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THE CONCEPT OF A LINGUISTIC VARIABLE AND ITS

APPLICATION TO APPROXIMATE REASONING

L. A. Zadeh

Abstract

By a linguistic variable we mean a variable whose values are words or

sentences in a natural or artificial language. For example, Age is a

linguistic variable if its values are linguistic rather than numerical,

i.e., young, not young, very young, quite young, old, not very old and

not very young, etc., rather than 20, 21, 22, 23,... .

In more specific terms, a linguistic variable is characterized by a

quintuple (QC9 T(96» U,G,M) in which y(. is the name of the variable;

T(90 is the term-set of ^X, that is, the collection of its linguistic

values; U is a universe of discourse; G is a syntactic rule which

generates the terms in T(90; and M is a semantic rule which associates

with each linguistic value X its meaning, M(X), where M(X) denotes a

fuzzy subset of U.

The meaning of a linguistic value X is characterized by a compatibility

function, c : U-• [0,1], which associates with each u in U its

compatibility with X. Thus, the compatibility of age 27 with young might

be 0.7 while that of 35 might be 0.2. The function of the semantic rule

is to relate the compatibilities of the so-called primary terms in a

composite linguistic value - e.g., young and old in not very young and not

very old - to the compatibility of the composite value. To this end, the

hedges such as very, quite, extremely, etc., as well as the connectives

and and £r are treated as nonlinear operators which modify the meaning



of their operands in a specified fashion.

The concept of a linguistic variable provides a means of approximate

characterization of phenomena which are too complex or too ill-defined

to be amenable to description in conventional quantitative terms. In

particular, treating Truth as a linguistic variable with values such as

true, very true, completely true, not very true, untrue, etc., leads to

what is called fuzzy logic. By providing a basis for approximate

reasoning, that is, a mode of reasoning which is not exact nor very

inexact, such logic may offer a more realistic framework for human

reasoning than the traditional two-valued logic.

It is shown that probabilities, too, can be treated as linguistic

variables with values such as likely, very likely, unlikely, etc.

Computation with linguistic probabilities requires the solution of

nonlinear programs and leads to results which are imprecise to the same

degree as the underlying probabilities.

The main applications of the linguistic approach lie in the realm of

humanistic systems - especially in the fields of artificial intelligence,

linguistics, human decision processes, pattern recognition, psychology,

law, medical diagnosis, information retrieval, economics and related areas,
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1. Introduction

One of the fundamental tenets of modern science is that a phenomenon

cannot be claimed to be well understood until it can be characterized in

quantitative terms. Viewed in this perspective, much of what constitutes

the core of scientific knowledge may be regarded as a reservoir of

concepts and techniques which can be drawn upon to construct mathematical

models of various types of systems and thereby yield quantitative

information concerning their behavior.

Given our veneration for what is precise, rigorous and quantitative,

and our disdain for what is fuzzy, unrigorous and qualitative, it is not

surprising that the advent of digital computers has resulted in a rapid

expansion in the use of quantitative methods throughout most fields of

human knowledge. Unquestionably, computers have proved to be highly

This work was supported in part by the Navy Electronic Systems Command
under Contract N00039-71-C-0255, the Army Research Office, Durham, N.C.,
under Grant DA-ARO-D-31-124-71-G174, and the National Science Foundation
under Grant GK-10656X3. The writing of the paper was completed while
the author was participating in a Joint Study Program with the Systems
Research Department, IBM Research Laboratory, San Jose, California.

As expressed by Lord Kelvin in 1883 [1], "In physical science a first
essential step in the direction of learning any subject is to find
principles of numerical reckoning and practicable methods for measuring
some quality connected with it. I often say that when you can measure
what you are speaking about and express it in numbers, you know some
thing about it; but when you cannot measure it, when you cannot express
it in numbers, your knowledge is of a meagre and unsatisfactory kind: it
may be the beginning of knowledge but you have scarcely, in your thoughts,
advanced to the state of science, whatever the matter may be."



effective in dealing with mechanistic systems, that is, with inanimate

systems whose behavior is governed by the laws of mechanics, physics,

chemistry and electromagnetism. Unfortunately, the same cannot be said

2
about humanistic systems, which - so far at least - have proved to be

rather impervious to mathematical analysis and computer simulation.

Indeed, it is widely agreed that the use of computers has not shed much

light on the basic issues arising in philosophy, psychology, literature,

law, politics, sociology and other human-oriented fields. Nor have computers

added significantly to our understanding of human thought processes -

excepting, perhaps, some examples to the contrary that can be drawn

from artificial intelligence and related fields [2], [3], [4], [5], [51],

It may be argued, as we have done in [6] and [7], that the

ineffectiveness of computers in dealing with humanistic systems is a

manifestation of what might be called the principle of incompatibility -

a principle which asserts that high precision is incompatible with high

3
complexity. Thus, it may well be the case that the conventional

techniques of system analysis and computer simulation - based as they are

on precise manipulation of numerical data - are intrinsically incapable

of coming to grips with the great complexity of human thought processes and

decision-making. The acceptance of this premise suggests that, in

order to be able to make significant assertions about the behavior of

2By a humanistic system we mean a system whose behavior is strongly
influenced by human judgement, perception or emotions. Examples of
humanistic systems are: economic systems, political systems, legal
systems, religious systems, etc. A single individual and his thought
processes may also be viewed as a humanistic system.
3
Stated somewhat more concretely, the complexity of a system and the

precision with which it can be analyzed bear a roughly inverse relation
to one another.
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humanistic systems, it may be necessary to abandon the high standards

of rigor and precision that we have become conditioned to expect of

our mathematical analyses of well-structured mechanistic systems,

and become more tolerant of approaches which are approximate in nature.

Indeed, it is entirely possible that only through the use of such

approaches could computer simulation become truly effective as a tool for

the analysis of systems which are too complex or too ill-defined for

the application of conventional quantitative techniques.

In retreating from precision in the face of overpowering complexity,

it is natural to explore the use of what might be called linguistic

variables, that is, variables whose values are not numbers but words or

sentences in a natural or artificial language. The motivation for the

use of words or sentences rather than numbers is that linguistic

characterizations are, in general, less specific than numerical ones.

For example, in speaking of age, when we say "John is young," we are less

precise than when we say, "John is 25." In this sense, the label young

may be regarded as a linguistic value of the variable Age, with the

understanding that it plays the same role as the numerical value 25 but

is less precise and hence less informative. The same is true of the

linguistic values very young, not young, extremely young, not very young,

etc. as contrasted with the numerical values 20, 21, 22, 23,

If the values of a numerical variable are visualized as points in

a plane, then the values of a linguistic variable may be likened to

ball-parks with fuzzy boundaries. In fact, it is by virtue of the

employment of ball-parks rather than points that linguistic variables

acquire the ability to serve as a means of approximate characterization

-3-



of phenomena which are too complex or too ill-defined to be susceptible /^

of description in precise terms. What is also important, however, is &

that by the use of a so-called extension principle, much of the existing

mathematical apparatus of systems analysis can be adapted to the •

manipulation of linguistic variables. In this way, we may be able to

develop an approximate calculus of linguistic variables which could

be of use in a wide variety of practical applications.

The totality of values of a linguistic variable constitute its

term-set, which in principle could have an infinite number of elements.

For example, the term-set of the linguistic variable Age might read

Age = young + not young + very young + not very young + very very

young + ... + old + not old + very old + not very old + ...
(1)

+ not very young and not very old + ... + middle-aged + not ^

middle-aged + ... + not old and not middle-aged + ... + extremely

old + ...

in which + is used to denote the union rather than the arithmetic sum.

Similarly, the term-set of the linguistic variable Appearance might be

Appearance = beautiful + pretty + cute + handsome + attractive + not

beautiful + very pretty + very very handsome + more or less

pretty + quite pretty + quite handsome + fairly handsome + not

very attractive and not very unattractive + ...

In the case of the linguistic variable Age, the numerical variable age

whose values are the numbers 0, 1, 2, 3, ..., 100 constitutes what may be

called the base variable for Age. In terms of this variable, a linguistic a

-4-



jgPv value such as young may be interpreted as a label for a fuzzy restriction

, on the values of the base variable. This fuzzy restriction is what we

take to be the meaning of young.

* A fuzzy restriction on the values of the base variable is

characterized by a compatibility function which associates with each value

of the base variable a number in the interval [0,1] which represents its

compatibility with the fuzzy restriction. For example, the compatabilities

of the numerical ages 22, 28 and 35 with the fuzzy restriction labeled

young might be 1, 0.7 and 0.2, respectively. The meaning of young, then,

would be represented by a graph of the form shown in Fig. 1.1, which is

a plot of the compatibility function of young with respect to the base

variable age.

The conventional interpretation of the statement "John is young,"

\ is that John is a member of the class of young men. However, considering

that the class of young men is a fuzzy set, that is, there is no sharp

transition from being young to not being young, the assertion that John

is a member of the class of young men is inconsistent with the precise

mathematical definition of "is a member of." The concept of a linguistic

variable allows us to get around this difficulty in the following manner.

The name "John" is viewed as a name of a composite linguistic

variable whose components are linguistic variables named Age, Height,

Weight, Appearance, etc. Then, the statement "John is young," is interpreted

as an assignment equation (Fig. 1.2)

Age = young

j^ which assigns the value young to the linguistic variable Age. In turn,

the value young is interpreted as a label for a fuzzy restriction on the

-5-



base variable age, with the meaning of this fuzzy restriction defined by

its compatibility function. As an aid in the understanding of the

concept of a linguistic variable, Fig. 1.3 shows the hierarchical

structure of the relation between the linguistic variable Age, the fuzzy

restrictions which represent the meaning of its values, and the values

of the base variable age.

There are several basic aspects of the concept of a linguistic

variable that are in need of elaboration.

First, it is important to understand that the notion of compati

bility is distinct from that of probability. Thus, the statement that

the compatibility of, say, 28 with young is 0.7, has no relation to the

probability of the age-value 28. The correct interpretation of the

compatibility-value 0.7 is that it is merely a subjective indication of

the extent to which the age-value 28 fits one's conception of the label

young. As we shall see in later sections, the rules of manipulation

applying to compatibilities are different from those applying to

probabilities, although there are certain parallels between the two.

Second, we shall usually assume that a linguistic variable is

structured in the sense that it is associated with two rules: (i) a

syntactic rule, which specifies the manner in which the linguistic values

which are in the term-set of the variable may be generated. In regard to

this rule, our usual assumption will be that the terms in the term-set

of the variable are generated by a context-free grammar.

The second rule, (ii), is a semantic rule which specifies a

procedure for computing the meaning of any given linguistic value. In this

connection, we observe that a typical value of a linguistic variable, e.g.,

-6-
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not very young and not very old, involves what might be called the primary

terms, e.g., young and old, whose meaning is both subjective and context-

dependent. We assume that the meaning of such terms is specified a priori.

In addition to the primary terms, a linguistic value may involve

connectives such as and, or, either, neither, etc.; the negation not; and

the hedges such as very, more or less, completely, quite, fairly,

extremely, somewhat, etc. As we shall see in later sections, the

connectives, the hedges and the negation may be treated as operators

which modify the meaning of their operands in a specified, context-

independent, fashion. Thus, if the meaning of young is defined by the

compatibility function whose form is shown in Fig. 1.1, then the meaning

of very young could be obtained by squaring the compatibility function

of young, while that of not young would be given by subtracting the

compatibility function of young from unity (Fig. 1.4). These two rules

are special instances of a more general semantic rule which is described

in Sec. 5.

Third, when we speak of a linguistic variable such as Age, the

underlying base variable, age,is numerical in nature. Thus, in this

case we can define the meaning of a linguistic value such as young by a

compatibility function which associates with each age in the interval

[0,100] a number in the interval [0,1] which represents the compati

bility of that age with the label young.

On the other hand, in the case of the linguistic variable Appearance,

we do not have a well-defined base variable; that is, we do not know how

to express the degree of beauty, say, as a function of some physical

measurements. We could still associate with each member of a group of

-7-



ladies, for example, a grade of membership in the class of beautiful women,

say 0.9 with Fay, 0.7 with Adele, 0.8 with Kathy and 0.9 with Vera,

but these values of the compatibility function would be based on

impressions which we may not be able to articulate or formalize in

explicit terms. In other words, we are defining the compatibility

function not on a set of mathematically well-defined objects, but on a

set of labeled impressions. Such definitions are meaningful to a human

4
but not - at least directly - to a computer.

As we shall see in later sections, in the first case, where the

base variable is numerical in nature, linguistic variables can be treated

in a reasonably precise fashion by the use of the extension

principle for fuzzy sets. In the second case, their treatment becomes

much more qualitative. In both cases, however, some computation is

involved - to a lesser or greater degree. Thus, it should be understood

that the linguistic approach is not entirely qualitative in nature.

Rather, the computations are performed behind the scene and, at the end,

linguistic approximation is employed to convert numbers into words (Fig. 1.5).

A particularly important area of application for the concept of

a linguistic variable is that of approximate reasoning, by which we mean

a type of reasoning which is neither very precise nor very imprecise. As an

illustration, the following inference would be an instance of approxi

mate reasoning:

The basic problem which is involved here is that of abstraction from a
set of samples of elements of a fuzzy set. A discussion of this problem
may be found in [8].
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x is small

x and y are approximately equal

therefore

y is more or less small.

The concept of a linguistic variable enters into approximate

reasoning as a result of treating Truth as a linguistic variable whose

truth-values form a term-set such as shown below

Truth = true + not true + very true + completely true + more or less

true + fairly true + essentially true + ... + false + very

false + neither true nor false + ...

The corresponding base variable, then, is assumed to be a number in the

interval [0»1], and the meaning of a primary term such as true is

identified with a fuzzy restriction on the values of the base variable.

As usual, such a restriction is characterized by a compatibility function

which associates a number in the interval [0,1 ] with each numerical

truth-value. For example, the compatibility of the numerical truth-value

0.7 with the linguistic truth-value very true might be 0.6. Thus, in

the case of truth-values, the compatibility function is a mapping from

the unit interval to itself. (Fig. 6.1.)

Treating truth as a linguistic variable leads to a fuzzy logic

which may well be a better approximation to the logic involved in human

decision processes than the classical two-valued logic. Thus, in fuzzy

5
Expositions of alternative approaches to vagueness may be found in T91
[18].
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logic it is meaningful to assert what would be inadmissibly vague in

classical logic, e.g.,

The truth-value of "Berkeley is close to San Francisco," is quite

true.

The truth-value of "Palo Alto is close to San Francisco," is

fairly true.

Therefore, the truth-value of "Palo Alto is more or less close to Berkeley,"

is more or less true.

Another important area of application for the concept of a linguistic

variable lies in the realm of probability theory. If probability is

treated as a linguistic variable, its term-set would typically be:

Probability • likely + very likely + unlikely + extremely likely

+ fairly likely + ... + probable + improbable + more

or less probable + ...

By legitimizing the use of linguistic probability-values, we make

it possible to respond to a question such as, "What is the probability

that it willbe a warm day a week from today," with an answer such as

fairly high, instead of, say, 0.8. The linguistic answer would, in

general, be much more realistic, considering, first, that warm day is a

fuzzy event, and, second, that our understanding of weather dynamics is

not sufficient to allow us to make unequivocal assertions about the

underlying probabilities.

In the following sections, the concept of a linguistic variable

and its applications will be discussed in greater detail. To place the

concept of a linguistic variable in a proper perspective, we shall begin

-10-



1^ our discussion with a formalization of the notion of a conventional

' (nonfuzzy) variable. For our purposes, it will be helpful to visualize

such a variable as a tagged valise with rigid (hard) sides. (Fig. 2.1.) Putting

an object into the valise corresponds to assigning a value to the variable,

and the restriction on what can be put in corresponds to a subset of

the universe of discourse which comprises those points which can be

assigned as values to the variable. In terms of this analogy, a fuzzy

variable, which is defined in Sec. 4, may be likened to a tagged valise

with soft rather than rigid sides. (Fig. 4.1.) In this case, the restriction on

what can be put in is fuzzy in nature, and is defined by a compatibility

function which associates with each object a number in the interval

[0,1 ] representing the degree of ease with which that object can be

fitted in the valise. For example, given a valise named X, the compati

bility of a coat with X would be 1, while that of a record-player might

be 0.7.

As will be seen in Sec. 4, an important concept in the case of

fuzzy variables is that of noninteraction, which is analogous to the

concept of independence in the case of random variables. This concept

arises when we deal with two or more fuzzy variables, each of which may

be likened to a compartment in a soft valise. Such fuzzy variables are

interactive if the assignment of a value to one affects the fuzzy

restrictions placed on the others. This effect may be likened to the

interference between objects which are put into different compartments

9 of a soft valise. (Fig. 4.3.)

A linguistic variable is defined in Sec. 5 as a variable whose

/^ values are fuzzy variables. In terms of our valise analogy, a linguistic

-11-



variable corresponds to a hard valise into which we can put soft valises,

with each soft valise carrying a name tag which describes a fuzzy

restriction on what can be put into that valise. (Fig. 5.2.)

The application of the concept of a linguistic variable to the

notion of Truth is discussed in Sec. 6. Here we describe a technique

for computing the conjunction, disjunction and negation for linguistic

truth-values and lay the groundwork for fuzzy logic.

In Sec. 7, the concept of a linguistic variable is applied to

probabilities, and it is shown that linguistic probabilities can be used

for computational purposes. However, because of the constraint that the

numerical probabilities must add up to unity, the computations in

question involve the solution of nonlinear programs and hence are not as

simple to perform as computations involving numerical probabilities.

The last section is devoted to a discussion of the so-called

compositional rule of inference and its application to approximate

reasoning. This rule of inference is interpreted as the process of

solving a simultaneous system of so-called relational assignment equations

in which linguistic values are assigned to fuzzy restrictions. Thus, if

a statement such as "x is small" is interpreted as an assignment of the

linguistic value small to the fuzzy restriction on x, and the statement

"x and y are approximately equal," is interpreted as the assignment of a

fuzzy relation labeled approximately equal to the fuzzy restriction on

the ordered pair (x, y), then the conclusion "y is more or less small,"

may be viewed as a linguistic approximation to the solution of the

simultaneous equations

-12-
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R(x) = small

R(x,y) = approximately equal

in which R(x) and R(x,y) denote the restrictions on x and (x,y),

respectively. (Fig. 8.3.)

The compositional rule of inference leads to a generalized modus

ponens, which may be viewed as an extension of the familiar rule of

inference: If A is true and A Implies B, then B is true. The section

closes with an example of a fuzzy theorem in elementary geometry and a

brief discussion of the use of fuzzy flowcharts for the representation

of definitional fuzzy algorithms.

The material in Sees. 2, 3 and 4 is intended to provide a

mathematical basis for the concept of a linguistic variable, which is

introduced in Sec. 5. For those readers who may not be interested in

the mathematical aspects of the theory, it may be expedient to proceed

directly to Sec. 5 and refer where necessary to the definitions and

results described in the preceding sections.
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2. The Concept of a Variable

In the preceding section, our discussion of the concept of a

linguistic variable was informal in nature. To set the stage for a more

formal definition, we shall focus our attention in this section on the

concept of a conventional (nonfuzzy) variable. Then, in Sec. 3 we shall

extend the concept of a variable to fuzzy variables and subsequently

will define a linguistic variable as a variable whose values are fuzzy

variables.

Although the concept of a (nonfuzzy) variable is very elementary in

nature, it is by no means a trivial one. For our purposes, the following

formalization of the concept of a variable provides a convenient basis

for later extensions.

Definition 2.1 A variable is characterized by a triple (X,U,R(X;u)),

in which X is the name of the variable; U is a universe of discourse

(finite or infinite set); u is a generic name for the elements of U;

and R(X;u) is a subset of U which represents a restriction on the values

of u imposed by X. For convenience, we shall usually abbreviate R(X;u)

to R(X) or R(u) or R(x) ,where x denotes a generic name for the values

of X, and will refer to R(X) simply as the restriction on u or the

restriction imposed by X.

A generic name is a single name for all elements of a set. For simplicity,
we shall frequently use the same symbol for both a set and the generic name
for its elements, relying on the context for disambiguation.

2In conventional terminology, R(X) is the range of X. Our use of the term
restriction is motivated by the role played by R(X) in the case of fuzzy
variables.
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In addition, a variable is associated with an assignment equation

x = u: R(X) (2.1)

or equivalently

x = u, u e R(X) (2.2)

which represents the assignment of a value u to x subject to the restriction

R(X). Thus, the assignment equation is satisfied iff (if and only if)

u e R(x).

Example 2.2 As a simple illustration consider a variable named age. In

this case, U might be taken to be the set of integers 0, 1, 2, 3, ... and

R(X) might be the subset 0, 1, 2, ..., 100.

More generally, let X.,...,X be n variables with respective universes

of discourse U......U . The ordered n-tuple X = (X.,...,X ) will be referred
1* ' n 1' ' n

to as an n-ary composite (or joint) variable. The universe of discourse

for X is the cartesian product

U = U. x U„ x ... x U (2.3)
1 z n

and the restriction R(X.,...,X ) is an n-ary relation in U.x ... x u .
In J 1 n

This relation may be defined by its characteristic (membership) function

y*: U. x .,. x U + {0,1}, where
K 1 n

uR(ur...,un) =1 if (ux,...,un) e R(X1,...,Xn) (2.4)

= 0 otherwise

and u is a generic name for the elements of U , i = l,...,n. Corres

pondingly, the n-ary assignment equation assumes the form

-15-



(x ,...,x ) = (u ,...,u ): R(X ,...,X ) (2.5)
1 n l n in

which is understood to mean that

x. = u , i = 1,...,n (2.6)

subject to the restriction (u..,...,u ) € R(X-,...,X ), with x , i = 1,

...,n, denoting a generic name for values of X .

