

Copyright © 1973, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

ON WORST-CASE COSTS FOR DYNAMIC DATA

ELEMENT SECURITY DECISIONS

by

Franklin 6. Woodward and Lance J. Hoffman

Memorandum No. ERL-M413

26 September 1973

ELECTRONICS RESEARCH LABORATORY *

College of Engineering
University of California, Berkeley.

94720

ON WORST-CASE COSTS FOR

DYNAMIC DATA ELEMENT SECURITY DECISIONS

Franklin G. Woodward

and

Lance J. Hoffman

Department of Electrical Engineering and Computer Sciences
Computer Science Division

and the Electronics Research Laboratory,
University of California, Berkeley, California 94720

Research sponsored by the National Science Foundation, Grant GJ-36475,

Introduction and General Concepts

A major problem faced by users of most computer systems today is

the lack of adequate file security. Early systems provided virtually

no protection of stored data and it was often a quite simple matter for

a user to obtain stored information belonging to another user without

obtaining any particular permissions for such access [1, 2]. In more

recent systems, some provisions have usually been made to distinguish

which users have access to particular files, and what types of operations

they may then perform. Access has been conditional upon the requestor's

identity. If permission for further processing is granted, the appropriate

type of access to the entire file is granted; if permission is denied,

no file processing is allowed to occur.

Conway, Maxwell, and Morgan [3] have shown that this approach is

frequently inadequate. There are many instances in which a file may

contain data of varying sensitivity, some of which must not be divulged

except under explicit conditions dependent on the data itself. As an

example, consider an employee file. Such a file may contain a distinct

record for each employee, all data pertinent to the employee being located

in that record. This data may consist of the employee's name, social

security number, salary, medical history, and any number of other fields.

This file contains information relevant to a number of different users

within the organization, but at the same time some information is present

to which most of these users should not be allowed access. A few examples

should clarify this point:

1) An employee may be allowed to access his own record, but no
1 1

others.

2) The company doctor may be allowed to see all fields of all

records excepting the salary field.

3) A clerk may require access to all fields within a record, but

management wishes to restirct the clerk's inquiries to employees

earning less than $15,000.

Of course the number of different instances is potentially very

large, but at least two points are clear:

1) The access decision, when considered at the file level, is an

all or nothing situation. A user may access either all data

in the file or none. This is frequently inadequate.

2) It may often be desirable to control allowed data access at

the sub-file level dependent on the specific authority of the

particular user, and the particular value of the datum.

Selective security requires the file system to maintain some in

formation on who gets access to what and how. This can be accomplished

by use of a form of security matrix in which the rows represent users

or classes of users and the columns specify the datum to be controlled.

Each matrix element would then represent a decision rule to be enforced

when user X requests access to datum Y (see Table 1). This scheme may

be viewed as a subset of Lampson's object system [4], If the decision

USER

A

B

C

Table 1.

EMPLOYEE

R

R, W

JOB NO.

R, W

R, W

R

SALARY

R, W

MED. HISTORY

R, W

K

Sample data access control matrix for employee file. R = READ;

W = WRITE (adapted from Conway et al)

rules are simple yes/no indications, they may be represented as bits

and save memory space. This is not to underestimate the problems of

matrix representation; on the contrary, the size of such a matrix is not

a trivial concern and must be considered carefully.

The implementation of selective security can be effectively handled

if capability for an access decision is provided at the sub-file level.

Hsiao's system [5] controls access at the record level by use of "authority

items." While this provides control over narrower domains than files, it
• Li

still does not permit an access to be made dependent on the value of the

data itself. Hoffman [6] used procedure-based formularies to gain this

selective control: While this may provide the requisite protection, it

creates still another problem. Specifically, if we must always make this

decision whenever accessing any data element, an overhead burden is created

that may not be tolerable in many applications.

To circumvent these limitations, Conway et al have proposed that a

distinction be made between those access decisions which are independent

of data values and those decisions which can only be made based upon the

particular datai value being accessed. The first type of decision may be

considered data independent and the second data dependent, each for obvious

reasons. These distinctions are then contained in the security matrix

for both fetching and storing data.

