

Copyright © 1974, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

AN OVERVIEW OF THE VERS2 PROJECT:

HIGH LEVEL LANGUAGES IN AUTOMATIC PROGRAMMING

by

Jay Earley

Memorandum No. ERL-M416

December 1973

ELECTRONICS RESEARCH LABORATORY

College of Engineering
Computer Science Division

University of California, Berkeley
94720

AN OVERVIEW OF THE VERS2 PROJECT:

HIGH LEVEL LANGUAGES IN AUTOMATIC PROGRAMMING

Jay Earley

Computer Science Division, of the
Department of Electrical Engineering and Computer Sciences

and the Electronics Research Laboratory
University of California, Berkeley, California 94720

ABSTRACT

In the VERS2 project, our approach to the area of automatic programming

is through the development of high level languages (which allow a solution to

a problem to be stated more easily), and optimizers (this is meant very broadly)

for these languages which make their programs as efficient/as ones written (with

more difficulty) in a lower level language. The specific programming language

components which we deal with are data structures (and complex operations on

them), naming structure, and extensibility. We are developing and experimenting

with a particular high level language VERS2, which embodies these concepts.

This research was supported under NSF Grant //GJ 34342X.

INTRODUCTION

Automatic programming is a field of endeavor in which we strive to

automate the work that is normally done by programmers, with the ultimate

goal of allowing computers to be used by people who are not necessarily

trained in programming and allowing computers to be more effectively used

by trained programmers. We feel that one important approach in this area

is the automation of programming by developing high level languages which

allow a solution to a problem to be stated more easily, and optimizers

(we mean this very broadly) for these languages which will make their

programs as efficient as ones written (with more difficulty) in alower

level language. In fact, we feel that there is acontinuum of levels of

description between the statement of aproblem and the statement of an

efficient solution to a problem, and we are working upwards along this

continuum.

In [1] Balzer presents a model of an automatic programming system

which is quite useful in describing where our work fits into the field.

His model has four phases:

1) problem acquisition, in which the system learns from the user

a statement of the problem to be solved;

2) process transformation, in which amethod for solving the problem

is generated;

3) automatic coding, in which an efficient program is constructed

from the description of the method; and

4) verification, in which the system's understanding and execution

-1-

of the user's intent is checked.

OUTLINE OF RESEARCH

Our work falls into two areas, 1) development of the language

(concepts, not syntax), which would be the interface between the various

phases, in Balzer's model, and 2) work on the automatic coding phase. Let

us first explore what we mean by the interface language. There should be

some set of semantic concepts which can be used to state both a problem and

a method for solving it in terms which are as close to the domain of the

problem and as independent of efficiency considerations as is required. We

call this set of concepts the "interface language" because it would serve as

the form for the output of the problem acquisition phase, the input and out

put of the process transformation phase, and the input to both the automatic

coding and verification phases. Clearly, the design of this language will

have a profound influence on the entire system. One main part of our work

will be the development of an interface language which allows the appropriate

naturalness and ease of description of problem domains, problems, and methods

of solution.

In order to explain more fully what we mean by automatic coding, we

formulate three development stages for an automatic programming system.

Stage 1 (conventional): The user supplies the algorithms and data

definitions, and makes essentially all implementation decisions.

Stage 2 (partially automatic): The user supplies the algorithm

(perhaps partially), and the system completes it and derives an efficient

implementation.

Stage 3 (automatic): The user supplies the problem and the system

derives the algorithm and its implementation.

-2-

We believe that there is a continuum between the stages and that work

on later areas will likely proceed concurrently with work on earlier ones.