Example 2.3 Suppose that X = age of father , X„ = age of son, and U1 =

U„ = {1,2,...,100}. Furthermore, suppose that x1 >_ x2 + 20 (x1 and x2

are generic names for values of X. and X«) . Then, R(X^,X2) may be

defined by

VvV = 1 for 21iui£ 100> ul - u2 + 20 (2,7)
= 0 elsewhere

Marginal and Conditioned Restrictions

As in the case of probability distributions, the restriction

R(X.,...,X ) imposed by (X ,...,X ) induces marginal restrictions

R(X. ,...,X. ) imposed by composite variables of the form (X. ,...,
4 *-k 1

X. ), where the index sequence q = (i ,...,ik) is a subsequence of the
k

index sequence (1,2,...,n).4 In effect, R(X ,...,X )is the smallest
1 k

(i.e., most restrictive) restriction imposed by (X ,...,X ) which
11 Xk

satisfies the implication

(u1f...,u ) € R(X.,...,X ) => (u ,...,u ) e R(X ,...,X ) (2.8)In l n i1 ifc 2.± xk

3The symbol = stands for "denotes" or is "equal by definition."
4In the case of abinary relation R(X1,X2), R(XX) and R(X2) are usually
referred to as the domain and range of R(X1,X2).

-16-
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Thus, a given k-tuple u. . = (u. ,...,u ) is an element of R(X ,...,X )
Kq) A1l Tc H \

iff there exists an n-tuple u = (u.,...,u ) € R(X-,...,X ) whose i-th,

...,i th components are equal to u ,...,u. , respectively. Expressed
* H \

in terms of the characteristic functions of R(Xn,...,X ) and R(X, ,...,
1 n *i

X ), this statement translates into the equation
xk

yR(X± ,...,X± )\>'->\) *Vu(qf)yR(X1,...,Xn)(ul---Un) (2'9)

or more compactly

yR(X(q))(U(q))=^u(ql),JR(X)(u> <2-10>

where q1 is the complement of the index sequence q = (i ,...,i ) relative

to (l,...,n), u, ,. is the complement of the k-tuple u. . = (u ,...,u )

relative to the n-tuple u = (u..,... ,u ), X. = (X ,...,X ) and v

denotes the supremum of its operand over the ufs which are in u, tv.
(q )

(Throughout this paper, the symbols v and A stand for Max and Min,

respectively; thus, for any real a,b

a v b = Max(a,b) = a if a >^ b (2.11)

= b if a < b

and

a A b = Min(a,b) = a if a £ b

= b if a > b

Consistent with this notation, the symbol V should be read as "supremum

over the values of z.") Since uR can take only two values - 0 or 1 -

(2.10) means that yR(x }(u(q)) is 1iff there exists au( f) such that

yR(X)(u) = X

-17-



Comment 2.4 There is a simple analogy which is very helpful in clarifying

the notion of a variable and related concepts. Specifically, a nonfuzzy

variable in the sense formalized in Definition 2.1 may be likened to a

tagged valise having rigid (hard) sides, with X representing the name

on the tag, U corresponding to a list of objects which could be put in

a valise, and R(X) representing a sublist of U which comprises those

objects which can be put into valise X. (For example, an object like

a boat would not be in U, while an object like a typewriter might be

in U but not in R(X) , and an object like a cigarette box or a pair of

shoes would be in R(X).) In this interpretation, the assignment equation

x « u: R(X)

signifies that an object u which satisfies the restriction R(X) (i.e.,

is on the list of objects which can be put into X) is put into X. (Fig. 2.1.)

An n-ary composite variable X = (X ,...,X ) corresponds to a valise

carrying the name-tag X which has n compartments named X-,...,Xn with

adjustable partitions between them. The restriction R(X^,...,Xn)

corresponds to a list of n-tuples of objects (u-,...,un) such that u^

can be put in compartment X-, u2 in compartment X2,..., and u^ in com

partment X simultaneously. (See Fig. 2.2.) In this connection, it

should be noted that n-tuples on this list could be associated with

different arrangements of partitions. If n = 2, for example, then

for a particular placement of the partition we could put

a coat in compartment X. and a suit in compartment X2, while for some

other placement we could put the coat in compartment X2 and a box of

shoes in compartment X^ In this event, both (coat,suit) and (shoes,

coat) would be included in the list of pairs of objects which can be
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put in X simultaneously.

In terms of the valise analogy, the n-ary assignment equation

(x_,...,x ) = (u_,...,u ): R(X_,...,X )

represents the action of putting u_ in X ,..., and u in X simultaneously,

under the restriction that the n-tuple of objects (u.,...,u ) must be on

the R(X-,...,X ) list. Furthermore, a marginal restriction such as

R(X ,...,X ) may be interpreted as a list of k-tuples of objects
Xl \

which can be put in compartments X ,...,X simultaneously, in con-
Xl \

junction with every allowable placement of objects in the remaining

compartments.

Comment 2.5 It should be noted that (2.9) is analogous to the expression

for a marginal distribution of a probability distribution, with V corres

ponding to summation (or integration). However, this analogy should not

be construed to imply that R(X ,...,X ) is in fact a marginal probability
11 \

distribution.

It is convenient to view the right-hand member of (2.9) as the

characteristic function of the projection of R(Xn,...,X ) on U, x ...x
1 n i-

U . Thus, in symbols
1k

R(X ,...,X4 ) = Proj R(X ,...,X ) on it x ... x tt (2.12)
Xl ^k L n ll Ak

or more simply

The term projection as used in the literature is somewhat ambivalent in
that it could denote either the operation of projecting or the result of
such operation. To avoid this ambivalence in the case of fuzzy relations,
we will occasionally employ the term shadow [19] to denote the relation
resulting from applying an operation of projection to another relation.
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R(X ,... ,X ) - P R(X.,... ,X )
11 \ q

where P denotes the operation of projection on U x...x U
q il *k

with q = (i^...,^).

Example 2.6 In the case of Example 2.3, we have

R(XX) = ?± R(X1,X2) = {21,...,100}

R(X2) = P2 R(XX,X2) = {1,...,80}

Example 2.7 Fig. 2.3 shows the restrictions on u- and u2 induced by

R(xrx2).

An alternative way of describing projections is the following.

Viewing R(Xx,...,Xn) as arelation in l^ * ... xUn> let q' = (jj^.'-.j^

denote the index sequence complementary to q = (i-,...,i^), and let

R(X ,...,X. |u. ,...,u. ) or, more compactly, R(X, Ju, fv) denote a
1 k 1 m

restriction in U x ... x U which is conditioned on u ,... ,u . The
±l \ 31 Jm

characteristic function of this conditioned restriction is defined by

(u4 ,...,u4 ) = pB,Y v ^(u1,...,un)UR(X. ,...,X. |u. ,...,u ) lui, V"^ t)lUl
11 xk Jl Jm

(2.13)

or more simply (see (2.10)),

va<*(q)l«(q.)> (u«.>) =Wu)

with the understanding that the arguments u ,...,u in the right-hand
Jl Jm

member of (2.14) are treated as parameters. In consequence of this under

standing, although the characteristic function of the conditioned

restriction is numerically equal to that of R(X1,...,Xn), it defines a
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fuzzy relation in U. x ••. x U. rather than in U- x ... x U .±± ik In
In view of (2.9), (2.12) and (2.13), the projection of R(X ,...,X )

on U x ... x U may be expressed as
11 \

P R(X ,...,Xn) =U M R(X ,...,X |u ,...,u ) (2.14)
q x u uvq ; ix ik j1 Jm

where U , fN denotes the union of the family of restrictions R(XJ ,...,X.u(qf) J 1^ *ij
u. ,...,u. ) parametrized by u, ,N = (u, ,...,u. ). Consequently, (2.14)
Jl jm (q } jl Jm
implies that the marginal restriction R(X ,...,X ) in U x ... x U.

il \ 11 Xk
may be expressed as the union of conditioned restrictions R(X ,...,X. |

1 1k
u. ,...,u ), i.e.,
Jl Jm

R(Xk ,...,X ) =uu( t) R(X ,...,X± |u ,...,u ) (2.15)
1 k 4 1 kJl Jm

or more compactly

R(X, J = u , fN R(X, Nlu, lx)
(q) u(qf) (q)1 (q1)

Example 2.8 As a simple illustration of (2.15), assume that U. = U. =

{3,5,7,9} and that R(X ,X2) is characterized by the following relation

matrix. (In this matrix, the (i,j)th entry is 1 iff the ordered pair

(ith element of U^ jth element of UJ belongs to R(X.,X2). In effect,

the relation matrix of a relation R constitutes a tabulation of the

characteristic function of R.)

In this case,

R 3 5 7 9

3 0 0 1 0

5 1 0 1 0

7 1 0 1 1

9 1 0 0 1
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and hence

R(X1,X2|u1 = 3) = {7}

R(X1,X2|u1 = 5) = {3,7}

R(X1,X2|u1 = 7) = {3,7,9}

R(X1,X2|u1 = 9) = {3,9}

R(X2) = {7} U {3,7} U {3,7,9} U {3,9}

- {3,7,9}

Interaction and noninteraction

A basic concept that we shall need in later sections is that of the

interaction between two or more variables - a concept which is analogous

to the dependence of random variables. More specifically, let the

variable X = (X.,...,X ) be associated with the restriction R(X-,...,X ), ^
in in/

which induces the restrictions R(X.),... ,R(X ) on u..,...,u , respectively.

Then we have

Definition 2.9 X19...,X are noninteractive variables under R(X.,...,X )
1' n 1 n

iff R(X ,...,X ) is separable, i.e.,

R(X1,...,Xn) = R(XX) x ... x R(Xn) (2.16)

where, for i = 1, ..., n,

R(X±) = Proj R(X1,...,Xn) on U± (2.17)

-«»(q.)ROtilu(,'))

with u, ,= u and u, ,v = complement of u in (u.,...,u ).
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Example 2.10 Fig. 2.4a shows two noninteractive variables X- and X.

whose restrictions R(X]L) and R(X2) are intervals; in this case, R(X ,X )

is the cartesian product of the intervals in question. In Fig. 2.4b,

R(XX,X2) is a proper subset of R(XX) xR(X2) and henee X± and X2 are

interactive. Note that in Example 2.3 L and X2 are interactive.

As will be shown in a more general context in Sec. 4, if X-,...,X
1 n

are noninteractive then an n-ary assignment equation

(x^...^) = (ulf...,un): R(X1,...,Xn) (2.18)

can be decomposed into a sequence of n unary assignment equations

x± = u^ R(XX) (2.19)

x2 = u2: R(X2)

x = u : R(X )
n n v n7

where R(X±), i » l,...,n, is the projection of R(X ,...,X ) on U , and

by Definition 2.9

R(X1,...,Xn) = R(XX) x...x R(Xn). (2.20)

In the case where X^,...^ are interactive, the sequence of n unary

assignment equations assumes the following form (see also (4.34)).

x± = ur- R(XX) (2.21)

x2 =u2: R(X2|U;L)

Xn =un: R<XJU1 Vl>
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where R(X.|u ,...,u -) denotes the induced restriction for X conditioned J

on u-,...,u . The characteristic function of this conditioned restriction

is expressed by (see (2.13))

uo/v I , ^U<) = Vr,fY Y^U1»"->U-i^ (2.22)R(X. |u-t... ,u. -) i RCX1,...,Xi) 1 i

with the understanding that the arguments u-,...^^ in the right-hand

member of (2.22) play the role of parameters.

Comment 2.10. In words, (2.21) means that, in the case of interactive

variables, once we have assigned a value u., to x^ the restriction on u2

becomes dependent on u-. Then, the restriction on u„ becomes dependent

on the values assigned to x- and x2» and, finally, the restriction on

u becomes dependent on u. u ,. Furthermore, (2.22) implies that

the restriction on u given u-,...,^^ is essentially the same as the 1
marginal restriction on (u.^... tu±) ,with u^... .u^ treated as

parameters. This is illustrated in Fig. 2.5.

In terms of the valise analogy (see Comment 2.4), X^,...,Xn are

noninteractive if the partitions between the compartments named X^,.-..,

X are not adjustable. In this case, what is placed in a compartment
n J

X has no influence on the objects that can be placed in the other

compartments.

In case the partitions are adjustable, this is no longer true, and

X ,...,X become interactive in the sense that the placement of an
1 n

object, say u , in X affects what can be placed in the complementary

compartments. From this point of view, the sequence of unary assignment

equations (2.21) describes the way in which the restriction on compartment -

X is influenced by the placement of objects u.^...,^^ in X^,... >\_i9
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Our main purpose in defining the notions of noninteraction, marginal

restriction, conditioned restriction, etc. for nonfuzzy variables is

(a) to indicate that concepts analogous to statistical independence,

marginal distribution, conditional distribution, etc., apply also to

nonrandom, nonfuzzy variables; and (b) to set the stage for similar

concepts in the case of fuzzy variables. As a preliminary, we shall

turn our attention to some of the relevant properties of fuzzy sets and

formulate an extension principle which will play an important role in

later sections.
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3. Fuzzy Sets and the Extension Principle

As will be seen in Sec. 4, a fuzzy variable X differs from a

nonfuzzy variable in that it is associated with a restriction R(X)

which is a fuzzy subset of the universe of discourse. Consequently,

as a preliminary to our consideration of the concept of a fuzzy variable,

we shall review some of the pertinent properties of fuzzy sets and state

an extension principle which allows the domain of a transformation or a

relation in U to be extended from points in U to fuzzy subsets of U.

Fuzzy Sets - Notation and Terminology

A fuzzy subset A of a universe of discourse U is characterized by a

membership function y : U -*• [0,1] which associates with each element u
1 J\

of U a number yA(u) in the interval [0,1], with V»(u) representing the

2
grade of membership of u in A. The support of A is the set of points

in U at which yA(u) is positive. The height of A is the supremum of

y.(u) over U. A crossover point of A is a point in U whose grade of

membership in A is 0.5.

Example 3.1 Let the universe of discourse be the interval [0,1], with

u interpreted as age. A fuzzy subset of U labeled old may be defined

by a membership function such as

uA(u) =0 for 0 <_ u <_ 50 (3.1)

More detailed discussions of fuzzy sets and their properties may be found
in the listed references. (A detailed exposition of the fundamentals to
gether with many illustrative examples may be found in the recent text by
A. Kaufmann [20]).

More generally, the range of y. may be a partially ordered set (see [21], ^±
[22]) or a collection of fuzzy sets. The latter case will be discussed in *
greater detail in Sec. 6.
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-2V-1yA(u) =(l +(^^) ) for 50 <u<_ 100

In this case, the support of old is the interval [50,100]; the height of

old is effectively unity; and the crossover point of old is 55.

To simplify the representation of fuzzy sets we shall employ the

following notation.

A nonfuzzy finite set such as

U = {U;L,...,un} (3.2)

will be expressed as

U » ux + u2 + ... + un (3.3)

or

U=̂ ] u± (3.4)
i=l

with the understanding that + denotes the union rather than the

arithmetic sum. Thus, (3.3) may be viewed as a representation of U as

the union of its constituent singletons.

As an extension of (3.3), a fuzzy subset, A, of U will be expressed

as

A-iiu + ... +,iu (3.5)

or
n

A=2j yiUi (3>6)
i=l

where \i^y i = l,...,n, is the grade of membership of u in A. In cases

where the u are numbers, there might be some ambiguity regarding the
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identity of the y and u components of the string y.u • In such cases,

we shall employ a separator symbol such as / for disambiguation, writing

A = y-./u- + ... + y /u (3.7)
linn

or

n

A-^U^ (3-8)
i=l

Example 3.2 Let U = {a,b,c,d} or, equivalently,

U = a + b + c + d (3.9)

In this case, a fuzzy subset A of U may be represented unambiguously as

A = 0.3a + b + 0.9c + 0.5d (3.10)

On the other hand, if

U = 1 + 2 + ... + 100 (3.11)

then we shall write

A = 0.3/25 + 0.9/3 (3.12)

in order to avoid ambiguity.

Example 3.3 In the universe of discourse comprising the integers 1,2,...,10,

i.e.,

U=l+2+...+10 (3.13)

the fuzzy subset labeled several may be defined as

several = 0.5/3 + 0.8/4 + 1/5 + 1/6 + 0.8/7 + 0.5/8 (3.14)
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Example 3.4 In the case of the countable universe of discourse

U = 0 + l + 2+... (3.15)

the fuzzy set labeled small may be expressed as

00

small =̂ (l +(fo)2)_1/u (3.16)
0

Like (3.3), (3.5) may be interpreted as a representation of a fuzzy

set as the union of its constituent fuzzy singletons y u. (or y./u ).

From the definition of the union (see 3.34)), it follows that if in the

representation of A we have u = u , then we can make the substitution

expressed by

yiUi + yjui = (pi V yj)ui (3.17)

For example,

A = 0.3a + 0.8a + 0.5b (3.18)

may be rewritten as

A = (0.3 V 0.8)a + 0.5b (3.19)

= 0.8a + 0.5b

When the support of a fuzzy set is a continuum rather than a countable

or a finite set, we shall write

A=JyA(u)/u (3.20)
U

with the understanding that y*(u) is the grade of membership of u in A,

and the integral denotes the union of the fuzzy singletons y.(u)/u, u € u.
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Example 3.5 In the universe of discourse consisting of the interval

[0,100], with u = age, the fuzzy subset labeled old (whose membership

function is given by (3.1)), may be expressed as

100

Od=J (l +(2!=50)" )" /u (3>21)

Note that the crossover point for this set, that is, the point u at

which

uold(u) = 0.5 (3.22)

is u = 55.

A fuzzy set A is said to be normal if its height is unity, that is,

if

Sup uA(u) =1 (3.23)
u

Otherwise A is subnormal. In this sense, the set old defined by (3.21)

is normal, as is the set several defined by (3.17). On the other hand,

the subset ofU = l + 2+...+10 labeled not small and not large and

defined by

not small and not large = 0.2/2 + 0.3/3 + 0.4/4 + 0.5/5
(3.24)

+ 0.4/6 + 0.3/7 + 0.2/8

is subnormal. It should be noted that a subnormal fuzzy set may be

normalized by dividing y^ by Sup U^M.
u

A fuzzy subset of U may be a subset of another fuzzy or nonfuzzy

subset of U. More specifically, A is a subset of B or is contained in

B iff yA(u) < yD(u) for all u in U. In symbols
A — a
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A C B o y.(u) < yD(u), u e u. (3.25)

Example 3.6 If U ° a + b + c + d and

A = 0.5 a + 0.8b + 0.3d

B = 0.7a + b + 0.3c + d

(3.26)

then A C B.

Level-Sets of a Fuzzy Set

If A is a fuzzy subset of U, then an ot-level set of A is a nonfuzzy

set denoted by A which comprises all elements of U whose grade of member

ship in A is greater than or equal to a. In symbols

Aa = {u|uA(u) >_a} (3.27)

A fuzzy set A may be decomposed into its level-sets through the

3
resolution identity

1

A=J aA (3.28)
0

or

A = > aA_ (3.29)

a

= > aA

where aA is the product of a scalar a with the set A (in the sense of
a a

•ft
(3.39) and | (or Z) is the union of the A , with a ranging from 0 to 1,

a

The resolution identity may be viewed as the result of combining

3
The resolution identity and some of its applications are discussed in
greater detail in [23] and [24].
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together those terms in (3.5) which fall into the same level-set. More

specifically, suppose that A is represented in the form

A - 0.1/2 + 0.3/1 + 0.5/7 + 0.9/6 + 1/9 (3.30)

Then by using (3.17), A can be rewritten as

A = 0.1/2 + 0.1/1 + 0.1/7 + 0.1/6 + 0.1/9

+ 0.3/1 + 0.3/7 + 0.3/6 + 0.3/9

+ 0.5/7 + 0.5/6 + 0.5/9

+ 0.9/6 + 0.9/9

+ 1/9

or

A = 0.1 (1/2 + 1/1 + 1/7 + 1/6 + 1/9) (3.31)

+ 0.3 (1/1 + 1/7 + 1/6 + 1/9)

+ 0.5 (1/7 + 1/6 + 1/9)

+ 0.9 (1/6 + 1/9)

+ 1/9

which is in the form (3.29), with the level-sets given by (see (3.27))

AQ1=2 + l+7 + 6 + 9 (3.32)

A0.3 " X+ 7 + 6 + 9

A0.5 =7+6+9

*0.9-6+9

Al =9

As will be seen in later sections, the resolution identity - in

combination with the extension principle - provides a convenient way

of generalizing various concepts associated with nonfuzzy sets to fuzzy
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sets. This, in fact, is the underlying basis for many of the definitions

f stated in the sequel.

Operations on Fuzzy Sets

Among the basic operations which can be performed on fuzzy sets are

the following.

1. The complement of A is denoted by -> A (or sometimes by A1) and

is defined by

-, A=J(1 -yA(u))/u (3.33)
U

The operation of complementation corresponds to negation. Thus, if A is

a label for a fuzzy set, then not A would be interpreted as -i A. (See

Example (3.8).)

^ 2. The union of fuzzy sets A and B is denoted by A + B (or, more

conventionally, by A U B) and is defined by

A+B=j(uA(u) Vyfi(u))/u (3.34)
U

The union corresponds to the connective or. Thus, if A and B are labels

of fuzzy sets, then A or B would be interpreted as A + B.