The data independent decision need only be invoked once per file to

ascertain if the user is allowed access to the requested datum. There

is no need to repeat the request at each access and costly execution time

decisions may be avoided. Obviously the data dependent checks may only

be made at run time when the datum is available for scrutiny. Because

such a check must be made for each access, the overhead is significantly

higher than for the data independent check. The wise user will therefore

use data dependent restrictions only when the less costly data independent

checks are inadequate.

Conway, et.al. Implement file security via five basic modules:

1. security matrix - contains the access rules

2. F - function to check data independent fetch requests at

translation time

3. S - function to check data independent store requests at

translation time

4. F - function invoked by data dependent fetch request at run

time to check current data values

5. S - function invoked by data dependent store requests at run

time to check current data values

These modules are used by the translator in the following manner:

Whenever a source code reference is made to a previously unchecked datum,

a call is made to iF. or S . Ffc or S^ then consults the security matrix
; l;: t t t t

and determines if a data independent check is to be made. If so, and the

fetch or store is permitted, then the normal object code is generated.

If the fetch or store is not permitted under any conditions, then the

translation is aborted and an improper access has been thwarted. If a

data dependent check is to be made, then a call to F or S is inserted
r r

' •; i

into the object; code of the program and the check is postponed until run

time.

During execution, items which have been checked by F or S and

found to be data independent have no further restrictions placed upon

\

them and will suffer no performance degradation. Data dependent elements,

however, will invoke the special F or S routines. If access is permitted,

the value of the datum is returned to the program. If not, a null of some

sort is returned.

A few additional comments are called for at this point. First, this

model assumes that the operating system under which it is running is

secure with no bugs or hardware failures. Another assumption is that

the user's identification has been authenticated elsewhere, although

such authentication could perhaps be incorporated within the model. In

a security system based upon user privileges, this is certainly an

important matter to be considered. Also, there must be provision to

protect the security matrix. This could be done by making the matrix

an object within the security matrix itself, and allowing only restricted

access. Finally, Conway et al suggest that encryption/decryption modules

are easily implemented in this model, being easily incorporated into the

F and S functions,
r r

While the concepts embodied in this model are important and quite

useful, the originators' implementation suffers from the following short

comings :

1. All requests for access to a data base muse be entered as

source input to the system at translation time. While this

may be enforceable, it may often be quite inconvenient. There

is also an additional burden: one must somehow guarantee that

the user executing the object code is the same user that

initiated the source code translation.

2. The translated form of the requests must be held in a secure

manner so that they may not be altered by the user after the

translation time checks. While this may be possible, increased

vulnerability to tampering cannot be denied.

3. The access control rules must not change between translation

time and any execution of the object code. Most changes would

require costly retranslation of the source code to guarantee

protection, even for normal production programs.

4. Calls to the data dependent routines must be generated in either

of two ways. The first is by modifying the source translator -

a highly non-trivial task in current compilers. The second is

by preprocessing the source deck, which adds yet another step

to program preparation and creates yet another level of code to

be secured.

Conway et al recognized these problems and briefly discuss an alter

native. They suggest that the F /S security modules could be implemented

by adding a security matrix routine and modifying the I/O service routines

of the operating system to perform the F /S functions. This would make

the security independent of the translator employed but would necessarily

require all data accesses to be checked at run time. In other words, F

and S would no longer exist and the same execution time degradation

problem which plagues Hoffman's formularies [6] would be present here.

i
An Implementation

The concepts of Conway, et al's model are quite appealing. There

has been very little work done, however, to substantiate or refute the

viability of such an approach. We therefore decided to test the various

concepts by altering an existing operating system, the 6400 CALIDOSCOPE

system (a variant of SCOPE) on the CDC 6400 at the University of California,

Berkeley.

Our general approach was to utilize the basic concepts of Conway

et al's model, but; to eliminate its most restrictive assumption - that

all requests for access to the data base be entered into the system at

translation time, jThis goal was realized by having the security sub-

• i

routines determine at execution time if data dependent or independent

checks must be made and then proceed accordingly.