Our work consists of transforming a system from Stage 1 to Stage 2. We can

show this development in more detail as follows:

Library of data representations

Data representation
chooser

Efficiency
requirements

Library of transformations

Abstract description of problem
domain, problem, and method of
solution

Representations
for each data
structure in
program

i
Implementation

^[facility

Base level program

Y

COptimizerJ

Optimized base level
program

Y

CCompiler J

Y

Efficient Compiled
program

This is a diagram of the principal parts of our Stage 2 system. Our

Stage 1 system differs from it only in that some circles are missing and others

are performed by the user rather than by the system. The user provides, at

-3-

the top, an abstract description of his problem domain (if someone else has

not already done this), his problem, and a method for solving it. This is

then combined with descriptions of representations for each data structure

in the program (also written by the user in our Stage 1 system) by the

implementation facility to produce a base level program. This is a program

in a higher level language which reflects the choices of data structure

representation that have been made. Notice that in the Stage 1 system, the

data representation chooser is not used at all. The next step is to apply

the optimizer to effect certain rearrangements and deletions of code to

Improve the performance of the base language program. In the Stage 1 system

the optimizer will have a fixed set of transformations that it can apply

(it will not use a library) and they will be rather simple ones.

The final step is to compile the program. We would like to emphasize

that the program can be executed and debugged or tested at any step in its

development, including the original abstract description.

In progressing to a Stage 2 system, we add the following things:

1) a library of data structure representations from which the user may

choose the one appropriate for his program; 2) an automatic mechanism for

choosing representations from this library; 3) a modification to the

optimizer so that it may be table-driven; that is, it would use a library

of transformations which could be augmented by the user.

DETAILS OF OUR APPROACH

We will now describe our ideas in more detail. We have been designing

and working with an abstract level of data structure description and manipulation

r21
which we call the "relational" level. J It is intended to be used in a

programming language in order tp allow the programmer to express his problem

solutions in terms which are natural to his problem domain — or

-4-

at very least, in terms of the abstract data structures which are most

relevant to his needs rather than the machine-oriented structures currently

used. The specific structures we use are sets, relations, sequences, and

tuples. In addition to these, we provide a collection of powerful operations

called iterators, which contribute to the elimination of implementation

details in the expression of algorithms. These are abbreviations for what

would normally be written out as various kinds of loops. We have a wide

variety of them including quantifiers, operations which form the set of all

objects satisfying a certain condition, and minimization and sorting

operations (see [4]). Other languages containing some of our high level

data structure and operations are SETL[12], SAIL[13], MADCAP[1A], and QA4
We would like to take programs written in a programming language using

these data structures and operations, and automatically generate efficient

representations for the data structures and optimized versions of the programs.

This process will be done in a number of stages. First, we provide our

language with an implementation facility. This includes having data structures

in the language which are relevant to representation of structures in machines

(vectors and structures as in ECL[7]). It also includes afacility whereby
one may specify the representation of the abstract data structures using a

"structured programming" approach[3]. For each use of adata structure type,

the programmer may indicate that it is to be represented as some lower-level

type, and then he may rewrite the relevant primitive operations which are used

on the higher-level type as subroutines in terms of the lower-level type.

This may be repeated until things are expressed in terms of machine-level

structures.

Next, we will get some experience at using this kind of a system, and

develop a library of representations for each type of structure and a

-5-

characterization of the circumstances under which each representation is

most useful. This would include information about the cost of the represen

tation in space (per element of the structure) and the cost in time of

applying each primitive operation to the structure using this representa

tion. We will then try to automate the choice of data structure represen

tation given information about the average size of the structure, relative

frequency of applying the various primitive operations to the structure

(e.g., frequency of adding to a set as opposed to testing for set member

ship), and the user's requirements for space and time efficiency.

As an example, consider the problem of programming a computer to play

cards. At the abstract level, a "card" is a pair (2-tuple) consisting of

a "suit" and a "denomination". A "pile" is a sequence of cards, and a

"hand" is a set of cards. An iterator which might be used in such a program

could calculate the set of all cards C in a hand H which were of a particu

lar suit S:

{C g H| SUIT(C) = S} .

In the system-provided default implementation for the iterator we would

generate each member of S and test its suit. However, there will be a

library implementation for a set which represents it as a relation mapping

some domain (suits in this case) into disjoint subsets of the original set.