3. The intersection of A and B is denoted by A n B and is defined

by

AH B=J(yA(u)A yfi(u))/u (3.35)
U

The intersection corresponds to the connective and; thus

4*\ A and B = A n B (3.36)
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Comment 3.7 It should be understood that V ( = Max) and A ( = Min) are

not the only operations in terms of which the union and intersection can

be defined. (See [25] and [26] for discussions of this point.) In this

connection, it is important to note that when and is identified with Min,

as in (3.36), it represents a "hard" and in the sense that it allows no

trade-offs between its operands. By contrast, an and which is identified

with the arithmetic product, as in (3.37), would act as a "soft" and.

Which of these two and possibly other definitions is more appropriate

depends on the context in which and is used.

4. The product of A and B is denoted by AB and is defined by

AB =J"uA(u)uB(u)/u (3.37)
U

Thus, Aa, where a is any positive number, should be interpreted as

Aa= J(yA(u))a/u (3.38)
U

Similarly, if a is any nonnegative real number such that a Sup VA(u) ± 1,
u

then

aA = fauA(u)/u (3.39)
U

As a special case of (3.38), the operation of concentration is

defined as

CON (A) o A2 (3.40)

while that of dilation is expressed by

DIL (A) =A0,5 (3-41> ^
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As will be seen in Sec. 6, the operations of concentration and dilation

are useful in the representation of linguistic hedges.

Example 3.8 If

U = l+2+...+10

A = 0.8/3 + 1/5 + 0.6/6 (3.42)

B = 0.7/3 + 1/4 + 0.5/6

then

•7 A = 1/1 + 1/2 + 0.2/3 + 1/4 + 0.4/6 + 1/7 + 1/8 + 1/9 + 1/10

A + B = 0.8/3 + 1/4 + 1/5 + 0.6/6 (3.43)

A n b = 0.7/3 + 0.5/6

AB = 0.56/3 + 0.3/6

A2 = 0.64/3 + 1/5 + 0.36/6

0.4A = 0.32/3 + 0.4/5 + 0.24/6

CON(B) = 0.49/3 + 1/4 + 0.25/6

DIL(B) = 0.84/3 + 1/4 + 0.7/6

5. If A-,...,A are fuzzy subsets of U, and w,....,w are non-
i n In

negative weights adding up to unity, then a convex combination of A ,

•••jA^ is a fuzzy set A whose membership function is expressed by

"a =Va, + •••+Va <3-44>
1 n

where + denotes the arithmetic sum. The concept of a convex combination

is useful in the representation of linguistic hedges such as essentially,

typically, etc. which modify the weights associated with the components

of a fuzzy set [27].

6. If A1,...,An are fuzzy subsets of U ,...,U , respectively, the
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cartesian product of A..,...,A is denoted by A, x...xA and is defined as
•c 1' n J 1 n

a fuzzy subset of U-x...xU whose membership function is expressed by

Vx...xA (U1 V " M» (»!»«...»MA (u ) (3.45)
In In

Thus, we can write (see (3.52))

/ \*i'A]Lx...xAn= J (yA(u1)A...ApA(un))/(u1,...,un)

UlX",XUn (3.46)

Example 3.9 If ^ = U2 = 3+ 5+ 7, A± = 0.5/3 + 1/5 + 0.6/7 and

A2 = 1/3 + 0.6/5, then

Ax x A2 = 0.5/(3,3) + 1/(5,3) + 0.6/(7,3) * (3.47)

+ 0.5/(3,5) + 0.6/(5,5) + 0.6/(7.5)

7. The operation of fuzzification has, in general, the effect of

transforming a nonfuzzy set into a fuzzy set or increasing the fuzziness

of a fuzzy set. Thus, a fuzzifier F applied to a fuzzy subset A of U

yields a fuzzy subset F(A;K) which is expressed by

F(A;K) =JyA(u)K(u) (3.48)
U

where the fuzzy set K(u) is the kernel of F, that is, the result of

applying F to a singleton 1/u:

K(u) = F(l/u;K); (3.49)

y (u)K(u) represents the product (in the sense of (3.39)) of a scalar

y.(u) and the fuzzy set K(u); and I is the union of the family of fuzzy

sets y (u)K(u), u e U. In effect, (3.48) is analogous to the integral
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representation of a linear operator, with K(u) being the counterpart of

the impulse response.

Example 3.10 Assume that U, A and K(u) are defined by

U=l+2+3+4 (3.50)

A = 0.8/1 + 0.6/2

K(l) = 1/1 + 0.4/2

K(2) = 1/2 + 0.4/1 + 0.4/3

Then

F(A;K) = 0.8(1/1 + 0.4/2) + 0.6(1/2 + 0.4/1 + 0.4/3)

= 0.8/1 + 0.6/2 + 0.24/3

The operation of fuzzification plays an important role in the

definition of linguistic hedges such as more or less, slightly, somewhat,

much, etc. For example, if A = positive is the label for the nonfuzzy

class of positive numbers, then slightly positive is a label for a fuzzy

subset of the real line whose membership function is of the form shown

in Fig. 3.1. In this case, slightly is a fuzzifier which transforms

positive into slightly positive. However, it is not always possible to

express the effect of a fuzzifier in the form (3.48), and slightly is a

case in point. A more detailed discussion of this and related issues

may be found in [27].

Fuzzy Relations

If U is the cartesian product of n universes of discourse U,,...,U ,
1 ' n'

then an n-ary fuzzy relation, R, in U is a fuzzy subset of U. As in

(3.20), R may be expressed as the union of its constituent fuzzy singletons

V yR(u1»-«-)un)/(u ..,u ), i.e.
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R /^R^ui>---»un^(ui»-"»un^
U, x ... x U
1 n

(3.52)

where y_ is the membership function of R.
R

Common examples of (binary) fuzzy relations are: much greater than,

resembles, is relevant to, is close to, etc. For example, if U^ = U2 =

(_ »,<») f the relation is_ close to may be defined by

is close w
U1XU2

- a|uru2|
e /(Uj^.Uj) (3.53)

where a is a scale factor. Similarly, if \J1 = U = 1+ 2+ 3+ 4 then

the relation much greater than may be defined by the relation matrix

R 1 2 3 4

1 0 0.3 0.8 1

2 0 0 0 0.8

3 0 0 0 0.3

4 0 0 0 0

(3.54)

in which the (i,j)th element is the value of y (u-,u2) for the ith value

of u1 and jth value of u».

If R is a relation from U to V (or, equivalently, a relation in

U x V) and S is a relation from V to W, then the composition of R and S

4
is a fuzzy relation from U to W denoted by RoS and defined by

RoS = / Vv(yR(u,v)APs(u»w))/(u,w)
(3.55)

U x W

Equation (3.55) defines the max-min composition of R and V. Max-product
composition is defined similarly, except that A is replaced by the arithmetic
product. A more detailed discussion of these compositions may be found
in [24].

-38-



r

/S"*N

If U, V and W are finite sets, then the relation matrix for RoS is

the max-min product of the relation matrices for R and S. For example,

the max-min product of the relation matrices on the left-hand side of

(3.56) is given by the right-hand member of (3.56)

R

0.3 0.8

o

0.6 0.9

0.5 0.9

0.4

RoS

0.4 0.8

0.5 0.9

(3.56)

Projections and Cylindrical Fuzzy Sets

If R is an n-ary fuzzy relation in U- x ... x u , then its projection

(shadow) on U x ... x U is a k-ary fuzzy relation R in U which is
1 K

defined by (compare with (2.12))

R = Proj R on U. x ... x U. (3.57)

P R
q

/
U / x ... x u .

1 k

(V, yTJ(u1,...,u ))/(u ,...,u )
(q*) 1 k

where q is the index sequence (i1,...,i,); u, . = (u.^ ,...^ );q' is
1 K

the complement of q; and V is the supremum of y (u_,...,u ) over
U/ iv Kin
(q )

the u's which are inu, ,,. It should be noted that when R is a nonfuzzy

relation, (3.57) reduced to (2.9).

In the max-min matrix product, the operations of addition and multiplica
tion are replaced by y and a » respectively.
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Example 3.11 For the fuzzy relation defined by the relation matrix (3.54),

we have

Rx « 1/2 + 0.8/2 + 0.3/3

and

R2 = 0.3/2 + 0.8/3 + 1/4

It is clear that distinct fuzzy relations in U^ * ... x Un can have

identical projections on U x ... x n . However, given a fuzzy relation

1 ^ 6 -
R In U, x ... x u. , there exists a unique largest relation R in
« h *k q

Un x ... x u whose projection on U± x ... x u± is R . In consequence
1 «c

of (3.57), the membership function of R is given by

y (u ,...,u ) = y (u ,...,u )
R X n q ±l *k
q

(3.58)

with the understanding that (3.58) holds for all "!»•••»% such that the

i.,...,i, arguments in y_ are equal, respectively, to the first, second,
1 k Rq
kth arguments in y_ . This implies that the value of y__ at the point

R p
q a

(u,,....u ) is the same as that at the point (u',...,u*J provided that
1' n in

For this reason, R will be referred to as theu. = u! ,... ,u = u' .
11 xl ^ xk
cylindrical extension of R ,with R constituting the base of Rq. (See

Fig. 3.2.)

Suppose that R is an n-ary relation in U^^ x ... x Un, Rq is its

projection on U. x ... xu, ,and R is the cylindrical extension of
_ ±1 \ q

R . Since R is the largest relation in U- x ... x u whose projection
q q in

on U x ... xu is R , it follows that R satisfies the containment
il *k q q

6That is, arelation which contains all other relations whose projection ^
onU, x ... x U. is R .

h £k q
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relation

RCRq (3.59)

for all q, and hence

RCR OR n ... n R (3.60)

for arbitrary q^ ... ,qr (index subsequences of (1,2,... ,n)) .

In particular, if we set qx = l,...,q = n, then (3.60) reduces to

RC rx n r2 n ... n Rn (3.61)

where R1,...,Rn are the projections of R on U.,...,U , respectively, and

Rl'",Rn are their cylindrical extensions. But, from the definition of

the cartesian product (see (3.45)) it follows that

R± n ... n Rn = rx x ... x Rn (3.62)

which leads us to the

Proposition 3.12 If R is an n-ary fuzzy relation in U. x ... x u and
1 n

R1,...,Rn are its projections on U;L,...,U , then (see Fig. 3.3 for

illustration)

R C Rx x ... x R^ (3.63)

The concept of a cylindrical extension can also be used to provide

an intuitively appealing interpretation of the composition of fuzzy

relations. Thus, suppose that R and S are binary fuzzy relations in

Ux x u2 and U2 x U3, respectively. Let R and ? be the cylindrical
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extensions of Rand Sin Ux xU2 xU3- Then, from the definition of

RoS (see (3.55)) it follows that

RoS =Proj Rns on Ux xU3 (3.64)

If R and S are such that

Proj Ron U2 =Proj Son U£ (3.65)

then Rn? becomes the join7 of R and S. Abasic property of the join

of R and S may be stated as the

Proposition 3.13 If R and S are fuzzy relations in Ux x U2 and U£ x U3,

respectively, and R n ? is the join of R and S, then

R=Proj Rn"s on U1 xU2 (3.66)

and

S=Proj Rn s" on U2 xU3 (3.67)

Thus, R and S can be retrieved from the join of R and S.

Proof. Let y and y denote the membership functions of R and S,
———— R S

respectively. Then the right-hand members of (3.66) and (3.67) translate

into

VU<WU2)AVU2,U3)) (3'68>

and

7The concept of the join of nonfuzzy relations was introduced by E. F. Codd
in [28].
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vu(Vvu2)a VvV* (3-69)

In virtue of the distributivity and commutativity of v and A ,

(3.68) and (3.69) may be rewritten as

yR(u1,u2) a (vu Ws(u2,u3)) (3.70)

and

Us(u2,u3) A (Vu VVU2)} (3.71)

Furthermore, the definition of the join implies (3.65) and hence

that

^VVV "^VW <3-72)

From this equality and the definition of V it follows that

VvV ±- VVW • VVvV (3,73)

and

ys(u2,u3) IV Us(u2,u3) =V£R(uru2) (3.74)

Consequently

yR(Ul,u2) A(VU3ys(u2,u3)) =yR(uru2) (3.75)

and

WV A^VvV "WV (3-76)

which translate into (3.66) and (3.67). Q.E.D.

A basic property of projections which we shall have an occasion to
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use in Sec. 4 is the following.

Proposition 3.14 If R is a normal relation (see (3.23)), then so is

every projection of R.

Proof. Let R be an n-ary relation inU^ ,., xU^ and let Rq be its

projection (shadow) on U x ...«x U ,with q = (i ,...,±k). Since R
1 k

is normal, we have by (3.23),

V<« u/E(ul V =1 (3-77)

or more compactly

vuyR(u) = l

On the other hand, by the definition of R (see 3.57))

q l k Jl Jn

y_ (u. ,... ,u )
n

or

Rq (q) (q1)

and hence the height of R is given by
q

V yD (u, J =V V, yp(u) (3.78)
u(q) V (q) u(q) u(qf) R

-VuyR(u)

= 1 Q.E.D,

The Extension Principle

The extension principle for fuzzy sets is in essence a basic identity
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0®\

which allows the domain of the definition of a mapping or a relation to

be extended from points in U to fuzzy subsets of U. More specifically,

suppose that f is a mapping from U to V and A is a fuzzy subset of U

expressed as

A = y u + ... + u u . (3.79)
11 n n

o

Then, the extension principle asserts that

f(A) = f(y,u + ... + uu ) = y f(u.) + ... + u f(u ) (3.80)
ii nnii nn

Thus, the image of A under f can be deduced from the knowledge of the

images of u~,...,u under f.

Example 3.15 Let

U=l+2+..+10

and let f be the operation of squaring. Let small be a fuzzy subset of

U defined by

small = 1/1 + 1/2 + 0.8/3 + 0.6/4 + 0.4/5 (3.81)

9
Then, in consequence of (3.80), we have

small2 =1/1 + 1/4 +0.8/9 +0.6/16 +0.4/25 (3.82)

If the support of A is a continuum, that is

o

The extension principle is implicit in a result given in [29]. In
probability theory, the extension principle is analogous to
the expression for the probability distribution induced by a mapping
[30]. In the special case of intervals, the results of applying the
extension principle reduce to those of interval analysis [31].
9 2
Note that this definition of small differs from that of (3.38).
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-JyA(u)/uA= lyA(u)/u (3.83)
U

•»

then the statement of the extension principle assumes the following form

f(A) =f( JuA(u)/u) eJuA(u)/f(u) (3.84)
U V

with the understanding that f(u) is a point in V and UA(u) is its grade

of membership in f(A), which is a fuzzy subset of V.

In some applications it is convenient to use a modified form of

the extension principle which follows from (3.84) by decomposing A into

its constituent level-sets rather than its fuzzy singletons (see the

resolution identity (3.28)). Thus, on writing

1

=f aAa (3.85) ^A

0

where A is an a-level-set of A, the statement of the extension principle
a

assumes the form

1 1

f(A) =f( faAa) =J af(Aa) (3.86)
0 0

when the support of A is a continuum, and

f(A) =fey1**,) =y af(v (3,87)
a a

when either the support of A is a countable set or the distinct level-

sets of A form a countable collection.
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Comment 3.16 Written in the form (3.84), the extension principle

extends the domain of definition of f from points in U to fuzzy subsets

of U. By contrast, (3.86) extends the domain of definition of f from

nonfuzzy subsets of U to fuzzy subsets of U. It should be clear, how

ever, that (3.84) and (3.86) are equivalent, since (3.86) results from

(3.84) by a regrouping of terms in the representation of A.

Comment 3.17 The extension principle is analogous to the superposition

principle for linear systems. Under the latter principle, if L is a

linear system and u.,...,u are inputs to L, then the response of L to

any linear combination

u = w-u- + ... + w u (3.88)
ll n n

where the w. are constant coefficients, is given by

L(u) = L(w-u + ... + w u ) = w.LOi.,) + ... + w L(u ). (3.89)
11 nn 11 nn

The important point of difference between (3.89) and (3.80) is that in

(3.80) + is the union rather than the arithmetic sum and f is not re

stricted to linear mappings.

Comment 3.18 It should be noted that when A = un + ... + u , the
1 n'

result of applying the extension principle is analogous to that of

forming the n-fold cartesian product of the algebraic system (U,f) with

itself. (An extension of the multiplication table is shown in Table 3.4.)

In many applications of the extension principle, one encounters the

following problem. We have an n-ary function, f, which is a mapping from

a cartesian product U1 x ... x U to a space V, and a fuzzy set (relation)
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A in U, x ... x U which is characterized by a membership function
In

y(u1$...,u ), with u±9 i= l,...,n, denoting a generic point in U^

A direct application of the extension principle (3.84) to this case

yields

f(A) =f( f yA(u1,...,un)/(u1,...,un)) (3.90)
U, x ... x U
1 n

=fvk(uv...9un)/f(uv...,un)
V

However, in many instances what we know is not A but its projections

A1,...,An on Ux,...,Un, respectively (see (3.57)). The question that

arises, then, is: What expression for y should be used in (3.90)?

In such cases, unless otherwise specified we shall assume that the

membership function of A is expressed by

yA(Ul,..,,un) =yA (ux)^ViA (u2)a..-AHa (un> (3*91>

where y. ,i = 1,...,n, is the membership function of A±. In view of
Ai

(3.45), this is equivalent to assuming that A is the cartesian product

of its projections, i.e.,

A = A1 x ... x A^
1 n

which in turn implies that A is the largest set whose projections on

U-.....U are A.,...,A , respectively. (See (3.63).)
1' n 1 n

Example 3.19 Suppose that, as in Example (3.15),

U = U2 = 1+ 2+ 3+ ... + 10
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and

A^^ = 2 = approximately 2 = 1/2 + 0.6/1 + 0.8/3 (3.92)

A2 = 6 • approximately 6=1/6+ 0.8/5 + 0.7/7 (3.93)

and

f(u.,u0) = u1 x n = arithmetic product of u- and u«

Using (3.91) and applying the extension principle as expressed by

(3.90) to this case, we have

2x6= (1/2 + 0.6/1 + 0.8/3) x (1/6 + 0.8/5 + 0.7/7) (3.94)

= 1/12 + 0.8/10 + 0.7/14 +

0.6/6 + 0.6/5 + 0.6/7 +

0.8/18 + 0.8/15 + 0.7/21

= 0.6/5 + 0.6/6 + 0.6/7 + 0.8/10 + 1/12 +

0.7/14 + 0.8/15 + 0.8/18 + 0.7/21

Thus, the arithmetic product of the fuzzy numbers approximately 2 and

approximately 6 is a fuzzy number given by (3.94).

More generally, let * be a binary operation defined on U x v with

values in W. Thus, if u£ 0 and v £ V, then

w = u*v, w £ W

Now suppose that A and B are fuzzy subsets of U and V, respectively,

with
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and

A = y,un + ... + y u
11 n n

B - v-v- + ... + v v
11 mm

(3.95)

By using the extension principle under the assumption (3.91) , the operation

* may be extended to fuzzy subsets of U and V by the defining relation

A*B=(^yiu1) *(£V.)
i J

=X (^ v(ui*V

(3.96)

It is easy to verify that for the case where A = 2, B = 6 and * = *, as

in Example 3.19, the application of (3.96) yields the expression for

2x6.

Comment 3.20 It is important to note that the validity of (3.97) depends

in an essential way on the assumption (3.91), that is

y(A,B) (u,v) = uA(u) A ufi(v)

The implication of this assumption is that u and v are noninteractive

in the sense of Definition 2.9. Thus, if there is a constraint on (u,v)

which is expressed as a relation R with a membership function yR, then the

expression for A * B becomes

A*B=((j;iu1)*(Xvj))nR
i ' i

"2 (yi* viA VVvj))(ui *V
l,j
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0^> Note that if R is a nonfuzzy relation, then the right-hand member of (3.97)

f will contain only those terms which satisfy the constraint R.

A simple illustration of a situation in which u and v are interactive

" is provided by the expression

w = z x (x+y) (3.98)

in which + = arithmetic sum and x = arithmetic product. If x, y and z

are noninteractive, then we can apply the extension principle in the form

(3.96) to the computation of A x (B + C), where A, B and C are fuzzy

subsets of the real line. On the other hand, if (3.98) is rewritten as

w=zxx +zxy

then the terms z x x and z x y are interactive by virtue of the common

\ factor z, and hence

Ax (B + C) ?*AxB + AxC (3.99)

A significant conclusion that can be drawn from this observation is

that the product of fuzzy numbers is not distributive if it is computed

by the use of (3.96). To obtain equality in (3.99), we may apply the

unrestricted form of the extension principle (3.96) to the left-hand

member of (3.99), and must apply the restricted form (3.97) to its

right-hand member.

Remark 3.21 The extension principle can be applied not only to functions,

but also to relations or, equivalently, to predicates. We shall not

discuss this subject here, since the application of the extension principle

f^ to relations does not play a significant role in the present paper.
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Fuzzy Sets With Fuzzy Membership Functions

Our consideration of fuzzy sets with fuzzy membership functions is

motivated by the close association which exists between the concept of

a linguistic truth with truth-values such as true, quite true, very true,

more or less true, etc., on the one hand, and fuzzy sets In which the

grades of membership are specified in linguistic terms such as low,

medium, high, very low, not low and not high, etc., on the other.