Most widely used general purpose compilers, on encountering an I/O

request in the user program, generate a call in the compiled code to a

routine of the system subroutine library. It is the system routine that

performs the required I/O operation. The system routine can be programmed
11

to make calls to special security subroutines. It is not necessary,

therefore, to modify the compiler, but only the system I/O routines

called. This has

Simplicity:

The compiler is extremely large and complex. Any change might

present formidable debugging problems. The system I/O routines

are considerably easier to alter.

Reduced expense:

A complete assembly of a FORTRAN compiler takes approximately 7 1/2

minutes of CDC 6400 time. At $7 per minute, this assembly costs

about $50. On the other hand, the cost of assembling a system

routine is usually under $10.

Generality:

Modifying |the system routines is actually more general, "cleaner",

3 major advantages:

and provides a degree of compiler independence.

This approach was described by Conway et al as an alternative to

their model for essentially the same reasons. However, they intended

this avenue to be used only for data dependent checking (not data in

dependent) , and probably minimized discussion of it on this account.

The operation of this scheme proceeds conceptually as follows (see

Figure 1). The system I/O routine maintains a pair of status bits for

each file the user wishes to access. The first bit is a "first call"

bit indicating if the file has been previously accessed during this run;

thus the system I/O routines can make a data independent check on the

initial request for file access. As in the Conway et al model, the data

independent check may continue or abort the job, or determine if data

dependent checks are to be made at each access. If data dependent checks

are required, the second status bit is set to indicate calls to F and
r

S^ are to be made. At each call to a system I/O routine from the user

program, the routine checks the "first call" bit and then either calls

F /S or proceeds with the next check. This check is of the second

status bit to determine if a data dependent test is necessary and the

routine either continues normal processing or calls the F /S function.
r r

Such a scheme does increase the I/O time for processing a data

independent file over the I/O time of a normal, unprotected file.

Whether the gain of this security capability outweighs the added execution

time penalty is for each installation to determine. The added execution

time for data dependent checking is even more significant, but selective

security is provided for those applications that can afford the cost.

Finally, for this scheme to be effective the users must not be capable

of creating their own I/O routines. A user with such a capability would

be able to circumvent all of the proposed security checks.

This approach was taken and an actual implementation programmed

for the CDC 6400 at Berkeley, principally because of availability and

familiarity. This choice is not too restrictive as the same I/O concepts

are employed on many computers. The particular system routines secured

were those for formatted sequential input/output of the FORTRAN "RUN"

compiler, specifically INPUTC and OUTPTC. This subset of I/O routines

are estimated by the computation center staff to be invoked by approxi

mately 75% of the compilations submitted at the campus computation

center. For our tests, other I/O routines (binary I/O for example) were

blocked by subprograms written to masquerade as those system routines.

When called, these subprograms were set up to abort processing with the

appropriate error messages.

The system I/O routines are quite complex assembly language sub

programs that are entered multiple times for each I/O operation. Modif

ication by a person unfamiliar with the routines is non-trivial. While

a "working solution" (as opposed to a research project) would demand this

effort, this project did not require such rigor. Therefore a still simpler

implementation scheme was used: intercepting calls to the system I/O

routines, performing whatever checks are desired, and then allowing I/O

to proceed (see Figure 2). This scheme had the advantage of eliminating

the need to modify any system routines and required coding only new and

completely independent modules. Isolating the actual target system

routines in absolute form on a private file had an additional advantage

of making the project immune to any on-going systems library development.

*?

The cost of this "linkage" type scheme over direct systems routine

modification was, we hope, only a slight lessening of execution efficiency

Security Matrix Content

The security matrix was maintained as a data file in secondary

storage. The matrix was accessed only by the data independent security

module. Reference to the matrix was made on the first I/O request to a

file by the user. Actual storage and retrieval of the matrix was done

in a fairly simple-minded manner, with only minor concern for matrix

protection. This is, of course, totally inadequate for a real world

situation, but it served the purposes of this cost study well enough.

