

u.

A typical linguistic value in (1) contains one or more primary terms,

e.g., young, old, whose meaning is both subjective and context-dependent

and hence must be defined a priori; connectives such as and and or; the

negation not; and linguistic hedges such as very, more or less, extremely,

quite, etc. The syntactic rule may be represented as a context-free

grammar which generates the terms (linguistic values) in T(Age) (see [3]),

while the semantic rule is a procedure for computing the meaning of a

2The compatibility of u with young is identical with the grade of member
ship of u in the fuzzy set labeled young.



linguistic value from the knowledge of the meanings of its components.

Thus, if very is defined to be an operator which squares the compatibi

lity function of its operand, then the compatibility function of very

young may be expressed as (see Fig. 2)

c (u) - (c (u))2 (2)
very young young

Similarly, if more or less X, where X is a primary term, is defined by

1

Cmore or less X(u) =(cyoung(u))7 (3)

then

1

c , (u) = (c (u))2 (A)
more or less young young

The negation and the connectives are defined by the relations

Cnot X(U) * X-CX(U) (5)

CX and Y(u) = CX(U)A °Y(u) (6)

CXorY(u) = CX(UWCY(U) (7)

where X and Y are labels of fuzzy subsets of U, and v and A stand for Max

and Min, respectively. As an illustration, if

c (35) = 0.2 (8)
young

<W35) •°-1 (9)

then

c (35) = 0.04 (10)
very young



and

c ,,(35) =0.01 (11)
very old

c fc (35) = 0.96 (12)
not very young

c ^ ,,,(35) = 0.99 (13)
not very old

c „ , «_ .,(35) = 0.96A 0.99 (14)
not very young and not very old

= 0.96

What this example shows is that once we have defined the meaning of

and, or, not and the linguistic hedges, the meaning of any value of the

linguistic variable which can be generated by the syntactic rule can be

computed from the knowledge of the meaning of the primary terms. In

effect, it is this structured nature of linguistic variables that makes

them so convenient to use in the approximate characterization of complex

phenomena.

Another point that helps to clarify the significance of a linguistic

variable is that if the values of a conventional variable are represented

as points in a plane, then the values of a linguistic variable may be

likened to ball-parks with fuzzy boundaries. Furthermore, the compati

bility function which defines the meaning of a linguistic value may be

regarded as the membership function of a fuzzy restriction on the values

of the base variable. This implies that a linguistic variable has a

hierarchical structure which is illustrated in Fig. 3.

If ^X and ^.tj are linguistic variables with respective universes of

discourse U and V, then a linguistic function from U to V is defined to

be a function from T(Q() to tAJ). To illustrate, suppose that U=V=

(-«,<») and the function from lQ() to T(f}J) is defined by the table



very small

small and not very small

not small and not large

large

very very small

very small

small

not very small

Then the fuzzy graph, f, of the function in question is the union of

3
the cartesian products

f = very small x very very small + small and not very small x very

small + not small and not large x small + large x not very small
(15)

As an additional illustration, suppose that Q( andQj represent,

respectively, the. input and output of a memoryless system which is charac

terized by a linguistic input-output function, f, whose table has the form

shown below

X

V

"u2"

n

ii ti

2

3The cartesian product of a fuzzy subset A of U and a fuzzy subset B of V
is a fuzzy subset AxB of UxV whose compatibility function is related to
those of A and B by c R(u,v) -c (u)A c (v). The union of A and B is
denoted by A+B (or,more conventionally, by A U B) and is defined by cA u fi(u)
cA(u)v cfi(u).

10



where "u ", i = 1, ... , n, denotes a fuzzy subset of (-00,00) labeled ap

proximately u ,and likewise for "v^1. In more concrete terms, "u^" may

be defined by an expression such as

/u" ui 2 -1( 1 + ( 1 )Z) L I u (16)

u " ui 2-1in which ( 1 + ( ) ) is the compatibility function of "u ",

with a being a parameter which may depend on u.. (The notation

A=J y(u)/u (17)
U

means that A is a fuzzy subset of U which may be represented as the union

of fuzzy singletons p(u)/u. Thus, the integral sign in (17) denotes the

union; u is the base variable; and y(u) is the grade of membership of u

in A or, equivalently, the compatibility of u with A.)