Thus, suppose that A is a fuzzy subset of a universe of discourse

U, and the values of the membership function, y., of A are allowed to be

fuzzy subsets of the interval [0,1]. To differentiate such fuzzy sets

from those considered previously, we shall refer to them as fuzzy sets

of type 2, with the fuzzy sets whose membership functions are mappings

from U to [0,1] classified as type 1. More generally:

Definition 3.22 A fuzzy set is of type n, n = 2,3,..., if its membership

function ranges over fuzzy sets of type n-1. The membership function of

a fuzzy set of type 1 ranges over the interval [0,1].

To define such operations as complementation, union, intersection,

etc. for fuzzy sets of type 2, it is natural to make use of the extension

principle. It is convenient, however, to accomplish this in two stages:

first, by extending the type 1 definitions to fuzzy sets with interval-

valued membership functions; and second, generalizing from intervals to

fuzzy sets10 by the use of the level-set form of the extension principle

(see (3.86)). In what follows, we shall illustrate this technique by

10We are tacitly assuming that the fuzzy sets in question are convex, that
is, have intervals as level-sets (see [29]). Only minor modifications
are needed when the sets are not convex.
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extending to fuzzy sets of type 2 the concept of intersection - which

is defined for fuzzy sets of type 1 by (3.35).

Our point of departure is the expression for the membership function

of the intersection of A and B, where A and B are fuzzy subsets of type

1 of U:

M (u) « y (u)/\y (u), u G U
A n B A B

Now if yA(u) and yfi(u) are intervals in [0,1] rather than points in

[0,1], that is, for a fixed u

UA(u) = [a1,a2]

yfi(u) = [brb2]

where a^ a2> b1 and b2 depend on u, then the application of the extension

principle (3.86) to the function A (Min) yields

[a;L,a2] a fb1,b2] = [a± Ab1>a2 ,\ b£] (3.100)

Thus, if A and B have interval-valued membership functions as shown in

Fig. 3.5, then their intersection is an interval-valued curve whose

value for each u is given by (3.100).

Next, let us consider the case where, for each u, yA(u) and y (u) are
A B

fuzzy subsets of the interval [0,1]. For simplicity, we shall assume that

these subsets are convex, that is, have intervals as level-sets. In other

words, we shall assume that, for each a in (0,1], the a-level sets of y
A

and yfi are interval-valued membership functions. (See Fig. 3.6.)

By applying the level-set form of the extension principle (3.86) to

the a-level sets of yA and yfi we are led to the following definition of
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the intersection of fuzzy sets of type 2.

Definition 3.23 Let A and B be fuzzy subsets of type 2 of U such that,

for each u e u, yA(u) and yD(u) are convex fuzzy subsets of type 1 of

[0,1], which implies that, for each a in (0,1], the a-level sets of the

fuzzy membership functions y. and yR are interval-valued membership

functions yA and yn.
A a

Let the a-level-set of the fuzzy membership function of the inter-

a a j 3section of A and B be denoted by y n B, with the a-level-sets yA and yfi

defined for each u by

y^= (v|vA(v) >«} (3.101)

V* = {v|vu(v) > a} (3.102)

where vA(v) denotes the grade of membership of a point v, v€ [0,1], in

the fuzzy set PA(u), and likewise for y . Then, for each u,

^-»:*"S (3-io3)

In other words, the a-level-set of the fuzzy membership function of the

intersection of A and B is the minimum (in the sense of (3.100)) of the

a_level-sets of the fuzzy membership functions of A and B. Thus, using

the resolution identity (3.28), we can express y^ as

1

yAOB =/a(MAA yB} (3.104)

For the case where y and yfi have finite supports, that is, yA and
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y„ are of the form

and

y. = ot-v- + ... a v , v. G [0,1], 1 = 1,... ,n (3.105)

y_ = 3-W- + ... + 6 w , w € [0,1], j = l,...,m (3.106)
o 1 1 m m j

where a. and 3. are the grades of membership of v. and w. in p. and y ,

respectively, the expression for y. n R can readily be derived by employ

ing the extension principle in the form (3.96). Thus, by applying (3.96)

to the operation A ( = Min), we obtain at once

V* =V^B (3-107)

(a-v1 + ... + a v ) A (3,w + ... + 8 w )
11 nn ll mm

as the desired expression for ^aHr-

Example 3.24 As a simple illustration of (3.104), suppose that at a point

u the grades of membership of u in A and B are labeled as high and medium,

respectively, with high and medium defined as fuzzy subsets of V = 0 +

0.1 + 0.2 + ... + 1 by the expressions

high = 0.8/0.8 + 0.8/0.9 + 1/1 (3.108)

medium = 0.6/0.4 + 1/0.5 + 0.6/0.6 (3.109)

The level sets of high and medium are expressed by

—

Actually, Definition 3.23 can be deduced from (3.90).
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highQ 6 - 0.8 + 0.9 + 1

1*2*0.8 = °'9 + 1

higt^ = 1

medium,, , = 0.4 + 0.5 + 0.6
u. o

medium- =0.5

and consequently the a-level-sets of the intersection are given by

and

y°'6 (u) = high ,Amedium . (3.110)
A n b

= (0.8 + 0.9 + 1) A (0.4 + 0.5 + 0.6)

= 0.4 + 0.5 +0.6

0,8 (u) =highQ QAmedium0 Q (3.UD

= (0.9 + DA 0.5

= 0.5

»l n B(") =higkXA mediim^ (3.112)

= 1 A 0.5

= 0.5

Combining (3.110), (3.111) and (3.112), the fuzzy set representing the

grade of membership of u in the intersection of A and B is found to be
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Pa a r>M = 0.6/(0.4 + 0.5 + 0.6) + 1/0.5 (3.113)

= medium

which is equivalent to the statement

high a medium = medium (3.114)

The same result can be obtained more expeditiously by the use of

(3.107). Thus, we have

high A medium = (0.8/0.8 + 0.8/0.9 + 1/1) A (0.6/0.4 + 1/0.5 + 0.6/0.6)

- 0.6/0.4 + 1/0.5 + 0.6/0.6 (3.115)

= medium

|Pn In a similar fashion, we can extend to fuzzy sets of type 2 the

operations of complementation, union, concentration, etc. This will be

done in Sec. 6, in conjunction with our discussion of a fuzzy logic in

which the truth-values are linguistic in nature.

Remark 3.25 The results derived in Example 3.24 may be viewed as an

instance of a general conclusion that can be drawn from (3.100) concern

ing an extension of the inequality <^ from real numbers to fuzzy subsets

of the real line. Specifically, in the case of real numbers a, b, we

have the equivalence

a £ b o aAb = a (3.116)

Using this as a basis for the extension of <_ to intervals, we have in

Jm\ virtue of (3.100),
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[a1,a2] < [blfb2] ~ sl1<^1 and a2 < b2- (3.117)

This, in turn, leads us to the following definition.

Definition 3.26. Let A and B be convex fuzzy subsets of the real line,

and let A and B denote the a-level-sets of A and B, respectively.
a a

Then an extension of the inequality <_ to convex fuzzy subsets of the

real line is expressed by

A £ B <* A A B * A (3.118)

o A A B - A for all a in [0,1] (3.119)
a a a

where A A B is defined by (3.100).
a a

In the case of Example 3.24, it is easy to verify by inspection that

medium < high for all a (3.120)
a — —"-a

in the sense of (3.119), and hence we can conclude at once that

medium A high » medium (3.121)

which is in agreement with (3.114).

UIt can be readily be verified that <_ as defined by (3.117) constitutes a
partial ordering.
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4. The Concept of a Fuzzy Variable

We are now in a position to generalize the concepts introduced in

Sec. 2 to what might be called fuzzy variables. For our purposes, it

will be convenient to formalize the concept of a fuzzy variable in a

way that parallels the characterization of a nonfuzzy variable as

expressed by Definition 2.1. Specifically:

Definition 4.1 A fuzzy variable is characterized by a triple (X,U,R(X;u)),

in which X is the name of the variable; U is a universe of discourse

(finite or infinite set); u is a generic name for the elements of U; and

R(X;u) is a fuzzy subset of U which represents a fuzzy restriction on

the values of u imposed by X. (As in the case of nonfuzzy variables,

R(X;u) will usually be abbreviated to R(X) or R(u) or R(x), where x

denotes a generic name for the values of X, and R(X;u) will be referred to

as the restriction on u or the restriction imposed by X.) The nonrestricted

nonfuzzy variable u constitutes the base variable for X.

The assignment equation for X has the form

x = u: R(X) (4.1)

and represents an assignment of a value u to x subject to the restriction

R(X).

The degree to which this equation is satisfied will be referred to

as the compatibility of u with R(X) and will be denoted by c(u). By

definition,

c(u) = HR(x)(u), u€ U (4.2)
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where y_,..v(u) is the grade of membership of u in the restriction R(X) .

Comment 4.2 It is important to observe that the compatibility of u is

not the same as the probability of u. Thus, the compatibility of u with

R(X) is merely a measure of the degree to which u satisfies the restriction

R(X) and has no relation to how probable or improbable u happens to be.

Comment 4.3 In terms of the valise analogy (see Comment 2.4), a fuzzy

variable may be likened to a tagged valise with soft sides, with X

representing the name on the tag, U corresponding to a list of objects

which can be put in a valise, and R(X) representing a sublist of U in

which each object u is associated with a number c(u) representing the

degree of ease with which u can be fitted in valise X. (Fig. 4.1.)

In order to simplify the notation it is convenient to use the same

symbol for both X and x, relying on the context for disambiguation. We ,-%

do this in the following example.

Example 4.4 Consider a fuzzy variable named budget, with U = [O,00) and

R(X) defined by (see Fig. 4.2)

1000 « 2 1
R(budget) =/ 1/u + / (l +(H=gj») )" /« (4.3)

Then, in the assignment equation

budget = 1100: R(budget) (4.4)

the compatibility of 1100 with the restriction imposed by budget is

C<U00>= ^(budget) (1100) (4<5)

= 0.80
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As in the case of nonfuzzy variables, if X.,...,X are fuzzy

variables in l^,...,!^, respectively, then X = (X^...^) is an n-ary

composite (joint) variable in U = U- x ... x u . Correspondingly, in

the n-ary assignment equation

(x1,...,xn) = (ulf...,un): R(X1,...,Xn) (4.6)

x., i = l,...,n, is a generic name for the values of X.; u^ is a generic

name for the elements of U ; and R(X) = R(X-,...,X ) is an n-ary fuzzy

relation in U which represents the restriction imposed by X = (X^,...,X ).

The compatibility of (u-,...,u ) with R(X_,...,X ) is defined by

c(Ul,...,un) =yR(X)(Ul,...,un) (4.7)

where y^/ys is the membership function of the restriction on u = (u.,...,

V-

Example 4.5 Suppose that IL = U2 = (-00,00); X = horizontal proximity;

X« = vertical proximity; and the restriction on u is expressed by

R(X) = f (l +u[ +u2) /(uru2) (4.8)
U { U
12

Then the compatibility of the value u = (2,1) in the assignment equation

(xrx2) = (2,1): R(X) (4.9)

is given by

c(2,l) = y(R(x)(2,l) (4.10)

= 0.16

Comment 4.6 In terms of the valise analogy (see Comment 4.3), an n-ary
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composite fuzzy variable may be likened to a soft valise named X with n

compartments named X-,...,X . The compatibility function c(u19...,un) 1

represents the degree of ease with which objects ui»***»un can be put

into respective compartments Xj,...9X simultaneously. (Fig. 4.3.)

A basic question that arises in connection with an n-ary assignment

equation relates to its decomposition into a sequence of n unary assign

ment equations, as in (2.21). In the case of fuzzy variables, the process

of decomposition is somewhat more involved, and we shall take it up after

defining marginal and conditioned restrictions.

Marginal and Conditioned Restrictions

In Sec. 2, the concepts of marginal and conditioned restrictions

were intentionally defined in such a way as to make them easy to extend

to fuzzy restrictions. Thus, in the more general context of fuzzy

variables, these concepts can be formulated in almost exactly the same )

terms as in Sec. 2. This is what we shall do in the sequel.

Note 4.7 As we have seen in our earlier discussion of the notions of

marginal and conditioned restrictions in Sec. 2, it is convenient to

simplify the representation of n-tuples by employing the following nota

tion.

Let

q^ij V <*'U>

be an ordered subsequence of the index sequence (l,...,n). E.g., for

n = 7, q = (2,4,5).

The ordered complement of q is denoted by

q' =(JX.....V (A'12) *>
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E.g., for q = (2,4,5), q» = (1,3,6,7).

A k-tuple of variables such as (v ,...,v. ) is denoted by v.
1

A

Thus

and similarly

For example, if

then

v(q) = (vi »**-jVi > (4-13>

V(qf) = (Vi »"-'Vi > <4'14)
Jl Jm

V(q) ='VVV

V(q') = (vrV3'V6'v7)

If k = n, we shall write more simply

v = (vv...,vn) (4.15)

This notation will be used in the following without further explana

tion.

Definition 4.8 An n-ary restriction R(X.,...,X ) in U, x ... x u induces
1 n 1 n

a k-ary marginal restriction R(X ,...,X ) which is defined as the
1 \

projection (shadow) of R(X;L,...,Xn) on ^ x ... xu . Thus, using the
1 k

definition of projection (see (3.57)) and employing the notation of Note

4.7, we can express the membership function of the marginal restriction

R(X ,...,X ) as
1 k

"R(X(q))<U(q)> =Vu(qt)^R(X)<U> <4-16>
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Example 4.9 For the fuzzy binary variable defined in Example 4.5, we

have

\ = H\)

R2 = R(X2)

\<»l>-VU2(l +»J +«2>"1
- (i + u^r1

Example 4.10 Assume that

Ux = U2 = U3 =0+ 1+ 2

and R(X1,X2,X3) is aternary fuzzy relation in l^ xU2 xU3 expressed by

R(X1,X2,X3) =0.8/(0,0,0) +0.6/(0,0,1) +0.2/(0,1,0) (4.17)

+ 1/(1,0,2) + 0.7/(1,1,0) + 0.4/(0,1,1)

+ 0.9/(1,2,0) + 0.4/(2,1,1) + 0.8/(1,1,2)

Applying (4.16) to (4.17), we obtain

R(XrX2) =0.8/(0,0) +0.4/(0,1) +1/(1,0) (4.18)

+ 0.8/(1,1) + 0.9/(1,2) + 0.4/(2,1)

and

R(XX) =0.8/0 + 1/1 +0.4/2

R(X2) =1/0 +0.8/1 +0.9/2
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Definition 4.11 Let R(Xn,...,X ) be a restriction on (u-,...,u ) and
In In

let u ,...,u , be particular values of u ,...,u , respectively. If
1 Xk h \

in the membership function of R(X.,...,X ), the values of u ,...,u are

o o n Ik
set equal to u. ,...,u. , then the resulting function of the arguments

1 k

u ,...,u , where the index sequence q1 = (jn,...,j ) is complementary
Jl Jm X m
to q = (i ,...,i ), is defined to be the membership function of a

conditioned restriction r(x ,...,X. |u° ,...,u. ) or, more simply,
h jm 1 k

R(V)Kq)>-

Thus

yR(X ,...,X |u° ,...,u°)(V"-'V ^(X, X) <V"Unl
Jl Jm 11 \ *• m in

o o x
** = u »..., u = u )
1 1 \ \

or more compactly

"R(X(q,)|u^q))(u(q-)) ="R(X)(ul«(q) =u°q)) (4*>)

The simplicity of the relation between conditioned and unconditioned

restrictions becomes more transparent if the u° are written without the

superscript. Then, (4.20) becomes

yRfX x In ii 'k (u-s »• •• »U4 ) = ^Wv v \(u-,...,u )MA ,...,a |u ,...,u ; j j R(X-,...,X ) 1' n'
Jl Jm 11 \ 1 m In

or more compactly

A

"»»(,.) l«(q))<U(q')) =1JR(X)(U) W-2D

Note 4.12 In some instances, it is preferable to use an alternative
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notation for conditioned restrictions. For example, if n = 4, q = (1,3)

and q* = (2,4), it may be simpler to write R(u.,X2,u ,X,) for R(X2,X,|

u-,u ). This is particularly true when numerical values are used in

place of the subscripted arguments, e.g., 5 and 2 in place of u- and u_.

In such cases, in order to avoid ambuiguity we shall write explicitly

R(X2,X4|u° =5, u° =2) or more simply R(5,X2,2,X4).

Example 4.13 In Example 4.10, we have

R(Xx,X2,0) = 0.8/(0,0) + 0.2/(0,1) (4.22)

+ 0.7/(1,1) + 0.9/(1,2)

R(X1,X2,1) = 0.6/(0,0) + 0.4/(0,1) + 0.4/(2,1)

R(XX,X2,2) = 1/(1,0) + 0.8/(1,1)

and, using (4.16)

R(X1,0)= 0.8/0 + 1/1 (4.23)

R(X1,1) = 0.4/0 + 0.8/1 + 0.4/2

R(XX,2) = 0.9/1

It is useful to observe that an immediate consequence of the defini

tions of marginal and conditioned restrictions is the following

Proposition 4.14 Let R(X ,...,X ) be a marginal restriction induced
Jl Jm

by R(Xn,...,X ), and let R(X, ,...,X. |u ,...,u ) or, more simply,
1 n Jl Jm h \

R(X, .vlu, N) be a restriction conditioned on u. ,...,u , with q =
(q1)1 (q) *i h.

(i ,...,ik) and q1 = (j^...^) being complementary index sequences. . ^L
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Then, in consequence of (4.16), (421) and the definition of the union

(see (3.34)), we can assert that

R<V)>=Xu R(X(q')lU(q)) (4'24)
(q)

y
where £_j stands for the union (rather than the arithmetic sum) over

U(q)
the u( N.

q)

Example 4.15 With reference to Examples 4.9 and 4.12, it is easy to

verify that

R(X1,X2) = R(X1,X2,0) + R(X1,X2,1) + R(X1,X2,2)

and

R(^) = R(X1,0) + R(X1,1) + R(XX,2)

Separability and Noninteraction

Definition 4.16 A n-ary restriction R(X.,...,X ) is separable iff it

can be expressed as the cartesian product of unary restrictions

R(X1,...,Xn) = R(XX) x ... x R(X ) (4.25)

or, equivalently, as the intersection of cylindrical extensions (see (3.62))

R(X1,...,Xn) = Rtf^ n ... OR(Xn) (4.26)

It should be noted that, if R(X-,...,X ) is normal, then so are its

marginal restrictions (see Proposition 3.14). It follows, then, that

the R(X.) in (4.25) are marginal restrictions induced by R(X.,...,X ).

For, (4.25) implies that
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RQ£,,..«»X) l
(u-,...,u ) = yD/v v(u.) a ... A yD/v n(u )

n lR(Xx) ^1J R(X )XV
n

(4.27)

and hence by (3.57)

PiR(X1,...,Xn) = R(X±), 1 = l,...,n. (4.28)

Unless stated to the contrary, we shall assume henceforth that R(X.,...,X )

is normal.

Example 4.17 The relation matrix of the restriction shown below can be

expressed as the max-min dyadic product of a column vector (a unary re

lation) and a row vector (a unary relation). This implies that the re

striction in question is separable

0.3 0.8 0.8 0.1

0.3 0.8 1 0.1

0.2 0.2 0.2 0.1

0.3 0.6 0.6 0.1

0.8

1

0.2

0.6

Q>.3 0.8 1 0.1]

Example 4.18 The restrictions defined in Examples 4.8 and 4.9 are not

separable.

An immediate consequence of separability is the following

Proposition 4.19 If R(X1,...,Xn) is separable, so is every marginal

restriction induced by R(X.,...,Xr).

Also, in consequence of (4.25), we can assert the

Proposition 4.20 The separable restriction R^) x ... x R(Xn) is the

largest restriction with marginal restrictions R(X^,...>R(xn)•

The concept of separability is closely related to that of noninter-
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action of fuzzy variables. More specifically:

Definition 4.21 The fuzzy variables X..,...,X are said to be noninteractive

iff the restriction R(X1,...,X ) is separable.

It will be recalled that, in the case of nonfuzzy variables, the

justification for characterizing X-,...,X as noninteractive is that if

(see (2.18))

R(X1,...,X ) = R(X.) x ... x R(X) (4.29)
l n i n

then the n-ary assignment equation

(x-,...,x ) • (u.,...,u ): R(X-,...,X ) (4.30)
N 1 ' n 1 ' n 1 n

can be decomposed into a sequence of n unary assignment equations

xx = ux: R(XX) (4.31)

x = u : R(X )
n n n

In the case of fuzzy variables, a basic consequence of noninteraction -

from which (2.19) follows as a special case - is expressed by the following

Proposition 4.22 If the fuzzy variables X,,...,X are noninteractive,

then the n-ary assignment equation (4.30) can be decomposed into a sequence

of n unary assignment equations (4.31), with the understanding that if

c(u-,...,u ) is the compatibility of (u-,...,u ) with R(X1,...,X ),and

c.(u.), i = l,...,n, is the compatibility of u. with R(X.), then

c(u ,...,u ) = c-OO A ... Ac (u ) (4.32)
1 nil n n
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Proof. By the definitions of compatibility, noninteraction and separability,

we have at once

'Ov-'V* -yR(Xi,...axn)(ur---un) (4'33)

(u )yR(Xl) (ul} A-"A yR(Xn) (un

= c^i^) A•••AcQ(un) Q.E.D.

Comment 4.23 Pursuing the valise analogy further (see Comment 4.6),

noninteractive fuzzy variables Xlf...,X may be likened to n separate

soft valises with name-tags Xn,...,X . The restriction associated with
1 n

valise X is characterized by the compatibility function c(ui). Then,

the overall compatibility function for the valises X ,...,Xr is given

by (4.32). (Fig. 4.4.)