Because the contents of the security matrix reveal most features of the

implementation, a close look at the matrix elements will be beneficial

here (see Figure 3).

The matrix is actually a sequential file with separate records for

each user of each protected file. The file protection system provided

using this matrix may best be typified as essentially open [7], with an

authority or access control list structure [8]. The absence of any

records concerning a given file implies that the file is not protected

and cues the system to do no further checking of I/O for this file. If

a file is listed in the matrix, but there exist no records for the user

seeking access, it is assumed that user has no privilege to the file and

cues the abortion of the current process. If, on the other hand, a

record is found in the matrix for the particular file and user, the user's

access is constrained by the information present in the matrix record

(see Figure 4).

Besides the file and user names, the matrix record contains the

following data. One character indicates data independency for read

access. If it Is a one, then this user is granted unrestricted read

access to the file for the remainder of the run, and no further informa

tion from the security matrix is required. If the indicator is zero,

then another character is checked to see if data dependent read access

is allowed. If this character is also zero, then no reads of this file

are permitted by this user (any attempt to read will terminate the users

process). If the data dependent character is non-zero, however, its

value indicates; how many fields must be checked at each read access

(the maximum is arbitrarily set at 6 fields). An analagous pair of

characters indicate write access capability.

[
The matrix also contains the record length of the subject file.

It is used to set up a "buffer" visible to the data dependent checking

module when system I/O transmits file data to the user program. The

record length in the matrix overrides whatever record length the user

has indicated in his FORMAT statement.

A failure mode indicator is also present which specifies what to

do upon the failure of a data dependent check. If its value is one,

then BCD zeroes are written into the appropriate field in the "buffer".

If the indicator is zero, then the entire "buffer" is zeroed. The

implications of this indicator are quite significant. It not only allows

withholding of particular data elements from a user, but also may deny

access to the entire record if the test of one field fails. An employee

file again serves

records dependent

as a useful example. If a user is allowed access to

upon the contents of the salary field, this option

may have the fallowing effects. If the user's allowed access range is

null and zeroes are always returned for salary, then allowing access

to the rest of the record is harmless and perhaps worthwhile. However,

if the user may access records only when salary is less than $15,000,

then a zero value returned indicates that the subject makes $15,000 or

more. If the entire record is not zeroed, then the subjects identifi

cation is known and a fact concerning a particular individual's salary

is revealed. Zeroing the entire record would help conceal the subject's

identity. Our implementation used this option for both read and write

access control to iieasure comparitive costs. Real world systems, however,

should not allow any output to occur after a write request has been

denied.

i

To handle <iat£ dependent checks, the security matrix must also

specify characteristics of the fields to be checked. A pair of matrix

elements thus speci.fy the starting and ending character positions of

each data dependent field in a record. To provide a very simple variable

range check another pair of elements gives the minimum and maximum values

of the permittee! access ranges for each field. It should be noted here

that this implementation only allows data dependent checking on integer

fields. While restrictive, it could be fairly easily extended to

alphameric data without unduly increasing execution speed. This extension

was not done due only to a lack of time.

The security matrix is really the heart of the security system.

By including more or less information in it, the complexity of the

potential data dependent checks can be controlled. The current implementa

tion has included those elements thought to be useful in a general sense

alfair range of control. What has keen included hereand which offer

should not be considered definitive. Furthermore, one should bear in

mind the relationships between record length, quantity of records, and

file length. Because large sequential files portend long access times,

it may be necessary to consider faster storage formats for the security

matrix.

Another problem which had to be dealt with was user and file identifi

cation. The methods of guaranteeing identification are quite relevant in

discussing a security model, but are here assumed to have been provided

for. The user must be identifiable in order to determine his access

rights. Such identification can normally be given in the user's job

control statements (JCL) , along with specifications of those files which

the user intends to access. But a second check is also necessary to

guarantee that the file actually addressed is the same as the user

specified. This is normally automatically done using file labels (again

a secure procedure is assumed). Label processing on the Berkeley 6400 is

(can you believe it?) only in the development stages. As there is no

reliable means of obtaining file identifiers from the system, simulation

of labels and JCL was done in our experiments.