This implementation might be chosen in this case because it makes the above

iterator quite efficient. Implementations for the relation and for the sub

sets would be chosen as well. The relation could be a 4-tuple and the sub

sets could be linked lists. Of course, in reality, a hand of cards is so

small that it might not even matter what these representation choices were,

but they illustrate how the system works.

-6-

Notice that this approach is significantly different from an ordinary

extensible language approach. We need to have an extensible language, of

course, because the abstract data structure language is, in fact, an exten

sion of a simpler base language. However, there are two important

differences: 1) The user works down from the top, not up from the bottom.

He writes an abstract program first, debugs it using default representations

provided by the system, and then worries about the lower levels of his program.

He must be able to easily modify the default extensions to use his own (or

the library's), which are more efficient. This requires additional

mechanisms which we are calling the implementation facility. 2) A great

deal of research has gone into determining which constructs should be in the

high level abstract language. This is every bit as important as the rest

of the system, for without the right input from the user, the best implementer

in the world will be relatively ineffective. Our approach can be summarized

in this diagram:

abstract—problem oriented level

extension

facility

base—efficiency oriented level

implementation
facility

We believe that the method of choosing an implementation from a

library will work reasonably well with programs which do not rely heavily

on iterators. For those programs which are written at a high enough level

to use iterators as a primary means of specification, methods for auto

matically designing data structure representation (based on the particular

iterators used) will be necessary. We have one significant method already

(called interator inversion) for designing the data structure representations

required to convert a batch algorithm to an incremental one using the

-7-

information contained in the iterators. We have also developed a compre

hensive enought set of iterators "• t̂hat some complicated algorithms can

be expressed entirely in terms of applicative programs using iterators.

This is a form of highly structured programming, and we feel that it opens

the way to more powerful methods of automatically improving programs.

Iteration inversion is the first example of such a method but we expect to

develop more.

Orthogonal to this data representation research, there will be an

effort in code optimization. Where the previous section dealt with the

form of data structures, this will deal with the form of the program. Its

object will be to eliminate and rearrange code to produce a more efficient

program. It objectives, then, will be the same as conventional efforts in

code optimization and will rest heavily on existing technology. The addition

problem which we face is attempting to do this in the presence of complex

data structures and a rich collection of operators.

One can view the approach to global code optimization in two parts:

gathering information and applying transformations. This is not to say

that the two happen serially; in fact, there will probably need to be a great

deal of interaction between the two phases. The presence of complex data

structures affects both phases. The information gathering is different in

that modifications to complex data structures (especially those involving

pointers) affect our knowledge of the program differently than assignments

to simple variables and arrays. The transformations to be applied are also

different in that much of the code deals with data structures rather than

arithmetic expressions. In particular, we believe that embedding knowledge

about the algebraic structure of operations on data structures in the

-8-

:-l.:. ..<".• 1M-.

'.i->: v"

.•n-O :^:> ,''.<•"••i'.'rr.^ «••

!,-*v r;0;. ;:tSv.'Va.'r;i r-o ••••! J f-.'-lft^'l-vU

•• L>'Pi;i; \ .1 •;''.!;•• .*<;•. .1 ;. i.w

..«-•,'{• c,:;T •:'V- •:'?:'.{ .;»«..! •:..'! j ' r;^<;.;..; J -: •': ;r

••••>.l

optimizer will enable it to remove many redundancies. In addition, much of

our code will have been generated at least semi-automatically by the data

representation phase and therefore will probably contain more redundancies.

Our optimizer will be constructed in a table driven fashion so that

it can accept new transformations plus hints about when they would be useful.

This will be especially necessary because of the lack of experience in

using optimizers with data structures.