Comment 4.24 In terms of the base variables of X1,...,Xn (see Definition

4.1), noninteraction implies that there are no constraints which jointly

involve un,...,u , where u. is the base variable for X , 1 = l,...,n.
1' n 1 x

For example, if the u, are constrained by

'u- + ... + u =1
1 n

then X ,...,X are interactive, i.e., are not noninteractive. (See

Comment 3.20.)

If X,,...,X are interactive, it is still possible to decompose an
1' * n

n-ary assignment equation into a sequence of n unary assignment equations

However, the restriction on u± will, in general, depend on the values

assigned to u.,...,^^. Thus, the nassignment equations will have the
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following form (see also (2.21))

x± - u : R(XX) (4.34)

x2 = u2: R(X2|u1)

x3 = u3: R(X3|u1,u2)

x = u : R(X lu-,... ,u -)
n n n1 1' n-1

where R(X |u-,...,u -) denotes the restriction on u conditioned on

u_,...,u._1 (see Definition 4.11).

Example 4.25 Taking Example 4.10, assume that u- = 1, u„ = 2 and u~ = 0,

Then

R(XX) = 0.8/0 + 1/1 + 0.4/2 (4.35)

R(X2|U;L = 1) = 1/0 + 0.8/1 + 0.9/2

R(X3|U;L = 1, u2 = 2) = 0.9/0

CjU) = 1 (4.36)

and

so that

c2(2) = 0.9

and

c3(0) = 0.9

As in the case of (4.31), the justification for (4.34) is provided

by the following

Proposition 4.26 If X.,...,X are interactive fuzzy variables subject
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to the restriction R(X..,...,X ), and c (u ), i = l,...,n, is the compatibility

of u with the conditioned restriction R(X |u-,...,u. -) in (4.34), then

'c(ulf...,u) = c1(u1)/N... Acn(uR) (4.37)

where c(u. ,... ,u ) is the compatibility of (u..,... ,u ) with R(X^9... ,Xn).

Proof By the definition of a conditioned restriction (see (4.20)), we

have, for all 1, 1 < i <n

viVL1\u1,....ui_l)lai> -'W1,...,X1><0l-"ni) (4'38)

On the other hand, the definition of a marginal restriction (see

(4.16)) implies that, for all 1 and all u^...,^, we have

*R(X1,...,X1)(V"-'Ui) 2-»R(Xl Xi+1)(V-"'Ul+l)(4-39) ^
and hence that

yR(Xi+1|ur... ,u.) ^i+l^RttJu.,... ,ui^(ui) =yR(Xi+1|ulf... ,u±)(ui+l}
(4.40)

Combining (4.40) with the defining equation

cl<»i> ""RCXJu, u^/V (4-41)

we derive

cCu^...-,^) =c1(u1)A...Acn(un) Q.E.D. (4.42)

This concludes our discussion of some of the properties of fuzzy

variables which are relevant to the concept of a linguistic variable. In ^
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the following section, we shall formalize the concept of a linguistic

variable and explore some of its implications.
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5. The Concept of a Linguistic Variable ^

In our informal discussion of the concept of a linguistic variable

in Sec. 1, we have stated that a linguistic variable differs from a

numerical variable in that its values are not numbers but words or

sentences in a natural or artificial language. Since words, in general,

are less precise than numbers, the concept of a linguistic variable

serves the purpose of providing a means of approximate characterization

of phenomena which are too complex or too ill-defined to be amenable to

description in conventional quantitative terms. More specifically, the

fuzzy sets which represent the restrictions associated with the values of

a linguistic variable may be viewed as summaries of various subclasses

of elements in a universe of discourse. This, of course, is analogous

to the role played by words and sentences in a natural language. For

example, the adjective handsome is a summary of a complex of character

istics of the appearance of an individual. It may also be viewed as a

label for a fuzzy set which represents a restriction imposed by a fuzzy

variable named handsome. From this point of view, then, the terms very_

handsome, not handsome, extremely handsome, quite handsome, etc., are

names of fuzzy sets which result from operating on the fuzzy set named

handsome with the modifiers named very, not, extremely, quite, etc.

In effect, these fuzzy sets, together with the fuzzy set labeled handsome,

play the role of values of the linguistic variable Appearance.

An important facet of the concept of a linguistic variable is that

it is a variable of a higher order than a fuzzy variable, in the sense

that a linguistic variable takes fuzzy variables as its values. For

example, the values of alinguistic variable named Age might be: young, **)
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not young, old, very old, not young and not old, quite old, etc., each

of which is the name of a fuzzy variable. If X is the name of such a

fuzzy variable, the restriction imposed by X may be interpreted as the

meaning of X. Thus, if the restriction imposed by the fuzzy variable

named old is a fuzzy subset of U = [0,100] defined by

r100 -2 -i
R(old) =1 (1 +(^) ) /u , ue u (5.1)

J50

then the fuzzy set represented by R(old) may be taken to be the meaning

of old. (Fig. 5.1.)

Another important facet of the concept of a linguistic variable is

that, in general, a linguistic variable is associated with two rules:

(1) a syntactic rule, which may have the form of a grammar for generating

the names of the values of the variable; and (2) a semantic rule which

defines an algorithmic procedure for computing the meaning of each value.

These rules constitute an essential part of the characterization of a

structured linguistic variable.

Since a linguistic variable is a variable of a higher order than a

fuzzy variable, its characterization is necessarily more complex than

that expressed by Definition 4.1. More specifically, we have

Definition 5.1 A linguistic variable is characterized by a quintuple

(%T06,U,G,M) in which9( is the name of the variable; T(J)6(or simply T)

1 .
It is primarily the semantic rule that distinguishes a linguistic

variable from the more conventional concept of a syntactic variable.
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denotes the term-set of Q(, that is, the set of names of linguistic ^

values of Q(, with each value being a fuzzy variable denoted generically

by X and ranging over a universe of discourse U which is associated with

the base variable uj G is a syntactic rule (which usually has the form

of a grammar) for generating the names, X, of values ofvC; and M is a

semantic rule for associating with each X its meaning, M(X), which is a

fuzzy subset of U. A particular X, that is, a name generated by G, is

called a term. A term consisting of a word or words which function as a

unit (i.e., always occur together) is called an atomic term. A term

which contains one or more atomic terms is a composite term. A concatenation

of components of a composite term is a subterm. If X., X2> ... are

terms in T, then T may be expressed as the union

T=X + X2 + ... (5-2> ^

Where necessary to place in evidence that T is generated by a grammar G,

T will be written as T(G).

The meaning, M(X), of a term X is defined to be the restriction,

R(X), on the base variable u which is imposed by the fuzzy variable

named X. Thus

M(X) = R(X) (5.3)

with the understanding that R(X) — and hence MOO — may be viewed as

a fuzzy subset of U carrying the name X. The connection between A, the

linguistic value X and the base variable u is illustrated in Fig. 1.3.

Note 5.2 In order to avoid a profusion of symbols, it is expedient ^*
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^y to assign more than one meaning to some of the symbols occurring in

Definition 5.1, relying on the context for disambiguation. Specifically:

a) We shall frequently employ the symbol Q( to denote both the name

of the variable and the generic name of its values. Likewise, X will

be used to denote both the generic name of the values of the variable

and the name of the variable itself.

b) The same symbol will be used to denote a set and the name of

that set. Thus, the symbols X, M(X) and R(X) will be used inter

changeably, although strictly speaking X- as the name of M(X) (or R(X))-

is distinct from M(X). In other words, when we say that a term X (e.g.

voun8) is a value of 9C (e.g., Age), it should be understood that the

actual value is M(X) and that X is merely the name of the value.

g^ Example 5.3 Consider a linguistic variable named Age, i.e., 9C = Age,

with U= [0,100]. A linguistic value of Age might be named old, with

old being an atomic term. Another value might be named very old, in

which case very old is a composite term which contains old as an atomic

component and has very and old as subterms. The value of Age named more

or less young is a composite term which contains young as an atomic

term and in which more or less is a subterm. The term-set associated with

Age may be expressed as

T(Age) = old + very old + not old + more or less young + quite young

+ not very old and not very young + ...

in which each term is the name of a fuzzy variable in the universe of

discourse U= [0,100]. The restriction imposed by a term, say R(old),

f* constitutes the meaning of old. Thus, if R(old) is defined by (5.1),

-77-



then the meaning of the linguistic value old is given by

f100 -2 -1
"J (1+(^) )'» (5-5>M(old) =

50

or more simply (see Note 5.2)

100 -2. -1

*m=| (\+m~)~,° (5.6)
\~ ' \ 5 / J

50

Similarly, the meaning of a linguistic value such as very old may be

expressed as (see Fig. 5.1)

-100 _2 _2

M(very old) =very old =I (l +{^) ) /u (5.7) ^
50

The assignment equation in the case of a linguistic variable assumes

the form

X= term in T(% ,_ ox

= name generated by G

which implies that the meaning assigned to X is expressed by

M(X) = R(term in T(90) (5,9)

In other words, the meaning of X is given by the application of the

semantic rule M to the value assigned to X by the right-hand member of

(5.8). Furthermore, as defined by (5.3), M(X) is identical to the

restriction imposed by X.
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Comment 5.4 In accordance with Note 5.2a, the assignment equation will

usually be written as

9(= name in T06 (5.10)

rather than in the form (5.8). For example, if Q(= Age, and old is

a term in T(Q0» we shall write

Age = old (5.11)

with the understanding that old is a restriction on the values of u

defined by (5.1), which is assigned by (5.11) to the linguistic variable

named Age. It is important to note that the equality symbol in (5.10)

does not represent a symmetric relation — as it does in the case of

arithmetic equality. Thus, it would not be meaningful to write (5.11)

as

old = Age

To illustrate the concept of a linguistic variable, we shall consider

first a very elementary example in which T$() contains just a few terms

and the syntactic and semantic rules are trivially simple.

Example 5.5. Consider a linguistic variable named Number which is

associated with the finite term-set

T(Number) = few + several + many (5.12)

in which each term represents a restriction on the values of u in the

universe of discourse

U=l+2+3+ ... +10 (5.13)
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These restrictions are assumed to be fuzzy subsets of U which are

defined as follows

few = 0.4/1 + 0.8/2 + 1/3 + 0.4/4 (5.14)

several = 0.5/3 + 0.8/4 + 1/5 + 1/6 + 0.8/7 + 0.5/8 (5.15)

many = 0.4/6 + 0.6/7 + 9.8/8 + 0.9/9 + 1/10 (5.16)

Thus

R(few) = M(few) = 0.4/1 + 0.8/2 + 1/3 + 0.4/4 (5.17)

and likewise for the other terms in T. The implication of (5.17) is

that few is the name of a fuzzy variable which is a value of the

linguistic variableNumber. The meaning of few - which is the same as

the restriction on few -is a fuzzy subset of U which is defined by the

right-hand number of (5.17).

To assign a value such as few to the linguistic variable Number, we

write

Number = few (5.18)

with the understanding that what we actually assign to Number is a fuzzy

variable named few.

Example 5.6. In this case, we assume that we are dealing with a

composite linguistic variable named Q(AJ) which is associated with the

base variable (u,v) ranging over the universe of discourse U x V, where

UxV= (1 + 2 + 3 + 4) x (1 + 2 + 3 + 4) ' (5.19)

Composite linguistic variables will be discussed in greater detail in
Sec. 6 in connection with linguistic truth variables.
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= (1,1) + (1,2) + (1,3) + (1,4) + (5.20)

+ (4,1) + (4,2) + (4,3) + (4,4)

with the understanding that

ixja (i»j) i,j = 1,2,3,4. (5.21)

Furthermore, we assume that the term-set of (QCAJ) comprises just two

terms:

T • approximately equal + more or less equal (5.22)

where approximately equal and more or less equal are names of binary

fuzzy relations defined by the relation matrices

1 0.6 0.4 0.2

approximately equal =
0.6 1

0.4 0.6

0.6

1

0.4

0.6

0.2 0.4 0.6 1

and

more or less equal =

1 0.8 0.6 0.4

0.8 1 0.8 0.6

0.6 0.8 1 0.8

0.4 0.6 0.8 1

(5.23)

(5.24)

In these relation matrices, the (i,j)th entry represents the compatibility

of the pair (i,j) with the restriction in question. For example, the
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(2,3) entry in approximately equal - which is 0.6 - is the compati- ^

billty of the ordered pair (2,3) with the binary restriction named

approximately equal.

To assign a value, say approximately equal, to (yC,lj), we write

(Q(,QJ) = approximately equal (5.25)

where, as in (5.18), it is understood that what we assign to (9CQJ)

is a binary fuzzy relation named approximately equal, which is a

binary restriction on the values of (u,v) in the universe of

discourse (5.20).

Comment 5.7 In terms of the valise analogy (see Comment 4.3), a

linguistic variable as defined by Definition 5.1 may be likened to a

hard valise into which we can put soft valises, as illustrated in

Fig. 5.2. A soft valise corresponds to a fuzzy variable which is

assigned as a linguistic value to 9(, with X playing the role of the

name-tag of the soft valise.

Structured Linguistic Variables

In both of the above examples the term-set contains only a small

number of terms, so that it is practicable to list the elements of

T(Q() and set up a direct association between each element and its

meaning. In the more general case, however, the number of elements in

TC5() may be infinite, necessitating the use of an algorithm, rather than

a table look-up procedure, for generating the elements of T(90 as well

as for computing their meaning.

A linguistic variable QC will be said to be structured if its term-
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^^ set, T(^(), and the function, M, which associates a meaning with each

term in the term-set, can be characterized algorithmically. In this

sense, the syntactic and semantic rules associated with a structured
»

linguistic variable may be viewed as algorithmic procedures for generating

the elements of T^X) and computing the meaning of each term in T(96,

respectively. Unless stated to the contrary, we shall assume henceforth

that the linguistic variables we deal with are structured.

Example 5.8. As a very simple illustration of the role played by the

syntactic and semantic rules in the case of a structured linguistic

variable, we shall consider a variable named Age whose terms are

exemplified by: old, very old, very very old, very very very old, etc.

Thus, the term set of Age can be written as

T(Age) = old + very old + very very old + ... (5.26)

In this simple case, it is clear by inspection that every term in

T(Age) is of the form old or very very ... very old. To deduce this

rule in a more general way, we proceed as follows.

Let xy denote the concatenation of character strings x and y, e.g.,

x = very, y = old, xy = very old. If A and B are sets of strings, e.g.,

A = x± + x2 + ... (5.27)

B = yx +y2 + ... (5.28)

where x± and y.. are character strings, then the concatenation of A and B

is denoted by AB and is defined as the set of strings

z^p\
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AB = (xx + x2 + ...) (yx + y2 + ...) (5.29) •*%

For example, if A = very and B = old + very old, then

very (old + very old) = very old + very very old (5.30)

Using this notation, the given expression for T(Age), or simply T,

3
may be taken to be the solution of the equation

T = old + very T (5.31)

which, in words, means that every term in T is of the form old or very

followed by some term in T.

Equation (5.31) can be solved by iteration, using the recursion equation /*=%

T1 + 1 = old + very T1 , 1=0,1,2,... (5.32)

with the initial value of T being the empty set 0. Thus

T° = e

T1 8 old

T2 = old + very old

T3 = old + very old + very very old

(5.33)

As is well-known in the theory of regular expressions (see [32]), the
solution of (5.31) can be expressed as

2
T = (X + very + very + ...) old

where X is the null string. This expression for T is equivalent to that
of (5.34).
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jp^ and the solution of (5.31) is given by

(5.34)
00

T = T = old + very old + very very old + very very very old + ...

»

For the example under consideration, the syntactic rule, then, is

expressed by (5.31) and its solution (5.34). Equivalently, the syntactic

rule can be characterized by the production system

T-*old (5.35)

T ^ very. T (5.36)

for which (5.31) plays the role of an algebraic representation. In this

case, a term in T can be generated through a standard derivation

procedure ([36], ]37]) involving a successive application of the

^\ rewriting rules (5.35) and (5.36) starting with the symbol T. Thus, if

T is rewritten as very T and then T in very T is rewritten as old, we

obtain the term very old. In a similar fashion, the term very very very

old can be obtained from T by the derivation chain

(5.37)
T -*• very T -*• very very T -»• very very very T -*• very very very old

Turning to the semantic rule for Age, we note that to compute the

meaning of a term such as very ... very old we need to know the meaning

of old and the meaning of very. The term old plays the role of a

primary term, that is, a term whose meaning must be specified as an

initial datum in order to provide a basis for the computation of the

meaning of composite terms in T. As for the term very, it acts as a

4 '.
^ A discussion of the algebraic representation of context-free grammars
rmay be found in [33], [34] and [35]. Algebraic treatment of fuzzy

languages is discussed in [6] and [58].
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linguistic hedge, that is, as a modifier of themeaning of its operand.

If - as very simple approximation - we assume that very acts as a con

centrator (see(3.40)), then

very old = CON(old) (5.38)

= old2

Consequently, the semantic rule for Age may be expressed as

M(very ... very old) = old (5.39)

where n is the number of occurrences of very in the term very...very old

and M(very.. .very old) is the meaning of very.. .very old. Furthermore,

if the primary term old is defined as

P-00 -2 -1

•J ('♦(*") ) "old =| (1 +(1^) ) /u (5.40)
50

then

f100 -2 -2n
M(very ... very old) =1 (l +0^) ) /u , n=1,2,... (5.41)

"*50

This equation provides an explicit semantic rule for the computation of

the meaning of composite terms generated by (5.31), from the knowledge

of the meaning of the primary term old and the hedge very.

Boolean Linguistic Variables

The linguistic variable considered in Example 5.8 is a special case

of what might be called a Boolean linguistic variable. Typically,

such a variable involves a finite number of primary terms, a finite
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number of hedges, the connectives and and or, and the negation not.

For example, the term-set of a Boolean linguistic variable Age might

be:

(5.42)
Age « young + old + not young + not old + very young + very very young

+ not very young and not very old + quite young + more or less old

+ extremely old + ....

More formally, a Boolean linguistic variable may be defined recursively

as follows.

Definition 5.9. A Boolean linguistic variable is a linguistic variable

whose terms, X, are Boolean expressions in variables of the form X , hX ,
P P

X or hX, where h is a linguistic hedge, X is a primary term and hX is the

name of a fuzzy set resulting from acting with h on X.

As an illustration, in the case of the linguistic variable Age whose

term-set is defined by (5.42), the term not very young and not very old

is of the form (5.9) with h = very, X = young and X = old. Similarly, in

the case of the term very very young, h = very very and X = young.

Boolean linguistic variables are particularly convenient to deal

with because much of our experience in the manipulation and evaluation

of Boolean expressions is transferable to variables of this type. To

illustrate this point, we shall consider a simple example which involves

two primary terms and a single hedge.

Example 5.10. Let Age be a Boolean linguistic variable with the term-set
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T(Age) = young + not young + old + not old + very young

+ not young and not old + young or old + young or (not (5.43)

very young and not very old) + ...

If we identify and with intersection, or with union, not with

complementation and very with concentration (see (5.40)), the meaning

of a typical value of Age can be written down by inspection. For example

M(not young) ="~i young

2
M(not very young) = —• (young )

2 2 (5.44)
M(not very young and not very old) = ~~»(young ) ^—'(old )

M(young or old) = young U old

In effect, these equations express' the meaning of a composite term

as a function of the meaning of its constituent primary terms. Thus,

if young and old are defined as

-25 100 2 _x

young -i 1/u +1 (l - (iLf-15) ) /u (5-45)
^0 25

.100 _2 _!
. _ - 50

old =

50

^.(U-pO) ) /u (5.46)

then (see Fig. 5.3)

M(young

'o '25

.25 .50 2 _x

or old) =j 1/u +[ (l +(^ ) /u (5.47)

J100 0 _, n _i

(- e^-5)) v(x+(^)) /-
50
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The linguistic variable considered in the above example involves just

one type of hedge, namely, very. More generally, a Boolean linguistic

variable may involve a finite number of hedges, as in (5.42). The

procedure for computing the meaning of a composite term remains the

same, however, once the operations corresponding to the hedges are

defined.

The question of what constitutes an appropriate representation for

a particular hedge, e.g., more or less or quite or essentially is by no

means a simple one. To illustrate the point, in some contexts the effect

of the hedge more or less may be approximated by (see (3.41))

MQnore or less X) = DIL(X) =X0,5 (5.48)

For example, if X = old, and old is defined by (5.46), then

100 o « r
f / / - 50\ \more or less old =\ (1 + Iu "" j ) /u (5.49)
J50

In many instances, however, more or less acts as a fuzzifier in the

sense of (3.48), rather than as a dilator. As an illustration, suppose

that the meaning of a primary term recent is specified as

recent = 1/1974 + 0.8/1973 + 0.7/1972 (5.50)

and that more or less recent is defined as the result of acting with a

fuzzifier F on recent, i.e.,

A more detailed discussion of linguistic hedges from a fuzzy-set-theoretic
point of view may be found in [27] and [38]. The idea of treating
various types of linguistic hedges as operators on fuzzy sets originated
in the course of the author1s collaboration with Professor G. Lakoff.
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more or less recent = F(recent; K) (5.51)

where the kernel K of F is defined by

K(1974) = 1/1974 + 0.9/1973

K(1973) = 1/1973 + 0.9/1972 (5.52)

K(1972) = 1/1972 + 0.8/1971

On substituting the values of K into (3.48), we obtain the meaning of

more or less recent, i.e.,

more or
less recent = 1/1974 + 0.9/1973 + 0.72/1972 + 0.56/1971 (5.53)

On the other hand, if the hedge more or less were assumed to be a

dilator, then we would have

more or less recent =(1/1974 +0.8/1973 +0.7/1972) * ^ ^
= 1/1974 + 0.9/1973 + 0.84/1972

which differs from (5.53) mainly in the absence of the term 0.56/1971.