A summary of the basic logic necessary to perform the security checks

on system input is shown in Figure 5. System output uses an analagous

flow chart. This logic is invoked by the linkage created between the

compiled user program and the real system I/O routine. A variation from

the Cornell model which evolved during programming should be mentioned.

Conway et al specifically designated dual translation time (F ,S) and

run time (F ,S) modules as necessary to accomodate both data fetches
r r

and stores. The security modules of this implementation, however, are

only enforcers of the decision rules contained in the security matrix.

The data dependent check must only examine the contents of the data

"buffer". The only difference between input and output is the timing

of the check. Therefore only one data dependent module was written,
i

whereas the Cornel; model has two (Fr,Sr). Similarly, only minor dif-

ferences occurred in the data independent checks, and again one module

sufficed.

Determination of Costs

•i;
While there have been some recent efforts to establish generalized

security-cost relationship models [9], little has been written of the

actual execution costs of various security systems [10] or models. Cost

determination has been a primary goal of this implementation.

The time to perform a FORTRAN I/O operation depends on several
i!

i.

parameters, including record length, format, and argument list. All

tests were therefore performed using identical I/O parameters. An

interesting aspect of formatted FORTRAN I/O in the CDC RUN compiler is

also relevant. Whenever a single I/O operation is to be performed, con

trol is passed back and forth between the users object code and the

system I/O routine! a variable number of times depending on the length of

the argument list.i Specifically, there are n+2 transfers to system I/O,
i

where n is the number of items in the argument list. This is important

because the security linkage created only executes special "security

code" on the first! call of a READ and the first and last call of a WRITE.

I,

Obviously, the longer the argument list, the less will be the relative

percentage of time taken in executing the "security code". We wished

to obtain worst case results, therefore, only two arguments were specified

for each I/O operation.

Another important facet of execution time concerns the efficiency

of the coded security programs. In this implementation, only limited

effort was spent in optimizing the source code. Because the linkages

between the user programs and the system I/O routines are entered so

frequently, they were coded in CDC's assembler language, COMPASS. The

data independent and dependent modules, however, were coded in FORTRAN

and may contain extraneous code. In any event, diligent code optimiza

tion undoubtedly will lower the tested execution times.

Our actual cost experiments fell into three categories:

1. A set of timing tests to determine the cost of the initial file

I/O request.

2. A set of timing tests to determine the cost of each subsequent

file I/O request.

3. An analysis of the main memory required for the security sub

routines and tables.

Cost Component I: Initial File I/O Operation

The first I/O operation initiates the call to the data independent

security module, references the security matrix, and initializes several

variables. Table 2 shows the basic times required to execute code to

determine data dependence/independence, initialize variables and perform

one read or write. The times of Table 2 are quite trivial (approximately

12 to 26 milliseconds). The time required to search the security matrix

is not included as it is variable depending on the position of the

subject file in the matrix.

NUMBER NUMBER CPU BASE
OF OF *

EXPERIMENT FIELDS CHARACTERS MILLISECONDS
NUMBER TEST OF CHECKED PER FIELD NOTE READ WRITE

1 DATA INDEPENDENT - - 13.72 13.72

2 DATA DEPENDENT 1 (FAILS) 10 1 13.16 12.28

3 DATA DEPENDENT 6 (ALL FAIL) 10 1 25.34 25.58

TABLE 2. Average time to perform initial I/O operation of file, not

including time to locate file and user in security matrix

Note 1: All fields tested fail; failure causes only failing field to

be zeroed.

* + .02 milliseconds

Recall that|the security matrix is currently stored as a sequential

file in secondary storage. The variable search time was clocked to be

3.98 milliseconds per record in the security matrix. This is the time

required for one iteration of a program loop, including a READ, to search

file. The expected time to locate a particular record in the matrix is

then:

E(search time) = 1/2 (number of records in matrix)(3.98 milliseconds)

This time should be added to the times given in Table 2 to obtain the

total expected time to perform the initial I/O operation of a file.