In the case under consideration, the graph of f is given by (Fig. 4)

f = "u" x "v," + ... + "u " x "v " (18)
11 n n

where "u." x "v ", i = 1, ..., n, denotes the cartesian product of the

fuzzy sets "u " and "v ". More generally, in the case of a system with

memory, the dependence of s , the state at time t+1, on s , the state

at time t, and u , the input at time t, may be expressed approximately as

a fuzzy graph g

g=J2 "s^*1" x"s^" x«u fc" (19)
i

where s. is a point in the state space of the system; "s. " is a fuzzy

subset of the state space labeled approximately s ; u is a point in the

11



input space; "u " is a fuzzy subset of the input space labeled approxi

mately u. ; and ^[denotes the union rather than the arithmetic sum.

Among the various concepts that can be dealt with linguistically,

there are two that are of particular relevance to the analysis of societal

systems, namely, Truth and Probability. In the case of Truth, its term-

set may be assumed to be (compare with (1))

T(Truth) = true + very true + not true + very very true + not very (20)

true + ... + false + very false + ... + not, very false and not

very true + .. more or less true + ...

while that of Probability might be

T(Probability) = likely + very likely + not likely + very very likely + (21)

unlikely + very unlikely + ... + more or less likely +

"0" + "0.1" + ... + "1" + ...

The primary term in Truth is true, which is defined to be a fuzzy

subset of the unit interval [0,1]. A convenient approximation to the

compatibility function of true is provided by the expression

c (v) » 0 for 0 < v < a (22)
true -

. v - a v2 c ^ a H 1- 2(y-^-f ) for a<v<——

,v - 1N2 - a + 1
~ ^i - a^ —2— - v- 1

which has v = *a as its crossover point (i.e., the point at which1+a

2

c(v) = 0.5). Correspondingly, the compatibility function of false is

given by (see Fig. 5)

12



(v) =c (1-v) , 0<v<1 (23)
false true

The same applies to Probability, with likely and unlikely, being analogous

to true and false, respectively.

The linguistic truth-values in (21) serve the function of providing

an approximate assessment of the truth of apossibly fuzzy assertion. As
an illustration, consider the proposition "George is very, intelligent,"

which, as pointed out earlier, may be interpreted as an assignment of the

linguistic value very, intelligent to the intelligence of George. Now,

the assignment of atruth-value, say very, true, to the proposition in

question results in the composite proposition

" "George is very intelligent" is very true "

As shown in [4], such a proposition may be approximated by a simple pro

position of the form

" George is X "

where X is a linguistic value of Intelligence which depends on the compa

tibility functions of the primary terms intelligent and true.

In the case of a societal system, S, we would usually be concerned

with a collection of propositions such as:

a : " S is quite stable "

A : " S is highly mobile "

A : " S is experiencing rapid growth "

A : " S is in a state of depression "
n

Suppose that the propositions A^ .... An are assigned the linguistic

13



truth-values T,, ..., T , respectively. The collection of possible truth-
1 n

values that can be assigned to A^, .... Afl is called a truth-value distri

bution. For example, for n = 3, we may have the truth-value distribution

T = (true, quite true, very true) + (false, false, true) + (24)

(very true, more, or. less true, not true) + (true, true, false)

which means that there are four possible assignments of truth-values to

A ,A ,A expressed by the terms of (24). These assignments reflect the

relationships between the truth-values of A^ k^ ky which are induced by

the underlying dependencies between the propositions in question.

The use of linguistic truth-values leads to a fuzzy logic in which

not only the truth-values but also the rules of inference are fuzzy in

nature. A simple example of such inference is the following: (x and y

are real numbers)

premiss: x is small

premiss: x and y are approximately equal

approximate conclusion: y is more or less small

The difference between fuzzy logic and the classical two-valued

logic is illustrated by the familiar syllogism:

premiss: All men are mortal

premiss: Socrates is a man

conclusion: Socrates is mortal

In fuzzy logic, an analogous syllogism would b«?.