Thus, if this term were of importance in the definition of more or less

recent, then the approximation to more or less by adilator would not be

a good one.

In Example 5.10, we have deduced the semantic rule by inspection,

talking advantage of our familiarity with the evaluation of Boolean

expressions. To illustrate amore general technique, we shall consider

the same linguistic variable as in Example 5.10, but use amethod [39]

which is an adaptation of the approach employed by Knuth in [40] to

define the semantics of context-free languages.
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Example 5.11. It can readily be verified that the term-set of Example

5.10 is generated by a context-free grammar G = (VT,VN>T,P) in which

the non-terminals (syntactic categories) are denoted by T,A,B,C,D, i.e.,

VN = T + A+B + C + D + E (5.55)

while the set of terminals (components of terms in T) is expressed by

V„ = young + old + very + not + and + or + ( + ) (5.56)

and the production system, P, is given by

T + A C -*• D (5.57)

T -*- T or A C •* E

A -> B D -> very D

A -*- A and B E •*• very E

B •* C D -*• young

B •> not C E + old

C -* (T)

The production system, P, can also be represented in an algebraic form

as the set of equations (see Footnote 3)

T = A + T or A (5.58)

A = B + A and B

B = C + not C

C = (T) + D + E

D = very D + young

E = very E + old
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The solution of this set of equations for T yields the term set T *^

as expressed by (5.43). Similarly, the solutions for A,B,C,D, and E

yield sets of terms whichconstitute the syntactic categories denoted

by A,B,C,D, and E, respectively. The solution of (5.58) can be obtained

iteratively, as in (5.32), by using the recursion equation

(TjA^CDjE)1 + X= f((T,A,B,C,D,E)i) , 1=0,1,2,... (5.59)

with

(T,A,B,C,D,E)° = (8,...,6)

where (T,A,B,C,D,E) is a 6-tuple whose components are the nonterminals

in (5.58); f is the mapping defined by the system of equations (5.58);

6 is the empty set; and (T.A.B.CD.E)1 is the ith iterate of (T,A,B,C,D,E).

The solution of (5.58), which is the fixed point of f, is given by '

(T,A,B,C,D,E)°°. However, it is true for all 1 that

(T^B.C.D.E)1 C (T,A,B,C,D,E) (5.60)

which means that every component in the 6-tuple on the left of (5.60) is

a subset of the corresponding component on the right of (5.60). The

implication of (5.60), then, is that we generate more and more terms in

each of the syntactic categories T,A,B,C,D,E as we iterate (5.59) on i.

In a more conventional fashion, a term in T, say not very young and

not very old, is generated by G through a succession of substitutions

(derivations) involving the productions in P, with each derivation chain

starting with T and terminating on a term generated by G. For example,

the derivation chain for the term not very young and not very old is ^L
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|jP^(seealsoExample5.8)

T•+A-*•AandB-*•BandB•>notCandB-»•notDandB-•(5.61)

notveryDandB-*•notveryyoungandB•>notveryyoung

andnotC-*•notveryyoungandnotE-»•notveryyoungandnot

veryE•*•notveryyoungandnotveryold

Thisderivationchaincanbededucedfromthesyntax(parse)treeshown

inFig.5.4,whichexhibitsthephrasestructureofthetermnotvery

youngandnotveryoldintermsofthesyntacticcategoriesT,A,B,C,D,E.

Ineffect,thisprocedureforgeneratingthetermsinTbytheuseof

thegrammarGconstitutesthesyntacticruleforthevariableAge.

ThesemanticruleforAgeisinducedbythesyntacticruledescribed

aboveinthesensethatthemeaningofaterminTisdetermined,inpart,

byitssyntaxtree.Specifically,eachproductionin(5.57)isassociated

witharelationbetweenthefuzzysetslabeledbythecorresponding

terminalandnonterminalsymbols.Theresultingdualsystemofproductions

andassociatedequationshastheappearanceshownbelow,withthesub

scriptsLandRservingtodifferentiatebetweenthesymbolsonthe

left-andright-handsidesofaproduction(+=union)

T-»•A
*TL=*R

T•¥TorA
~TL=TR+\

A-*B
~\.=\

A-»-AandB
1=>AL=VlBR

B-*C
*BL=CR

B-*-notC
"BL-CR

C-*(T)
*CL"TR

C->-D
-°L"DR

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

(5.69)
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C -*» E =* CL = E^ (5.70)

D+very D=* DL = (DR)2 (5.71)

E+very E=» E^ =(E^2 (5.72)

D •» young =» D = young (5.73)

E + old =* E = old (5.74)

This dual system is employed in the following manner to compute the

meaning of a composite term in T.

1. The term in question, e.g., not very young and not very old is

parsed by the use of an appropriate parsing algorithm for G [37],

yielding a syntax tree such as shown in Fig. 5.4. The leaves of this

syntax tree are (a) primary terms whose meaning is specified a priori;

(b) names of modifiers (i.e., hedges, connectives, negation, etc.): and

(c) markers such as parentheses which serve as aids to parsing.

2. Starting from the bottom, the primary terms are assigned their

meaning and, using the equations of (5.62), the meaning of nonterminals

connected to the leaves is computed. Then, the subtrees which have these

nonterminals as their roots are deleted, leaving the nonterminals in

question as the leaves of the pruned tree. This process is repeated until

the meaning of the term associated with the root of the syntax tree is

computed.

In applying this procedure to the syntax tree shown in Fig. 5.5, we

first assign to young and old the meanings expressed by (5.45) and

(5.46). Then, using (5.73) and (5.74) we find

D7 = you-'U (5.75)

and
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f^\ En = old (5.76)

Next, using (5.71) and (5.72), we obtain

2 2
D =: E = young (5.77)

and

E10 =E^ =old2 <5'78>

Continuing in this manner, we obtain

2
C5 ° Dfi = young (5.79)

c9 =D10 =old2 (5'80)
2

B4 =-iCr =-*(young ) (5.81)

Bg =-»C9 =-i(old2) (5.82)
A3 •B4 =-»(young2) (5.83)
A9 =A, 0 BQ ••-»(young2) Hi(old2) (5.84)

and hence

2 2
not very young and not very old = —»(young ) ^~i(old )

which agrees with the expression which we had obtained previously by

inspection (see (5.44)).

The basic idea behind the procedure described above is to relate the

meaning of a composite term to that of its constituent primary terms by

means of a system of equations which are determined by the grammar which

generates the terms in T. In the case of the Boolean linguistic variable

of Example 5.10, this can be done by inspection. More generally, the

nature of the hedges in the linguistic variable and its grammar G might

be such as to make the computation of the meaning of its values a
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nontrivial problem.

Graphical Representation of a Linguistic Variable

A linguistic variable may be represented In a graphical form which

is similar to that of an object in the Vienna definition language [41],

[42], [43]f Specifically, a variable,^ , is represented as a branch

(see Fig. 5.6) whose root is labeled SX. and whose edges are labeled

with the names of the values of 9C i.e., X ,X ,... . The object

attached to the edge labeled X± is the meaning of X.. For example, in

the case of the variable named Age, the edges might be labeled young,

old, not young, etc., and the meaning of each such label can be

represented as the graph of the membership function of the fuzzy set which

is the meaning of the label in question (Fig. 5.7). it is important to

note that, in the case of a structured linguistic variable, both the

labels of the edges and the objects attached to them are generated

algorithmically by the syntactic and semantic rules which are associated

with the variable.

More generally, the graph of a linguistic variable may have the

form of a tree rather than a single branch (see Fig. 5.8). In the case

of a tree, it is understood that the name of a value of the variable is

the concatenation of the names associated with an upward path from the

leaf to the root. For example, in the tree of Fig. 5.8, the composite

name associated with the path leading from node 3 to the root is very tall.

quite fat, extremely intelligent.

This concludes our discussion of some of the basic aspects of the

concept of a linguistic variable. In the following sections, we shall

focus our attention on some of the applications of this concept. 1
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6. Linguistic Truth Variables and Fuzzy Logic

In everyday discourse, we frequently characterize the degree of

truth of a statement by expressions such as very true, quite true, more

or less true, essentially true, false, completely false, etc. The

similarity between these expressions and the values of a linguistic

variable suggests that in situations in which the truth or falsity of

an assertion is not well defined, it may be appropriate to treat Truth

as a linguistic variable for which true and false are merely two of the

primary terms in its term-set rather than a pair of extreme points in

the universe of truth-values. Such a variable and its values will be

called a linguistic truth variable and linguistic truth-values,

respectively.

Treating truth as a linguistic variable leads to a fuzzy linguistic

logic, or simply fuzzy logic, which is quite different from the

conventional two-valued or even n-valued logic. This fuzzy logic

provides a basis for what might be called approximate reasoning, that

is, a mode of reasoning in which the truth-values and the rules of

inference are fuzzy rather than precise. In many ways, approximate

reasoning is akin to the reasoning used by humans in ill-defined or

unquantifiable situations. Indeed, it may well be true that much - perhaps

most - of human reasoning is approximate rather than precise in nature.

In the sequel, the term proposition will be employed to denote

statements of the form "u is A," where u is a name of an object and A

is the name of a possibly fuzzy subset of a universe of discourse U, e.g.,

"John is young," "X^is small," "apple is red," etc. If A is interpreted

as a fuzzy predicate, then the statement "u is A" may be paraphrased as

More precisely, a fuzzy predicate may be viewed as the equivalent of
the membership function of a fuzzy set. To simplify our terminology,
both A and uA will be referred to as a fuzzy predicate.
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"u has property A." Equivalently, "u is A" may be interpreted as an

assignment equation in which a fuzzy set named A is assigned as a value

to a linguistic variable which^denotes an attribute of u, e.g.,

John is young «-»- Age(John) = young

X is small •<->- Magnitude (X) = small

apple is red '•*-»• Color (apple) = red

A proposition such as "u is A" will be assumed to be associated

with two fuzzy subsets: (i) The meaning of A, M(A), which is a fuzzy

subset of U named A; and (ii) the truth-value of "u is A," or simply

truth-value of A, which is denoted by v(A) and is defined to be a

possibly fuzzy subset of a universe of truth-values V. In the case of

two-valued logic, V = T + F (T = true, F = false). In what follows,

unless stated to the contrary, it will be assumed that V = [0,1].

A truth-value which is a point in [0,1], e.g. v(A) = 0.8, will be

referred to as a numerical truth-value. The numerical truth-values

play the role of the values of the base variable for the linguistic

variable Truth. The linguistic values of Truth will be referred to as

linguistic truth-values. More specifically, we shall assume that Truth

is the name of a Boolean linguistic variable in which the primary term

2
is true, with false defined not as the negation of true, but as its

mirror image with respect to the point 0.5 in [0,1]. Typically, the

term-set of Truth will be assumed to be the following

As will be seen later (6.11), the definition of false as the mirror
image of true is a consequence of defining false as the truth-value of
not A under the assumption that the truth-value of A is true.
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T(Truth) = true + not true + very true + more or less true (6.1)

+ very very true + essentially true + very (not true)

+ not very true + ... + false + not false + very false + ...

+ ... not very true and not very false + ...

in which the terms are the names of the truth-values.

The meaning of the primary term true is assumed to be a fuzzy

subset of the interval V = [0,1] characterized by a membership function

of the form shown in Fig. 6.1. More precisely, true should be regarded

as the name of a fuzzy variable whose restriction is the fuzzy set

depicted in Fig. 6.1.

A possible approximation to the membership function of true is

provided by the expression

utrue(v) ° ° for0<vj<a (6.2)

2
- o/V~ax r a+1(T:a) for a j< v <-—•

, 2
- i /V~1n c a+1
1 " ^T^aL ~2~ - v- 1

1+awhich has v =-y- as its crossover point. (Note that the support of true

is the interval [a,l]). Correspondingly, for false, we have (see Fig.

6.1)

^false(v) = lJtrue(1-v) ' ° <v < 1.

In some instances it is simpler to assume that true is a subset of

the finite universe of truth-values
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V= 0+ 0.1 + 0.2 + ... +0.9 + 1 (6.3) ^

rather than of the unit interval V = [0,1]. With this assumption, true

may be defined as, say, a

true = 0.5/0.7 + 0.7/0.8 + 0.9/0.9 + 1/1

where the pair 0.5/0.7, for example, means that the compatibility of

the truth-value 0.7 with true is 0.5.

In what follows, our main concern will be with relations of the

general form

v(u is: linguistic value of a Boolean linguistic variable 90 =
rr (6*4)

linguistic value of a Boolean linguistic truth-variableVJ

as in ^

v(John is tall and dark and handsome) = not very true and not

very false

where tall and dark and handsome is a linguistic value of a variable

named Sa. = Appearance, and not very true and not very false is that of a

linguistic truth variable y\ In abbreviated form, (6.4) will usually

be written as

v(X) = T

where X is a linguistic value of 9C and T is that of J.

Now suppose that X^ X2 and X- * X2, where * is a binary connective,

are linguistic values of yL with respective truth-values v(X1), v(X«) and

v(X*X9). A basic question that arises in this connection is whether or

not it is possible to express v(X *X„) as a function of v(X.,) and v(X2),
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that is, write

v(X1*X2) = v(Xx) *• v(X2) (6.5)

where ** is a binary connective associated with the linguistic truth

variable Tj. It is this question that provides the motivation for the

following discussion.

Logical Connectives in Fuzzy Logic

To construct a basis for fuzzy logic it is necessary to extend the

meaning of such logical operations as negation, disjunction, conjunction

and implication to operands which have linguistic rather than numerical

truth-values. In other words, given propositions A and B we have to be

able to compute the truth-value of, say, A and B from the knowledge of

the linguistic truth-values of A and B.

In considering this problem it is helpful to observe that, if A is a

fuzzy subset of a universe of discourse U and u £ U, then the two

statements

a) The grade of membership of u in the fuzzy set A is yA(u) (6.6)

b) The truth-value of the fuzzy predicate A is UA(u)

are equivalent. Thus, the question "What is the truth-value of A and B

given the linguistic truth-values of A and B?" is similar to the

question to which we had addressed ourselves in Sec. 3, namely, "What
3
From an algebraic point of view, v may be regarded as a homomorphic

mapping from T(90, the term-set of9(, to T(CJ), the term-set of CJ,
with *• representing the operation in T(QT) induced by *.
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is the grade of membership of u in A ^ B given the fuzzy grades of //r%

membership of u in A and B?" -

To answer the latter question we made use of the extension

principle. The same procedure will be followed to extend the meaning

of not, and, or and implies to linguistic truth-values.

Specifically, if v(A) is a point in V = [0,1] representing the truth-

value of the proposition "u is A," (or simply A) where u is an element

of a universe of discourse U, then truth value of not A (or-iA) is given

by

v (not A) = 1 - v (A) (6.7)

Now suppose that v(A) is not a point in [0,1] but a fuzzy subset of

[0,1] expressed as

v(A) = y /v + ... + y /v (6.8)
v 1 i n n

where the v. are points in [0,1] and the y. are their grades of membership

in v(A). Then, by applying the extension principle (3.80) to (6.7),

we obtain the expression for v(not A) as a fuzzy subset of [0,1], i.e.,

v(not A) = Mj/O-v^ + ... + Vn/0--vn) (6.9)

In particular, if the truth-value of A is true, i.e.,

v(A) = true (6.10)

then the truth-value false may be defined as

false = v(not A) (6.11)
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For example, if

true = 0.5/7 + 0.7/0.8 + 0.9/0.9 + 1/1 (6.12)

then the truth-value of not A is given by

false = v(not A) = 0.5/0.3 + 0.7/0.2 + 0.9/0.1 + 1/0

Comment 6.1 It should be noted that if

true = P1/v1.+ ... + yfl/v (6.13)

then by (3.33)

not true = (l-y^/v^ + ... + (l-^n)/vn (6.14)

By contrast, if

v(A) = true (6.15)

= y,/v.. + ... + y /v
11 n n

then

false = v(not A) (6.16)

= y,/(l-v..) + ... + y /(1-v )
11 n n

The same applies to hedges. For example, by the definition of very

(see (5.38))

2 2very true = V1/v± + ... + y /v (6.17)

On the other hand, the truth-value of very A is expressed by

2 2v(very A) =V^^ + ... + y^/^ (6.18)
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Turning our attention to binary connectives, let v(A) and v(B) be

the linguistic truth-values of propositions A and B, respectively. To

simplify the notation, we shall adopt the convention of writing - as in

the case where v(A) and v(B) are points in [0,1]:

v(A) a v(B) for v(A and B)

v(A) v v(B) for v(A or B)

v(A) =>v(B) for v(A => B)

(6.19)

(6.20)

(6.21)

and

-1V(A) for v(notA) (6-22)

with the understanding that A, V and -i reduce to Min (conjunction), Max

(disjunction) and 1- operations when v(A) and v(B) are points in [0,1].
Now if v(A) and v(B) are linguistic truth-values expressed as 1

v(A) =oi1hl+ ••• +an/Vn (6'23>

v(B) = 3,/w. + ... + 3 /w (6-24>
11 mm

where the v, and w. are points in [0,1] and the a and B, are their
i j -

respective grades of membership in Aand B, then by applying the extension

principle to v(A and B), we obtain

v(A and B) - v(A) A v(B) (6.25)

= (ai/v1+.. .+an/vn) A(3^+...+em/wm)

=]C <°t A *4>/<viA V

Thus, the truth-value of A and B is a fuzzy subset of [0,1] whose support
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0f\
is comprised of the points v.A w,, i - 1, ..., n, j - 1, ..., m, with

respective grades of membership (a. A $ ). Note that (6.25) is equivalent

to the expression (3.107) for the membership function of the intersection

of fuzzy sets having fuzzy membership functions.

Example 6.2 Suppose that

v(A) = true
(6.26)

= 0.5/0.7 + 0.7/0.8 + 0.9/0.9 + 1/1

and

v(B) = not true

= 1/0 + 1/0.1 + 1/0.2 + 1/0.3 + 1/0.4 + 1/0.5 + 1/0.6 (6.27)

+ 0.5/0.7 + 0.3/0.8 + 0.1/0.9

Then, the use of (6.25) leads to

v(A and B) = true a not true

= 1/(0 + 0.1 + 0.2 + 0.3 + 0.4 + 0.5 + 0.6) + 0.5/0.7 (6.28)

+ 0.3/0.8 + 0.1/0.9

= not true

In a similar fashion, for the truth-value of A or B, we obtain

v(A or B) = v(A) v v(B)

= (a1/v1+...+a„/v„) v(8n/w+. ..+3 /w )
J-l nn ii mm

=Z) <ai A 3.)/(v vw)
i,j J

The truth-value of A ** B depends on the manner in which the

connective => is defined for numerical truth-values. Thus, if we
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define (see (8.24))

v(A => B) =-*v(A) v v(A) a v(B) (6.30)

for the case where v(A) and v(B) are points in [0,1], then the

application of the extension principle yields (see Comment 3.20)

v(A=*B) = ((o^/vj+.-.+c^/v^ =* (31/w1+...+8m/wm)) (6.31)

=£ (a^a^/d-v.) V(v/w.)
i,j J J

for the case where v(A) and v(B) are fuzzy subsets of [0,1].

Comment 6.3 It is important to have a clear understanding of the

difference between and in, say, true and not true, and A in true A not

true. In the former, our concern is with the meaning of the term true and

not true, and and is defined by the realtion

M(true and not true) = M(true) O M(not true) (6.32)

where M is the function mapping a term into its meaning (see Definition

5.1). By contrast, in the case of true A not true we are concerned

with the truth-value of true A not true, which is derived from the

equivalence (see (6.19))

v(A and B) = v(A) * V(B) (6.33)

Thus, in (6.32) H is the operation of intersection of fuzzy sets, whereas

in (6.33), A is that of conjunction. To illustrate the difference by

a simple example, let Vs 0 + 0.1 + ... +1, and let P and Q be fuzzy

subsets of V defined by
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^ P= 0.5/0.3 + 0.8/0.7 + 0.6/1 (6.34)

Q = 0.1/0.3 + 0.6/0.7 + 1/1 (6.35)

Then

PnQ= 0.1/0.3 + 0.6/0.7 + 0.6/1 (6.36)

whereas

P A Q = 0.5/0.3 + 0.8/0.7 + 0.6/1- (6.37)

Note that the same issue arises in the case of not and -i, as pointed out

in Comment 6.1.

Comment 6.4 It should be noted that in applying the extension principle

(3.96) to the computation of v(A and B), v(A or B) and v(A =* B), we are

tacitly assuming that v(A) and v(B) are noninteractive fuzzy variables

in the sense of Comment 3.20. If v(A) and v(B) are interactive, then

^ it is necessary to apply the extension principle as expressed by (3.97)

rather than (3.96). It is of interest to observe that the issue of

possible interaction between v(A) and v(B) arises even when v(A) and

v(B) are points in [0,1] rather than fuzzy variables.

Comment 6.5 By employing the extension principle to define the operations

A, v, ""> and => on linguistic truth-values, we are in effect treating

fuzzy logic as an extension of multivalued logic. In the same sense,

the classical three-valued logic may be viewed as an extension of two-

valued logic (see 6.64 et seq.).