Clearly the expected time for the first read is almost totally dependent

on the size and organization of the security matrix. Because this

operation is only performed once per file per run, its time may not be

significant in the overall picture. Furthermore, improved organization

for matrix storage might dramatically reduce the average search time.

Cost Component 2: Subsequent File I/O Operations

This component was determined by measuring the time taken to do the

last 50 I/O operations out of 51 performed, and then computing the mean.

The first I/O operation is not included. Table 3 shows the mean times

to complete an I/O instruction under a number of different conditions.

Experiment 1 gives benchmark CPU times to do read and write operations

in the standard unprotected environment.

Experiment 2 indicates the mean I/O time when the subject file allows

data independent access. The increase is significant (READ 22%, WRITE 32%)

It is felt, however, that a large portion of this time may be due to the

linkage method of implementation. Had the linkage modules not been

created and the decision code placed directly into the system I/O routines,
i
a significant amount of source code could be eliminated. The effective

increase in time, therefore, would probably be much less in a real world

implementation. It certainly calls for further study, and points out

that we really are describing here a worst-case situation.

Experiments 3-8 show the I/O time incurred when various data dependent

checks are made. As can be expected, the time increases fairly linearly

with the number of fields to be checked. The effect of a data dependent

check failing is also evident as a slight time increment to zero the

field. What is interesting is that the incremental time necessary to

perform a one-field data dependent check is not very large. In a real

world implementation, this time would be further reduced by the same

amount as would the data independent check (see above). Selective security

on a limited basis might prove to be quite reasonably priced.

EXPERIMENT

NUMBER TEST OF

NUMBER

OF

!FIELDS
CHECKED

NUMBER

OF

CHARACTERS

PER FIELD NOTE

CPU

MILLISECONDS

PER I/O*
READ WRITE

% INCREASE

OVER BENCHMARK

READ WRITE

1 BENCHMARK - - 3.22 2.40 - -

2 DATA INDEPENDENT - - 3.92 3.16 22 32

3 DATA DEPENDENT 1 (PASSES) 10 4.24 3.70 32 54

4 DATA DEPENDENT 2 (ALL PASS) 10 4.72 4.24 47 77

5 DATA DEPENDENT 6 (ALL PASS) 10 6.74 6.24 109 160

6 DATA DEPENDENT 1 (FAILS) 10 1 4.38 3.76 36 57

7 DATA DEPENDENT 2 (ALL FAIL) 10 1 5.08 4.40 58 83

8 DATA DEPENDENT 6 (ALL FAIL) 10 1 7.72 6.82 140 184

9 DATA DEPENDENT 1 (FAILS) 10 2 5.34 4.40 66 83

10 DATA DEPENDENT 6 (LAST FAILS) 10 2 7.92 6.90 146 187

11 DATA DEPENDENT !l: (FAILS) 5 1 - 3.56 - 48

TABLE 3. Average times per I/O operation (not including the first I/O

operation).

Note: 1 All fields tested fail; failure causes only failing field to be

zeroed.

2 Last field tested fails, others pass; failure causes entire record
i

i •
to be zeroed.

* + .02 milliseconds

Experiments 9-10 highlight the sensitivity of a failing data de

pendent field to the type of zeroing specified. Whereas failure in

experiments 6-8jcaused only the failing field to be zeroed, a failure

in experiments 9-10 caused the entire 70 character record to be zeroed,

As can be expected, the times are significantly increased (up to one

millisecond) if the entire record is zeroed.

The final experiment of Table 3 showes the effect of reducing the

field size to be examined from 10 characters to 5. Because the "buffer"

used for data checking is organized on a one character per word basis, it

is predictable that reducing the field size should reduce the time required

to perform the check. The time of this check, and failure, is now only
i ;

about 13% greater than for the data independent write.