In addition to this basic thrust of our research, we have been exploring

two other areas which are important to the development of high level program

ming languages: Language extension and naming structure. Our effort in

language extension has three parts: (1) We have developed a method of syntax

description*5^ which separates ordinary issues of syntax from precedence

issues, resulting in grammars that are smaller, easier to construct and read,

and easier to extend. (2) We have developed an LR(1) parse constructor which

handles all LR(1) grammars yet produces parse tables at about the same size

as Simple LR(1) constructors* . (3) We have developed amethod of

specifying the meaning of extensions1 Jwhich involves less implementation

detail and fewer special constructs in the language.

Naming structure establishes a correspondence between names in a

program and values. We have developed a new form of naming structure, which

we call "module structure"*8^ which is more general and flexible than existing

schemes, such as Algol's "block structure" or LISP's "dynamic naming". It

allows separately written routines or program segments to be instantiated

and combined in a variety of ways to enhance a programmer's ability to

modularize his task.

CURRENT PROGRESS

[10]
We are designing and implementing a programming language called VERS2

-9-

3i-.<:3 .'r.;;X -•.

«- }IJJ'-T'y '77TfK /ri/S-i-j

•'i ;* •'"{, *•.7 •'•

ttsj>: v<V-T:!f,£ •**V-'.'-m-

: • _:. J -Vf J1

*•••!' :,: • •• V:'< tic

Wr.\--i' ;;••;, iv ^f:^;.'

;> :v;»-.^;*.-% -tyO ./.-.a^;^;>.'-_r.s'ri ;:;.'.'.;;.-:tin f,,-^ rK;-.::: .-..£-.;.y.--; -.r-;--,.. ..-,:

•;^::/ '̂<f: ••••> 7 :-r/.;;.^.i:.5. ,oi-s••;•].«>'-/.-.•?? i>vx7? ;>'j {'.) ;;v-oi; --.--jr.'-: ;-r •' .;./

;,<^fe:^n :7^:T7-^7r/v^ !>,-> r-wn>r •rij-.ul:l:f# 3<>:!j,;f;.^M7bM/

.';?<?».•

o 1

.".-/.!&;:•>*'.•• •:..*.«,.-f?-.!-jv^-'. .?-4,-»:-;.

'«•;*» *» .

o.? vsi-.O.*-

av.

'••71.•""••{.

:: »:v-

<*.•'•'

in order to test out the ideas expressed so far. We are implementing

VERS2 as an extension of ECL on a PDP10 at USC's Information Sciences

Institute over the ARPA network. At the current time, a version of

VERS2 containing the high level data structures and operations, and the

implementation facility is just becoming operational. Our next step is

to start developing a library of representations and to start thinking

seriously about choosing data structure representations and about

optimization. An extension facility has been designed integrating the

three components mentioned earlier which we expect to be running in a

couple of months. We expect to make this extension facility generally

available, not just for extending VERS2, but also fpr extending ECL or

any language implemented in ECL. The naming structure is completely

designed but cannot be implemented untiJL certain improvements are made

to ECL which we expect sometime in the next year. A Harvard group under

Cheatham is in the process of developing tools for use in optimization

of ECL programs , and we expect to collaborate with them on this

effort.

In addition to the publications mentioned so far, we have produced

a short note on language design *- J, and we anticipate producing a paper

on extensible data types soon.

-10-

.';'*»!?*£• A *. •*.-. . i

:7^ '7'f7::«-H •:•*.?-.*! .«r^U'- ...t.*.fyo-J.:?}^ai?o :i:\}.w>:^..-t jvy/f .vi .v?' '..