The expressions for v(not A), v(A and B), v(A or B) and v(A => B)

given above become more transparent if we first decompose v(A) and v(B)

into level-sets and then apply the level-set form of the extension
/IPs

1 principle (see (3.86)) to the operations -», A,vand =•. In this way,
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we are led to a simple graphical rule for computing the truth-values in

question (see Fig. 6.2). Specifically, let the intervals [a-,a ] and

[b1,b2] be the orlevel-sets for v(A) and v(B). Then, by using the

extensions of the operations-1, A and V to intervals, namely (see

(3.100))

->[a1,a2] = [1 - a2, 1 - a^ (6.38)

[ara2] a [b^] = [a^ bv a2 a b2] (6.39)

[ai,a2] v [bl,b2] = [a±v bv a2>/ b2] (6.40)

we can find by inspection the a-level-sets for v(not A), v(A and B) and

v(A or B). Having found these level-sets, v(not A), v(A and B) and v(A

or B) can readily be determined by varying a from 0 to 1.

As a simple illustration, consider the determination of the

A A
conjunction of linguistic truth-values v(A) = true and v(B) = false, with

the membership functions of true and false having the form shown in Fig.

6.1.

We observe that, for all values of ct,

[a;L,a2] a [bvb2] = [blfb2] (6.41)

which implies that (see (3.118))

[b1,b2] < [ara2] (6.42)

Consequently, merely on the basis of the form of the membership

functions of true and false, we can conclude that

true A false = false (6.43)
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which is consistent with (6.25).

Truth Tables and Linguistic Approximation

In two-valued, three-valued and, more generally, n-valued logics

the binary connectives A, v and => are usually defined by a tabulation of

the truth-values of A and B, A or B and A => B in terms of the truth-

values of A and B.

Since in a fuzzy logic the number of truth-values is, in general,

infinite, A, V and => cannot be defined by tabulation. However, it may

be desirable to tabulate say, A, for a finite set of truth-values of

interest, e.g., true, not true, false, very true, very (not true), more

or less true, etc. In such a table, for an entry in ith row, say not

true, and an entry in jth column, say more or less true, the (i,j)th

entry would be

(i,j)th entry =ith row entry (^ not true) Ajth column entry (^ more (6.44)

or less true)

Given the definition of the primary term true and the definitions

of the modifiers not and more or less, we. can compute the right-hand

member of (6.44), that is,

not true A more or less true (6.45)

by using (6.25). However, the problem is that in most instances the

result of the computation would be a fuzzy subset of the universe of

truth-values which may not correspond to any of the truth-values in the

term-set of Truth. Thus, if we wish to have a truth table in which the
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entries are linguistic, we must be content with an approximation to the '^

exact truth-value of (ith row entry A jth column entry). Such an approxi- -

mation will be referred to as a linguistic approximation. (See Fig. 1.5.)

As an illustration, suppose that the universe of truth-values is

expressed as

V = 0 + 0.1 + 0.2+ ... + 1 (6.46)

and that

true = 0.7/0.8 + 1/0.9 + 1/1 (6.47)

more or less true = 0.5/0.6 + 0.7/0.7 + 1/0.8 + 1/0.9 + 1/1 (6.48)

and

almost true = 0.6/0.8 + 1/0.9 + 0.6/1 (6.49)

In the truth-table for v, assume that the ith row entry is more or

less true and the jth column entry is almost true. Then, for the (i,j)th

entry in the table, we have

more or less true v almost true = (0.5/0.6 + 0.7/0.7 + 1/0.8 + 1/0.9 (6.50)

+ 1/1) V (0.6/0.8 + 1/0.9 + 0.6/1)

= 0.6/0.8 + 1/0.9 + 1/1

Now, we observe the right-hand member of (6.50) is approximately equal

to true as defined by (6.47). Consequently, in the truth table for V,

a linguistic approximation to the (i,j)th entry would be true.
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1^

J^

The Truth-Values Unknown and Undefined

Among the truth-values that can be associated with the linguistic

variable Truth, there are two that warrant special attention, namely,

the empty set, 6, and the unit interval [0,l]-which correspond to the

the least and greatest elements (under set inclusion) of the lattice

of fuzzy subsets of [0,1]. The Importance of these particular truth-

values stems from their interpretability as the truth-values undefined

4
and unknown, respectively. For convenience we shall denote these

truth-values by e and ?, with the understanding that 9 and ? are

defined by

9
A I 0/v

and

?
A

V = universe

[0,1]

„1

of truth--values

= \ 1/w

0

Interpreted as grades of membership, undefined and unknown enter

also in the representation of fuzzy sets of type 1. For such sets,

the grade of membership of a point u in U may have one of three possible

forms: (i) a number in the interval [0,1]; (ii) 9 (undefined); and (iii) ?

(unknown). As a simple example, let

4lT
The concept of unknown is related to that of don't care in the context

of switching circuits [44]. Another related concept is that of possible
in modal logic [45],
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U = a + b + c + d + e (6.53)

and consider a fuzzy subset of U represented as

A = 0.1 a + 0.9 b + ?c + 9d (6.54)

In this case, the grade of membership of c in A is unknown and that of

d is undefined. More generally, we may have

A = 0.1 a + 0.9 b + 0.8 ? c + 9 d (6.55)

meaning that the grade of membership of c in A is partially unknown,

with 0.8 ? c interpreted as

0.8 ?c =f I 0.8/vj/( (6.56)

It is important to have a clear understanding of the difference

between 0 and 9. When we say that the grade of membership of a point u

in A is 6, what we mean is that the membership function yA:U ->• [0,1] is

undefined at u. For example, suppose that U is the set of real

numbers and y. is a function defined on integers, with yA(u) = 1 if n is

an even integer and yA(u) =0if uis an odd integer. Then the grade of

membership of u = 1.5 in A is 9 rather than 0. On the other hand, if

uA were defined on real numbers and yA(u) =1iff nis even, then the
grade of membership of 1.5 in A would be 0.

Since we know how to compute the truth-values of A and B, A or B and c

not B given the linguistic truth-values of A and B, it is a simple

matter to compute v(A and B), v(A or B) and v(not B) when v(B) =?. ^
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jp\

Thus, suppose that

1

)/v (6.57)

0

v(A) =1 y(v

and

v(B) = ? = I 1/w (6.58)

By applying the extension principle, as in (6.25), we obtain

v(A) a ? = 1 y(v)/v a I 1/w (6.59)

where

J. -1
A

o o -To,i] x [o,i]

1 I y(v)/(vAw)

^0 ^0

1
and which upon simplification reduces to

(6.60)

v(A) A ?= 1 (v[W)1] y(v))/w (6.61)

In other words, the truth-value of A and B, where v(B) = unknown, is a

fuzzy subset of [0,1] in which the grade of membership of a point w is

given by the supremum of u(v) (membership function of A) over the interval

[w,l].
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In a similar fashion, the truth-value of A or B is found to be

expressed by

v(AorB) = l I y(v)/(ww) (6.62)

0 0

1 (y[0,w]y(v))/w

It should be noted that both (6.61) and (6.62) can readily be obtained

by the graphical procedure described earlier (see (6.38) et seq.). An

example illustrating its application is shown in Fig. 6.4.

Turning to the case where v(B) = 9, we find

v(A) A6=f 0/(vAw) <6-63>
•'o ^0

i

=f 0/w

= 9

and likewise for v(A)v 9.

It is instructive to examine what happens to the above relations when

we apply them to the special case of two-valued logic, that is, to the

case where the universe V is of the form

V = 0 + 1 <6-64)
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or, expressed more conventionally,

V = T + F (6.65)

where T stands for true and F stands for false. Since ? is V, we can

identify the truth-value unknown with true or false, that is,

? = T + F (6.66)

The resulting logic has four truth-values: 9, T, F and T + F (=?) and is

an extension of two-valued logic in the sense of Comment 6.5.

Since the universe of truth-values has only two elements, it is

expedient to derive the truth tables for v, A and =*• in this four-valued

logic directly rather than through specialization of the general formulae

(6.25), (6.29) and (6.31). Thus, by applying the extension principle to

A., we find at once

T A 9 = 6 (6.67)

T a (T + F) = T A T + T A F (6.68)

= T + F

FA(T + F)=FM + FA F (6.69)

= F + F

= F

(T + F) A (T + F) = T A T + T A F + F A t + F A F (6.70)

=T+F+F+F

= T + F

and consequently the extended truth-table for A has the form shown in

Table 6.5.
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A 9 T F T + F

9 9 9 9 9

T 9 T F T + F

F 9 F F F

T + F 9 T + F F T + F

which upon suppression of the entry 9 reads

A T F T + F

T T F T + F

F F F F

T + F T + F F T + F

Similarly, for the operation v we obtain

V T F • T + F

T T T T

F T F T + F

+ F T T + F T

Table 6.5

Table 6.6

Table 6.7

These tables agree - as they should - with the corresponding truth tables

for A and v in conventional threes-valued logic [46].

The approach employed above provides some insight into the definition

of =* in two-valued logic - a somewhat controversial issue which motivated

the development of modal logic [45], [47]. Specifically, instead of

defining =* in the conventional fashion, we may define =*asa connective

in three-valued logic by the partial truth table
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=» T F T + F

T T F

F T

Table 6.8

which expresses the untuitively reasonable idea that if A ^ B is true

and A is false, then the truth-value of B is unknown. Now we can raise

the question: How should the blank entries in the above table be

filled in order to yield the entry T in the (2,3) position in Table 6.8

upon the application of the extension principle? Thus, denoting the unknown

entries in positions (2,1) and (2,2) by x and y, respectively, we must

have

F => (T + F) = (F=»T) + (F=>F)

= x + y

= T

which necessitates that

x = y

In this way, we are led to the conventional definition of =>

in two-valued logic, which is expressed by the truth table

=> T F

T T F

F T T

(6.71)

(6.72)

As the above example demonstrates, the notion of the unknown truth-value

in conjunction with the extension principle helps to clarify some of the

concepts and relations in the conventional two-valued and three-valued
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logics. These logics may be viewed, of course, as degenerate cases of ^

a fuzzy logic in which the truth-value unknown is the entire unit

interval rather than the set 0+1.

Composite Truth Variables and Truth-Value Distributions

In the foregoing discussion, we have limited our attention to

linguistic truth variables which are unary variables in the sense of

Definition 2.1. In the following, we shall define the concept of a

composite truth variable and dwell briefly on some of its implications.

Thus, let

sra^ gn> (6.73)

denote an n-ary composite linguistic truth variable in which each

Of ,i=l, ..., n, is aunary linguistic truth variable associated with ^

a term-set T., a universe of discourse V±, and a base variable v± (see

Definition 5.1). For simplicity, we shall sometimes employ the symbol

xJ in the dual role of (a) the name of the ith variable in (6.73); and

(b) a generic name for the truth-values of ^±. Furthermore, we shall

assume that T± =T2 = ... =TR and V1 =V2 = ... =Vn = [0,1].
Viewed as a composite variable whose component variables CJ^, ..., rJn

take values in their respective universes T.^ ..., TQ, TJ is an n-ary

nonfuzzy variable (see (2.3) et seq.). Thus, the restriction RCcJ)

Imposed by <3f is an n-ary nonfuzzy relation in ^ x ... x Tr which may be

represented as an unordered list of ordered n-tuples of the form

RC'cT) = (true, very true, false, ..., quite true) (6.74)

+ (quite true, true, very true, ..., very true) ^

+ (true, true, more or less true, ..., true)

+ ...
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^N The n-tuples in R((rJ) will be referred to as truth-value assignment lists,

since each such n-tuple may be interpreted as an assignment of truth-

values to a list of propositions A-, ..., A , with

A = (Ar ..., An) (6.75)

representing a composite proposition. For example, if

A = (Scott is tall, Pat is dark-haired, Tina is very pretty)

then a triple in R(rJ) of the form (very true, true, very true) would

represent the following truth-value assignments:

v(Scott is tall) = very true (6.76)

v(Pat is dark-haired) = true (6.77)

^^ v(Tina is very pretty) = very true (6.78)

Based on this interpretation of the n-tuples in r(tJ)9 we shall

frequently refer to R(rJ) as a truth-value distribution. Correspondingly,

the restriction R(rJ. , ..., rj. ) which is imposed by the k-ary
1 \

variable (9J , ..., CX. ), where q = (i ,...,i ) is a subsequence of the
1 \ 1 it

index sequence (l,...,n), will be referred to as a marginal truth-value

distribution induced by R(rl' ,»* *»9T ) (see (2.8)). Then, using the

notation employed in Sec. 2 (see also Note 4.7), the relation between

R( Ji »• ••» <Jj£ ) and R( ^J,,..., 9j )may be expressed compactly as

R((3,(q)) =Pq R(Sf) (6'79)

where P denotes the operation of projection on the cartesian product

f^ T x ... xT .
1 k
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Example 6.6 Suppose that r6jT) is expressed by

R(rJ) =R(^i» 9V ^3> <6-8°)

= (true, quite true, very true)

+ (very true, true, very very true)

+ (true, false, quite true)

+ (false, false, very true)

To obtain R^^tX,) we delete the 7J component in each triple, yielding

R((r)1,9T2) = (true, quite true) (6.81)

+ (very true, true)

+ (true, false)

+ (false, false)

Similarly, by deleting the CJ2 components in R^l*^JP* we obtain

R(rL) = true + very true + false - (6.82)

If we view ^J as an n-ary nonfuzzy variable whose values are

linguistic truth-values, the definition of noninteraction (Definition 2.9)

assumes the following form in the case of linguistic truth variables.

Definition 6.7 The components of an n-ary linguistic truth variable

(ET= 67 »• ••0) are X-noninteractive (X standing for linguistic) iff

the truth-value distribution R(>J ,...,rTn) is separable in the sense that

R(^....tTn) -RC^i) *- * R£Xn> (6-83)

The implication of this definition is that, if^.---^ are X-noninteractive, ^
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then the assignment of specific linguistic truth-values to Xj* >•••> «J.
1 \

does not affect the truth-values that can be assigned to the complementary

components in (Tj-i >•••>Jn)»J.i >•••>'„ h •
Ji Jm

Before proceeding to illustrate the concept of X-noninteraction by

examples, we shall define another type of noninteraction which will be

referred to as g-noninteraction ($ standing for base variable).

Definition 6.8 The components of an n-ary linguistic truth variable

J = (ci ,...,<.i ) are g-noninteractive iff their respective base variables

v-,...,v are noninteractive in the sense of Definition 2.9; that is, the
in

vA are not jointly constrained.

To illustrate the concepts of noninteraction defined above we shall

consider a few simple examples.

Example 6.9 For the truth-value distribution of Example 6.6, we have

(6.84)R(y»i) = true + very true + false

R(uU^ = quj-te true + true + false

R( <Jo) = very true + very very true + quite true

and thus

R^) x R(92) * r(lT3) = (true, quite true, very true) (6.85)
+ (very true, quite true, very true)

+ (false, false, quite true)

* R(9r rJ2,rT3)

which implies that ^OJ.9rJ 9rj ) is not separable and hence tT ,9 , rf
i t. j 12 3
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are X-interactive.

Example 6.10 Consider a composite proposition of the form (A, not A)

and assume for simplicity that T(£J) = true + false. In view of (6.11),

if the truth-value of A is true then that of not A is false, and vice-

versa. Consequently, the truth-value distribution for the propositions

in question must be of the form

RC^!'^) = (true, false) + (false, true) (6.86)

which induces

*-(&{) =R(9r2) =true + false (6.87)

Now

R(tT1) *RCtT^ = (true + false) * (true + false)

= (true, true) + (true, false)

+ (false, true) + (false, false)

and since

R(CJ1»92) * R<rJi> xR<3T2>

it follows that Czf1 and XJ2 are X-interactive.

Example 6.11 The above example can also be used as an illustration of

g-interaction. Specifically, regardless of the truth-values assigned to

A and not A, it follows from the definition of not (see (3.33)) that the

base variables v, and v2 are constrained by the equation

vx +v2 =1 <6-89>
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In other words, in the case of a composite proposition of the form

(A, not A), the sum of the numerical truth-values of A and not A must

be unity.

Remark 6.12 It should be noted that, in Example 6.11, g-interaction

is a consequence of A_ being related to A- by negation. In general,

however, J, >...,J may be X-interactive without being g-interactive, and

vice-versa.

A useful application of the concept of interaction relates to the

truth-value unknown (see (6.52)). Specifically, assuming for simplicity

that V = T + F, suppose that

Ax ^Pat lives in Berkeley (6.90)

A = Pat lives in San Francisco (6.91)

with the understanding that one and only one of these statements is true.

This implies that, although the truth-values of A- and A„ are unknown

(k ?= T+ F), that is,

v(A1) = T + F (6.92)

v(A2) = T + F

they are constrained by the relations

v(A1) V v(A2) = T (6.93)

v(A1) ^ V(A2) = F (6.94)

Equivalently, the truth-value distribution associated with (6.90) and

(6.91) may be regarded as the solution of the equations
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v(Ax) V V(A2) - T (6.95)

v(Ax) A v(A2) = F (6.96)

which is

R^^) = (T,F) + (F,T) (6.97)

Note that (6.97) implies

v(A1) =R^) =T+F (6.98)

and

v(A2) =k(tJ2) =T+F (6.99)

in agreement with (6.92). Note also that VJL and uL are g-interactive

in the sense of Definition 6.8, with V = T + F.

Now if A- and A« were changed to

A^ = Pat lived in Berkeley (6.100)

A2 = Pat lived in San Francisco (6.101)

with the possibility that both A^^ and A could be true, then we would

still have

V(A ) = ? = T + F (6.102)

V(A2) =?=T+F (6.103)

but the constraint equation would become

v(^) V V(A2) =T (6.104)
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jp\ In this case, the truth-value distribution is the solution of (6.104),

which is given by

RC^, tT2) = (true, true) +(true, false) + (false, true) (6.105)

An important observation that should be made in connection with

the above examples is that in some cases a truth-value distribution

may be given in an implicit from, e.g., as a solution of a set of

truth-value equations, rather than as an explicit list of ordered

n-tuples of truth-values. In general, this will be the case where

linguistic truth-values are assigned not to each A. in A = (A ,...,A )

but to Boolean expressions involving two or more of the components of

A.

Another point that should be noted is that truth-value distributions

|[ may be nested. As a simple illustration, in the case of a unary proposition

we may have a nested sequence of assertions of the form

"""Vera is very very intelligent" is very true" is true."

Restrictions induced by assertions of this type may be computed as follows.

Let the base variable in (6.106) be IQ, and let R (IQ) denote the

restriction on the IQ of Vera. Then the proposition "Vera is very very

intelligent" implies that

R (IQ) = very very intelligent (6.107)
o

jfpv

Now, the proposition ""Vera is very very intelligent" is very true"

implies that the grade of membership of Vera in the fuzzy set R (IQ) is
o

very true (see (6.6.)). Let u „ . denote the membership function
very true r
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of very true (see (6.2)) and let yR denote that of RQ(IQ). Regarding
o _!

y~ as a relation from the range of IQ to [0,1], let yR denote the
o o

inverse relation from [0,1] to the range of IQ. This relation, then,

induces a fuzzy set R, (IQ) expressed by

R1(IQ) =y"1 (very, true) (6.108)
o

which can be computed by the use of the extension principle in the form

(3.80). The fuzzy set R1(IQ) represents the restriction on IQ induced

by the assertion ""Vera is very very intelligent" is very true."

Continuing the same argument, the restriction on IQ induced by the

assertion """Vera is very very intelligent" is very true" is true" may be

expressed as

Ro(IQ) - iCVrue) (6.109)2 Rx

where \in denotes the relation inverse to yD , which is the membership
Rl Rl

function of R1(IQ) given by (6.108). In this way, we can compute the

restriction induced by a nested sequence of assertions such as that

exemplified by (6.106).

The basic idea behind the technique sketched above is that an

assertion of the form ""u is A" is T," where A is a fuzzy predicate and T

is a linguistic truth-value, modifies the restriction associated with A

in accordance with the expression

A' . u'V)
A

where yT is the inverse of the membership function of A, and Af is the
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restriction induced by the assertion "u is A" is T."
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7. Linguistic Probabilities and Averages Over Fuzzy Sets

In the classical approach to probability theory, an event, A, is

defined as a member of a a-field, $> of subsets of a sample space Q.

Thus, if P is a normed measure over a measurable space (Sl,CD, the

probability of A is defined as P(A), the measure of A, and is a

number in the interval [0,1].

There are many real-world problems in which one or more of the

basic assumptions which are implicit in the above definition are

violated. First, the event, A, is frequently ill-defined, as in the

question, "What is the probability that it will be a warm day tomorrow?"

In this instance, the event warm day is a fuzzy event in the sense

that there is no sharp dividing line between its occurrence and non

occurrence. As shown in [48], such an event may be characterized as

a fuzzy subset, A, of the sample space ft, with u. , the membership

function of A, being a measurable function.

Second, even if A is a well-defined nonfuzzy event, its probability,

P(A), may be ill-defined. For example, in response to the question,

"What is the probability that the Dow Jones average of stock prices will

be higher in a month from now," it would be patently unreasonable to give

an unequivocal numerical answer, e.g., 0.7. In this instance, a vague

response like "quite probable," would be much more commensurate with our

lack of understanding of the dynamics of stock prices, and hence a more

realistic - if less precise - characterization of the probability in

question.
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The limitations imposed by the assumption that A is well-defined

may be removed, at least in part, by allowing A to be a fuzzy event,

as was done in [48]. Another and perhaps more important step that

can be taken to widen the applicability of probability theory to ill-

defined problems, is to allow P to be a linguistic variable in the

sense defined in Section 6. In what follows, we shall outline a way

in which this can be done and explore some of the elementary consequences

of allowing P to be a linguistic variable.