Cost Component 3: Memory Requirements

The final relevent statistic is the memory space required for the

added routines. The test runs of this implementation required 15622g words

of extra memory

large, but is a

beyond the normal memory requirement. This is quite

function of the particular implementation. The space

required to store the absolute library of system routines was 5113g words,

and would be reduced in a real application due to the currently redundant

subprograms. Also the method used to store the file information taken

from the security matrix is extremely wastefull of space and occupies

5361ft words. This is because it is an array dimensioned to handle 100

files and stores all data elements as whole words rather than bits. Rather

simple methods could reduce the required space by 4000ft-5000R words. Finally,

the linkages themselves take 1643ft words. Much of the code is redundant

of the actual system I/O routines, and would be eliminated when the

linkage decisions were actually placed into the system routines. All
i '

matters considered, the total memory requirement would be considerably

l' i•
reduced in the course of incorporating this implementation into the system

functions (see Table 4).

OCTAL MEMORY WORDS

CURRENT EXPECTED

"WORST CASE" "REAL WORLD"

Library of system routines 5113 4200

Array of user file restrictions 5361 1000

Security modules 1263 1263

Linkage modules 1643 300

TOTAL 15622 6763

TABLE 4. Comparison of the current implementation's octal memory

requirements with the expected requirements of a "real world"

implementation.

Preliminary Conclusions

The test results indicate that modification of system I/O routines

may be an effective method of providing selective security at reasonable

cost. The difference between benchmark and "worst case" data independent

I/O service times is encouraging. If this difference can be made negligible,

then the viability of performing data independent checks at run time

would be shown. As indicated, a more thorough implementation might quite

conceivably reach this goal.

Nevertheless, caution must be used in viewing the test results. The

operating system under which this test ran is tailored for a specific

environment. Proof of applicability to a wider class of machines would

be desirable. Also the I/O routines upon which this implementation was

built may not be typical of those used for heavy I/O prpcessing. Formatted

FORTRAN requires rather specialized I/O and does not provide high data

rates. Again, itiwould be desirable to demonstrate applicability of this

implementation to a wider class of languages.

The authors are currently investigating a more refined implementation

of our selective security procedures on an IBM 360/67. Initial study

indicates high feasibility. Emphasis will again be placed on cost de

termination and evaluation.

Summary

Conway, Maxwell, and Morgan have pointed out the need for allowing

differing access abilities at the data element level to different users.

Previous efforts to provide such security have suffered a heavy overhead

burden due to the need to scrutinize all data elements at each run-time

access.

In order to implement a model utilizing the properties of data

dependency/independency, Conway et al described four functions and a

security matrix^ Each row represents a user, each column represents a

data element, and each matrix cell indicates the access rights of a user

to a data element. One pair of data fetch and store functions provide a

translation time check for data independent conditions. A second pair of

functions are invoked at each data access if the data access permission

has been specified as data dependent.

We have discussed a number of problems with this approach, all re

lating to the translation time security procedure. Our implementation

provides data dependent and independent checks, but both at run time.

It is based upon modifying the operating system I/O routines to perform

a data independent check on the initial requested access to a file by a

user. This check interrogates a system security matrix and specifies

one of three courses: 1) all future accesses of this file are allowed

and there shall be no further access obstructions; 2) no accesses are

allowed and the user job is terminated; 3) all accesses are dependent

upon the value of the data being accessed and a check will be made upon

each following access.

Our approach was then tested experimentally to determine average

CPU overhead costs for different file restrictions. The results indicate

that data independent accesses are about 22-32% less efficient than the

corresponding accesses in an unprotected environment in the worst case.

There are some indications that under improved conditions, the difference

in performances might be made negligible. When the security matrix is

stored as a sequential file the time to actually perform the data in

dependent check yaries almost directly with the size of the security

matrix. Improved organization here might dramatically cut down on costs.

Also, the time required to perform a data dependent check varies with the

number of characters inspected. Simple data dependent checks may be made

at a fairly low incremental cost.

The test results indicate that an effective and cost-feasible method

of selective security may be possible in a real world operating system.

Current investigation is being made to determine the viability of the

given approach on computer systems other than the CDC 6400 and for high

level languages other than FORTRAN.

Acknowledgments

We are indebted to R.S. Fabry for his helpful discussions and insights,

and to T. Sumner of the Campus Computer Center at the University of California,

Berkeley for his programming design suggestions.