1 ir.i"' . ii .*'.'fjii "PJ'''"'•.; I.-".j fit} «S:.*>"' 17 7 •'.'u'.'i'i'i1'!;?: ..'.TT:.?.'..- I-.";.•" r..-i

5*;iJ ^:v'7;-> 73??Ji7± -Ksn^j 7C 7 fi;.-;;-i :•.»:; •.• 1.1,'.J 7:j? .:-':r^ :•'::>-:

:• iV.i .;iiir.f.?r:;y.v s',:f t'J 7 70-T".^ *v./ rir/ji'tv' ^.T^'iirfCv :?".-:• ":c> *.;<;':.

wli'ftVO/K^-;. •.-;•'::•:..;.-::ivi ijo-j's/- U'x-v lOrf? s;-'^ ,»;j-j -?7*q"7 .-7

"'<* --'*:7 £a Vfir$\>:*»i :u>:' -Ki<; 7ufl %<lZW-j Hi.xhiis^yur u; ":

v.= '»;J5 :7V7,-v :»•?• ::,rh7j^.v^^ .-v'tij:^>j; -ui'V ;.r>7f ^ J)5:.?mh:

jhAf«! •••: -..-. •?.J'/V*.j::i.---^-<:»-f.-T_--''; «-,.;';v7'i^7, I j. jh:j <ry.\ nW'iJl-: '̂'!." u\< .:

.•'» •/•x»» 717^* '"• ' *>.v'->:

nq

\

ACKNOWLEDGEMENTS

Ihave been assisted in the design and implementation of VERS2
by Steve Chernicoff, Dan Carnese, Jeff Barth, and Murray Bowles. The
LRU) parse constructor has been developed by Steve Meyer. Larry Barnes
has provided many valuable ideas on the direction of the project and the
organization of this paper.

•i*:"0.'-j • ^e.^ij../. (..L';'-tV''

y •> .*>'•

REFERENCES

[1] Balzer, R. M., "Automatic Programming," USC Information Sciences
Institute, 1972.

[2] Earley, J., "Relational Level Data Structures for Programming Languages,"
to appear in Acta Informatica.

[3] Dijkstra, E. W., "Structured Programming," Software Engineering Techniques,
NATO Science Committee, 1970.

[4] Earley, J., "High Level Operations in Automatic Programming," to be
presented at SIGPLAN Slmposium on Very High Level Languages, March 1974.

[5] Earley, J., "Ambiguity and Precedence in Syntax Description," Technical
Report.

[63 Earley, J., "Syntax Extension Using aRun Time Model," Technical Report.

[73 Wegbreit, B. et al., ECL Programmer's Manual, Harvard University, 1972.
[83 Earley, J., "Naming Structure and Modularity in Programming Languages,"

Technical Report.

[93 Chetham, T. and Wegbreit, B., "A Laboratory for the Study of Automating
programming," Proc. SJCC, 1972.

[10] Carnese, D., et al, VERS2 Manual, in preparation.

[Ill Earley, J., "Initialization and Null Objects in Programming Languages,"
Technical Report.

[123 Schwartz, J.T., "Abstract Algorithms and aSet-Theoretic Language for
Their Expression," New York University, 1970-71.

[133 Feldman, J. H., et al, "Recent Developments in SAIL," Proc. FJCC,
1972.

[143 Wells, M. B. and Morris, J. B., "The Unified Data Structure Capability
in Madcap VI," International Journal of Computer and Information Sciences,
September, 1972.

[15] Derksen, J., Rulifson, J.F. and Waldinger, R.J., "The QA4 Language Applied
to Robot Planning," Stanford Research Institute, 1972.

[16] DeRemer, F.Lf, "Simple LR(k) Grammars," Comm. ACM, 14, July 1971.

[17] Earley, J,, "High Level Iterators and aMethod for Automatically Designing
Data Structure Representation," in preparation.

'--••/•>. 'i:.-t-r. •r^bff'?.V'ir*.r^I«Vfc''*:-.'-•.{:•• . (••;.•-,• •...'••.'.','.

' •+ •i.*' ,** v? .:<*••'.

•trr-.'*-—! r

'>-..•..»:v.:-r .^i.'i,

•i .r- '^. ,....., «,••••• •>«*•- :•—. ,...,

'•'- ,:.;•• *-..; . . .«
^•%-TVV ^;

*M 7f V''

.•v.: ••"•: ' -y^S^ ^'-r'A^M. 1-s^-o'••.•it--:.,;-••

	Copyright notice 1974
	ERL-416