14



premiss: Most men shave

premiss: Lakoff is a man

approximate probabilistic conclusion: It is very likely that Lakoff shaves

The idea here is that most and likely may be defined as fuzzy sub

sets of the unit interval (Fig. 6). Thus, if the compatibility function

of very likely is an acceptable approximation to that of most, we can

assume that the conclusion "It is very likely that Lakoff shaves," follows

approximately from the premisses "Most men shave" and "Lakoff is aman."

A basic rule of inference in fuzzy logic is the compositional rule

[3]. In a simplified form, this rule may be stated as follows. Let A :

"u is P" be a proposition in which P is a value of a linguistic variable,

e.g., "u is small." Let B : "u and v are Q" be another proposition in

which Q is a fuzzy relation expressed in linguistic terms, e.g., "u and

v are approximately equal." Then, from A and B we can infer C:

A : u is P

B : u and v are Q

C : v is P o Q

where P o Q. is the composition of the unary relation P with the binary

relation Q.

The compatibility function of the composition of P and Q is given by

c (u,v) = V (c (u) A c (u,v)), where V denotes "maximum over u."
Po IJ U i x u

15



A :

B :

As a simple illustration of this rule assume that we have

u is small

u and v are approximately equal

where small is defined as a fuzzy subset of the universe of discourse

(+ means union)

U =1 + 2 + 3 + 4

which is expressed as

small = 1/1 + 0.6/2 + 0.2/3

(25)

(26)

where a term of the form y/u signifies that the grade of membership of

u in small (or, equivalently, the compatibility of u with small) is y.

Similarly, approximately equal is defined as a fuzzy relation by

approximately equal = 1/(1,1) + 1/(2,2) + 1/(3,3) + 1/(4,4) (27)

+ 0.5/(1,2) + 0.5/(2,1) + 0.5/(2,3)

+ 0.5/(3,2) + 0.5/(3,4) + 0.5/(4,3)

To compute the composition small o approximately equal it is suffi

cient to form the max-min matrix product of small and approximately egual

as shown below

[1 0.6 0.2 1]

Thus,

1 0.5 0 0

0.5 1 0.5 0

0 0.5 1 0.5

0 0 0.5 1

L

= [1 0.6 0.5 0.2]

small o approximately equal = 1/1 + 0.6/2 + 0.5/3 + 0.2/4

16

(29)



which may be approximated linguistically as more or less small. It is

this result that provides the basis for the statement made earlier to

the effect that from A and B we can infer (approximately) that v is more or

less small.

A special and yet important case of the compositional rule of infer

ence is one where the proposition B has the form

B : If u is R then v is S

where R and S are values of linguistic variables, e.g., "If u is small

then v is very large." It can be shown [4], that in this case B may be

replaced by the equivalent proposition

B* : u and v are Q

where (+ denotes the union and V is the universe of discourse associated

with S)

q = r x s + not R xV (3°)

Then, the application of the compositional rule of inference to A and B*

yields what might be called the generalized modus ponens:

A : u is P

B : If u is R then v is S

C: visPo(RxS + not R x V)

Examples of the application of this rule may be found in [3] and [4].

Just as linguistic truth-values can be used to provide a basis for

the assignment of approximate truths to assertions about a complex system,

so can linguistic probabilities be employed to assert approximate like-

17



lihoods of various events. For example, in response to the question

"What is the probability that there will be a recession next year," we

may respond with a fuzzy ball-park estimate very likely, with the under

standing that very likely is a linguistic probability-value whose meaning

can be computed once the compatibility function of likely has been defined,

The way in which this can be done as well as the techniques for computing

with linguistic probabilities are discussed in greated detail in [4].

3. Concluding Remarks

Our main objective in the foregoing discussion was to outline some

of the basic aspects of the concept of a linguistic variable and suggest

that the "ball-park" nature of the values of linguistic variables may

make them an appropriate tool for the analysis of societal systems.

Clearly, the task of applying the linguistic approach to the solution of

specific problems relating to the behavior of societal systems is certain

to be nontrivial. Nevertheless, the ideas immanent in the linguistic

approach appear to be of sufficient relevance to the analysis of societal

systems to justify further exploration of their utility in the character

ization of the behavior of large-scale systems.
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