References

Hoffman, L.J., Computers and Privacy: A Survey, Computing Surveys,

1, 2 (June 1969), 85-103.

Friedman, T., The Authorization Problem in Shared Files, IBM Systems

Journal, _9, 4 (1970), 248-280.

Conway, R.W., Maxwell, W.L., and Morgan, H.L. , On the Implementation

of Security Measures in Information Systems, Comm. ACM 15, 4 (April

1972), 211-220.

Lampson, B.W., Protection, Proc. Fifth Annual Princeton Conference

on Information Sciences and Systems, Princeton University, Princeton,

New Jersey, March 1971, 437-443.

Hsiao, D.K., A File System for a Problem Solving Facility, Moore

School Tech. Report #68-33, Univ. of Pennsylvania, May 1968, 175 pp.

Hoffman, Lance J., The formulary model for flexible privacy and

access controls, AFIPS Conference Proceedings, 1971 FJCC, Vol. 38,

587-601.

Daley, R.C., and Neumann, P.G., A General-Purpose File System for

Secondary Storage, AFIPS Conference Proceedings, 1965 FJCC, Vol. 27,

213-229.

Graham, G.S., and Denning, P., Protection-Principles and Practice,

AFIPS Conference Proceedings, 1972 SJCC, Vol. 40, 417-429.

Turn, R., and Shapiro, N.Z., Privacy and Security in Databank

Systems: Measures of Effectiveness, Costs, and Protector-Intruder

Interactions, AFIPS Conference Proceedings, 1972 FJCC, Vol. 41, 435-

444.

10. Friedman, T.D. and Hoffman, L.J., Encryption Time Requirements for

Programmed Encryption Methods, Memorandum ERL--M378, Electronics

Research Laboratory, University of California, Berkeley, 1 June

1973.

system I/O
routine

Fig. I Basic logic for system I/O routine

continue
normal
processing

ORIGINAL

MODIFIED

compiled
user

program

compiled
user

program

cal

return

CD

c
o

CO

system
I/O
routines

masquerading
•J I/O routine

linkage

data
independent
module

data
dependent
module

security modules

system
routine
absolute
form

Fig. 2 Modified system I/O to implement data security modules

Used only
if data .
dependent \
read or
write is
specified

File name User name
Data independent Data dependent }
Read Write Read Write

<

Logical Field Definition
r

Field Field 2 Field 6

Start
positioni position Start End Start

Field Range Limits for Read

Field Field 2

Minimum Maximum Min Max

Field Range Limits for Write

Field Field 2

Min Max Min Max

End

Fig. 3 Security matrix record representation

Record
length

Failure
mode

Field 6

Min Max

Field 6

Min Max

User
in matrix

User not
in matrix

File in matrix File not in matrix

access subject
to control any

access

allowedaccess not
allowed
this user

File protected File unprotected

Fig. 4 Access control using security matrix

e , data ^
Izl^ independent

access?

set up
ranges for
data check

Fig. 5 Logic to perform security checks in system input

Appendix I

Flowcharts of Major Modules

(iNPUTC)

return

save

registers
determine
device
calling

,i setuP i
"buffer1

restore
registers

(iNPUTC)

Logic of INPUTC linkage module

(simjcl)

(DATI }—fobor^

(DATD)

(OUTPTC)

return

save

registers

save
registers

restore
registers

determine
device

.. setuP..
"buffer"

Logic of OUTPTC linkage module

(simjcl)

(DATI)

(DATI)

set up ranges
for data
dependent
check

unrestricted

/return]

-^

print
error

message

Logic to perform data independent check (DATI)

CDATD)

for each
data field
specified

build integer
from
character
string

Logic to perform data dependent check (DATD)

for each
file on

(simjcl)

PJjj" JT. /WRITEOUTPUT /security
card / label

print
error

message

for each
fiie on
"INPUT" card

file
unrestricted

backspace
file

^

Logic to simulate JCL and label processing (SIMJCL

	Copyright notice 1973
	ERL-413
	ERL-413
	ERL-cover