Linguistic Probabilities

To simplify our exposition, we shall assume that the object of our

concern is a variable, X, whose universe of discourse, U, is a finite

set

U = un + u_ + ... + u (7.1)
l L n

Furthermore, we assume that the restriction imposed by X coincides with

U. Thus, any point in U can be assigned as a value to X.

With each u., i = 1, ... , n, we associate a linguistic probability,

CP, which is a Boolean linguistic variable in the sense of Definition 5.9,

with p., 0 < p. < 1, representing the base variable for P.. For

concreteness, we shall assume that V, the universe of discourse associated

with ^P , is either the unit interval [0,1] or the finite set

V = 0 + 0.1 + ... + 0.9 + 1 (7.2)

Using 9 as a generic name for the P , the term-set for ^P will

typically be the following.
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T(C-P) m likely + not likely + unlikely + very likely + more or less likely

+ very unlikely + ...

+ probable + improbable + very probable + ...

neither very probable nor very improbable + ...

+ close to 0 + close to 0.1 + ... + close to 1 + ...

+ very close to 0 + very close to 0.1 + ... (7.3)

in which likely, probable and close to play the role of primary terms.

The shape of the membership function of likely will be assumed to be

like that of true (see (6.2)), with not likely and unlikely defined by

"not likely (p) =1-likely (p) (7*4)

and

U -.41 ^ (P) = ^4, , 0- - P> (7-5>unlikely vr likely

where p is a generic name for the p..

Example 7.1 A graphic example of the meaning attached to the terms likely,

not likely, very likely and unlikely is shown in Fig. 7.1. In numerical

terms, if the primary term likely is defined as

likely = 0.5/0.6 + 0.7/0.7 + 0.9/0.8 + 1/0.9 + 1/1 (7.6)

then

not likely =1/(0+ 0.1 + 0.2 + 0.3 + 0.4 + 0.5) + 0.5/0.6 + 0.3/0.7 + 0.1/0.8
(7.7)

unlikely = 1/0 + 1/0.1 + 0.9/0.2 + 0.7/0.3 + 0.5/0.4 (7.8)

and

very likely = 0.25/0.6 + 0.49/0.7 + 0.81/0.8 + 1/0.9 + 1/1 (7.9)
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The term probable will be assumed to be more or less synonymous with

likely. The term close to a , where a is a point in [0,1], will be

abbreviated as a or, alternatively, as "a", suggesting that a is a

"best example" of the fuzzy set "oT. In this sense, then,

likely = close to 1 = "1" (7.10)

unlikely = close to 0 = "0" (7.11)

and close to 0.8 = "0.8" = 0.6/0.7 + 1/0.8 + 0.6/0.9 (7.12)

from which it follows that

very close to 0.8 = very "0.8"

= ("0.8")2 (in the sense of (5.38))

= 0.36/0.7 + 1/0.8 + 0.36/0.9

A particular term in T(^P) will be denoted by T or T , in case

a double subscript notation is needed. Thus, if T, = very likely then

T, - would indicate that very likely is assigned as a value to the linguistic

variable ty .

The n-ary linguistic variable £Q, ...,C~P) constitutes a linguistic

probability assignment list associated with X. A variable X which is

associated with a linguistic probability assignment list will be referred

to as a linguistic random variable. By analogy with linguistic truth-

value distributions (see (6.74)), a collection of probability assignment

The symbol "a" will be employed in place of a when the constraints
imposed by type-setting dictate its use.

-131-



lists will be referred to as a linguistic probability distribution.

The assignment of a probability-value T to P may be expressed

as

P4 = T. (7.13)

where P. is used in a dual role as a generic name for the fuzzy variables

which comprise ^R. For example, we may write

PQ = T. (7.14)
3 4

= very likely

in which case very likely will be identified as T^3 (i.e., T^ assigned

to P3).

An important characteristic of the linguistic probabilities

P„, ..., P is that they are B-interactive in the sense of Definition 6.8.
In

The interaction between the P. is a consequence of the constraint

(+ = arithmetic sum)

p + p„ + ... + p = 1 (7.15)
*1 r2 n

in which the p. are the base variables (i.e., numerical probabilities)

associated with the P..

More concretely, let R(p1 + ... + pR = 1) denote the nonfuzzy n-ary

relation in [0,1] x ... x [0,1] representing (7.15). Furthermore, let

R(P ) denote the restriction on the values of p±. Then, the restriction

imposed by the n-ary fuzzy variable (P.^ ... ,PR) may be expressed as
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R(PX, ... ,PR) = R(P1) x ... xR(Pn) n r(Pi + ... + pn = 1) (7.16)

which implies that, apart from the constraint imposed by (7.15), the

fuzzy variables P-, ... , P are noninteractive.
l n

Example 7.2 Suppose that

and

Then

Px = likely (7.17)

= 0.5/0.8 + 0.8/0.9 + 1/1

p2 = ""likely (7.18)

= 1/0 + 0.8/0.1 + 0.5/0.2

K R(P1) x R(P2) = likely xunlikely (7.19)

= (0.5/0.8 + 0.8/0.9 + l/l)x(l/0 + 0.8/0.1 + 0.5/0.2)

= 0.5/(0.8,0) + 0.8/(0.9,0) + 1/(1,0)

+ 0.5/(0.8,0.1) + 0.8/(0.9,0.1) + 0.8/(1,0.1)

+ 0.5/(0.8,0.2) + 0.5/(0.9,0.2) + 0.5/(1,0.2)

As for R(p, + ... + p =1), it can be expressed as

R(px + P9 = 1) - Ll/(k,l-k), k = 0,0.1, ... ,0.9,1 (7.20)
k

and forming the intersection of (7.19) and (7.20), we obtain

R(P1,P2) = 1/(1,0) + 0.8/(0.9,1) + 0.5/(0.8,0.2) (7.21)

as the expression for the restriction imposed by (P ,P«). Obviously,

|pv R(P1,P2) is comprised of those terms in R(P.) x R(P ) which satisfy the
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constraint (7.15).

Remark 7.3 It should be observed that R(P-,P2) as expressed by (7.21)

is a normal restriction (see (3.23)). This will be the case, more

generally, when the P. are of the form

P± - "<l±" , 1 = 1, ... .n (7.22)

and q- + ... + q =1. Note that in Example 7.2, we have

Px = "1" (7.23)

P2 = "0" (7.24)

and

1+0=1 (7.25)

Computation With Linguistic Probabilities

In many of the applications of probability theory, e.g., in the calcula

tion of means, variances, etc., one encounters linear combinations of the

form (+ = arithmetic sum)

z = a.p- + ... + a p (7.26)
lrl n n

where the a. are real numbers and the p. are probability-values in

[0,1]. Computation of the value of z given the a± and the p± presents

no difficulties when the p. are points in [0,1]. It becomes, however,

a non-trivial problem when the probabilities in question are linguistic

in nature, that is, when
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^N

Z = anPn + ... + a P (7.27)
11 n n

where the P. represent linguistic probabilities with names such as

likely, unlikely, very likely, close to a, etc. Correspondingly,

Z is not a real number - as it is in (7.26) - but a fuzzy subset of

the real line W = (- «°, »), with the membership function of Z being

a function of those of the P..

Assuming that the fuzzy variables P , ... , Pr are noninteractive

(apart from the constraint expressed by (7.15)), the restriction imposed

by (P,, ... , P ) assumes the form (see (7.16))
J v 1 n

R(P ,... ,PR) -R(P1) x ... xR(Pn) nR(Pi + ... + pn = 1) (7.28)

Let y(p.., .. • > P ) be the membership function of R(P,» ... > P )»

and let y.(p.) be that of R(P±), i= 1, ... ,n. Then, by applying the

extension principle (3.90) to (7.26), we can express Z as a fuzzy set

(+ = arithmetic sum)

Z =J y(pr..., Pn)/(alP]L +... +anpn) (7.29)
W

which in view of (7.28) may be written as

Z =/ ^(P^A ..• Ayn(Pn)/(alPl +... +anpn) (7.30)
W

with the understanding that the p in (7.30) are subject to the constraint

Pl + ... + p =1 (7.31)
rl n
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In this way, we can express a linear combination of linguistic probability-

values as a fuzzy subset of the real line.

The expression for Z may be cast into other forms which may be

more convenient for computational purposes. Thus, let y(z) denote the

membership function of Z, with z ^ W. Then, (7.30) implies that

y(z) = v* y (p ) a ... a y(p ) (7.32)
P-i »• • •» P 11 nn

subject to the constraints

Z = alPl + *••• + anPn (7.33)

Px + ... + Pn = 1 (7.34)

In this form, the computation of Z reduces to the solution of a nonlinear

programming problem with linear constraints. In more explicit terms, this

problem may be expressed as: Maximize z subject to the constraints

(+ = arithmetic sum)

Pl(pl) - z (7.35)

VPn> ^ z

z = anp_ + ... + a p
1 1 n n

pn + ... + p =1
1 rn

Example 7.4 As a very simple illustration, assume that

p! ° likely (7.36)

and
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p2 = ""likely (7.37)

where

1

likely = "likely <P»P (7'38)
0

and

unlikely = i likely (7.39)

Thus (see (7.5))

"unlikely<p> = "likely/1"10 • °^^ (7-40)

Suppose that we wish to compute the expectation (+ = arithmetic sum)

Z - a- lively + a9 unlikely

Using (7.32), we have

W(Z) =Vp2 "USsH^ A"unlikely(p2}

subjeet to the constraints

(7.41)

(7.42)

z = a1v1 + a2P2 (7.43)

Pl+P2 = 1

Now in view of (7.40), if Pi + Po = 1 then

"likely(pl> * "unlikely(p2) °'^

and hence (7.42) reduces to

"<2> " "likely(pl> (7'45)
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z = a1P1 + a2(l - p±)

or, more explicitly,

y(z) = y

z - a0

( 1 ) (7.46)
likely va - a '

This result implies that the fuzziness in our knowledge of the probability

p induces a corresponding fuzziness in the expectation of (see Fig. 7.2)

z = a1?1 + a2p2 .

If the universe of probability-values is assumed to be V = 0 + 0.1 + ...

+0.9+1, then the expression for Z can be obtained more directly by

using the extension principle in the form (3.97). As an illustration,

assume that

P = "0.3" =* 0.8/0.2 + 1/0.3 + 0.6/0.4 (7.47)

P = »o.7" = 0.8/0.6 + 1/0.7 + 0.6/0.8 (7.48)

and (© = arithmetic sum)

Z - a^ ® a2P2 (7.49)

where the symbol © is used to avoid confusion with the union.

On substituting (7.47) and (7.48) in (7.49), we obtain

Z=a^O.8/0.2 +1/0.3 +0.6/0.4) © a2(0.8/0.6 +1/0.7 +0.6/0.8) (7.50)

=(0.8/0.2ax +1/0.3ax +0.6/0.43^ 0 (0.8/0.6a2 +1/0.7a2 +0.6/0.8a2)

In expanding the right-hand member of (7.50), we have to take into

account the constraint Px +P2 " x» which means that a term °f the f°rm
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yl^Plal ® y2^P2a2 (7.51)

evaluates to

yl/pial ® y2/p2a2 = ylA M2/(pial © P2a2) if Pl +P2 =1 (7*52)

= 0 otherwise.

In this way, we obtain

Z=1/(0.^ © 0.7a2) + 0.6/(0.2a1 © 0.8a2) + 0.6/(0.4a1 © 0.6a2)

(7.53)

which expresses Z as a fuzzy subset of the real line W = (- «>, »).

Averages Over Fuzzy Sets

Our point of departure in the foregoing discussion was the assumption

2
that with each point u of a finite universe of discourse U is

associated a linguistic probability-value P. which is a component of a

linguistic probability distribution ^P1>•••,^l\)•

In this context, a fuzzy subset, A, of U plays the role of a fuzzy

event. Let y. (u ) be the grade of membership of u in A. Then, if

the P. are conventional numerical probabilities, p., 0 <_ p < 1, then

the probability of A, P(A), is defined as (see [48]) (+ = arithmetic sum)

p(a) = yA(u1)P1 + ... + nA(un)Pn (7,54)

The assumption that U is a finite set is made solely for the purpose of
simplifying our exposition. More generally, U can be a countable set or
a continuum. _



It is natural to extend this definition to linguistic probabilities

3
by defining the linguistic probability of A as

P(A) = yA(U;L) Px + ... + uA(un) Pn (7.55)

with the understanding that the right-hand member of (7.55) is a linear

form in the sense of (7.27). In connection with (7.55), it should be

noted that the constraint

pn + ... + p = 1 (7.56)
1 n

on the underlying probabilities, together with the fact that

0£ uA(u±) <1 , i = 1, ... , n

insures that P(A) is a fuzzy subset of [0,1].

Example 7.5 As a very simple illustration, assume that

U = a + b + c (7.57)

A = 0.4a + b + 0.8c (7.58)

P = "0.3" = 0.6/0.2 + 1/0.3 + 0.6/0.4 (7.59)
a

P = »o.6" = 0.6/0.5 + 1/0.6 + 0.6/0.7 (7.60)
b

P « "0.1" = 0.6/0 + 1/0.1 + 0.6/0.2 (7.61)
c

Then (@ = arithmetic sum)

P(A) = 0.4(0.6/0.2 + 1/0.3 + 0.6/0.4)0 (0.6/0.5 + 1/0.6 + 0.6/0.7) (7.62)

© 0.8(0.6/0 + 1/0.1 + 0.6/0.2)

It should be noted that the computation of the right-hand member of (7.55)
defines P(A) as a fuzzy subset of [0,1]. In general, a linguistic approximation
would be needed to express P(A) as a linguistic probability-value.
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subject to the constraint

Pl + P2 + P3 = 1 (7,63)

Picking those terms in (7.62) which satisfy (7.63), we obtain

P(A) = 0.6/(0.4 x 0.2©0.6©0.8 x 0.2) (7.64)

+ 0.6/(0.4 x 0.2©0.6©0.8 x 0.1)

+ 0.6/(0.4 x 0.3® 0.5® 0.8 x 0.2)

+ 1/(0.4 x 0.3© 0.6© 0.8 x 0.1)

+ 0.6/(0.4 x 0.3® 0.7)

+ 0.6/(0.4 x 0.4© 0.5© 0.8 x 0.1)

+ 0.6/(0.4 x 0.4© 0.6)

which reduces to

P(A) = 0.6/(0.84 + 0.76 + 0.78 + 0.82 + 0.74) + 1/0.8 (7.65)

and which may be roughly approximated as

P(A) = "0.8" (7.66)

The linguistic probability of a fuzzy event as expressed by (7.55), may

be viewed as a particular instance of a more general concept, namely, the

linguistic average or, eqivalently, the linguistic expectation, of a function

(defined on U) over a fuzzy subset of U. More specifically, let f be

a real-valued function defined on U; let A be a fuzzy subset of U;

and let P_, ... , P be the linguistic probabilities associated with

u , ... , u , respectively. Then, the linguistic average of f over A

is denoted by Av(f;A) and is defined by (+ = arithmetic sum)
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Av(f;A) = f(u1)yA("1) P1 + ... + f(un)yA(un} Pn (7>67)

A concrete example of (7.67) is the following. Assume that individuals

named u.., ... , u are chosen with linguistic probabilities P^ ..., Pn»

with P. being a restriction on p±, i = 1, ..., n. Suppose that ui

is fined an amount f(u ), which is scaled down in proportion to the grade

of membership of u. in a class A. Then, the linguistic average

(expected) amount of the fine will be expressed by (7.67).

Comment 7.6 Note that (7.67) is basically a linear combination of the

form (7.27), with

ai =f(ui)yA(ui) (7'68)

Thus, to evaluate (7.67), we can employ the technique described earlier for

the computation of linear forms in linguistic probabilities. In particular,

it should be noted that, in the special case where f(u±) = 1, the right-

hand member of (7.67) becomes

Vul)Pl + -+Vun>P» (?-69)

and Av(f;A) reduces to P(A).

In addition to subsuming the expression for P(A), the expression for

Av(f;A) subsumes as special cases other types of averages which occur in

various applications. Among them there are two that may be regarded as

degenerate forms of (7.67) and which are encountered in many problems

of practical interest. In what follows, we shall dwell briefly on these
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averages and, for convenience in exposition, will state their definitions

in the form of answers to questions.

Question 7.7 What is the number of elements in a given fuzzy set A?

Clearly, this question is not well-posed, since in the case of a fuzzy set

the dividing line between membership and nonmembership is not sharp.

Nevertheless, the concept of the power of a fuzzy set [49], which is

defined as

|A| = I yA(u±) (7.70)

appears to be a natural generalization of that of the number of elements

in A.

As an illustration of |a| , suppose that U is the universe of

residents in a city, and A is the fuzzy set of the unemployed in that

city. If yA(u.,) is interpreted as the grade of membership of an

individual, u , in the class of the unemployed (e.g., ^(Ujt) = °'5

if u is working half-time and is looking'for a full-time job), then |a|

may be interpreted as the number of full-time equivalent unemployed.

Question 7.8 Suppose that f is a real-valued function defined on U.

What is the average value of f over a fuzzy subset, A, of U?

Using the same notation as in (7.67), let Av(f;A) denote the

average value of f over A. If A were nonfuzzy, Av(f ;A) would be

expressed by

U f<ui>
Av(f;A) = — (7.71)
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where Y ,-A is the summation over those u. which are in A, and
^u.^A i

|a| is the number-of the u which are in A. To extend (7.71) to fuzzy

sets, we note that (7.71) may be rewritten as

U f(ui)"A(ui)
Av(f;A) = — (7.72)

where y. is the characteristic function of A. Then, we adopt (7.72)
A

as the definition of Av(f;A) for a fuzzy A by interpreting

yA(u ) as the grade of membership of u in A. In this way, we arrive

at an expression for Av(f ;A) which may be viewed as a special case of

(7.67).

As an illustration of (7.72), suppose that U is the universe of

residents in a city and A is the fuzzy subset of residents who are young.

Furthermore, assume that f(u.) represents the income of u^ Then, the

average income of young residents in the city would be expressed by (7.72).

Comment 7.9 Since the expression for |a| is a linear form in the

y (u.), the power of a fuzzy set of type 2 (see Definition 3.22) can

readily be computed by employing the technique which we had used earlier

to compute P(A). In the case of Av(f;A), however, we are dealing with

a ratio of linear forms, and hence the computation of Av(f;A) for fuzzy

sets of type 2 presents a more difficult problem.

In the foregoing discussion, our very limited objective was to indicate
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that the concept of a linguistic variable provides a basis for defining

linguistic probabilities and, in conjunction with the extention principle,

may be applied to the computation of linear forms in such probabilities.

We shall not dwell further on this subject and, in what follows, will turn

our attention to a basic rule of inference in fuzzy logic.
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8. Compositional Rule of Inference and Approximate Reasoning

The basic rule of inference in traditional logic is the modus

ponens, according to which we can infer the truth of a proposition B

from the truth of A and the implication A => B. For example, if A is

identified with "John is in a hospital," and B with "John is ill,"

then if it is true that "John is in a hospital," it is also true that

"John is ill."

In much of human reasoning, however, modus ponens is employed in

an approximate rather than exact form. Thus, typically, we know that

A is true and that A* =* B, where A* is, in some sense, an approximation

to B. Then, from A and A* «* B we may infer that B is approximately true.

In what follows, we shall outline a way of formalizing approximate

reasoning based on the concepts introduced in the preceding sections.

However, in a departure from traditional logic, our main tool will not **%

be the modus ponens, but a so-called compositional rule of inference of

which modus ponens forms a very special case.

Compositional Rule of Inference

The compositional rule of inference is merely a generalization of

the following familiar procedure. Referring to Fig. 8.1, suppose that

we have a curve y = f(x) and are given x = a. Then from y = f(x) and

x = a, we can infer y - b = f(a).

Next, let us generalize the above process by assuming that a is an

interval and f(x) is an interval-valued function such as shown in Fig.

8.2. In this instance, to find the interval y = b which corresponds to

the interval a, we first construct a cylindrical set, a, with base a

(see (3.58)) and find its intersection, I, with the interval-valued curve. ^
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Then we project the intersection on the OY axis, yielding the desired

y as the interval b.

Going one step further in our chain of generalizations, assume

that A is a fuzzy subset of the OX axis and F is a fuzzy relation from

OX to OY. Again, forming a cylindrical fuzzy set A with base A and

intersecting it with the fuzzy relation F (see Fig. 8.3), we obtain a

fuzzy set An F which is the analog of the point of intersection I in

Fig. 8.1. Then, projecting this set on OY, we obtain y as a fuzzy subset

of OY. In this way, from y = f(x) and x = A = fuzzy subset of OX, we

infer y as a fuzzy subset, B, of OY.

More specifically, let y., y , u_ and yD denote the membership
A t* r d

_ A
functions of A, A, F and B, respectively. Then, by the definition of

A (see (3.58))

and consequently

y_(x,y) = u (x) (8.1)
A A

y_ (x,y) = u_(x,y) a yF(x,y) (8.2)
AHF A

= yA(x) A yp(x,y)

Projecting A n F on the OY axis, we obtain from (8.2) and (3.57)

yB(y) = vxyA(x)A yF(x,y) (8.3)

as the expression for the membership function of the projection (shadow)

of A n F on OY. Comparing this expression with the definition of the

composition of A and F (see (3.55)), we see that B may be represented as
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B = AoF (8.4)

where o denotes the operation of composition. As stated in Sec. 3, this

operation reduces to the max-min matrix product when A and F have

finite supports.

Example 8.1 Suppose that A and F are defined by

A = 0.2/1 + 1/2 + 0.3/3 (8.5)

and

F = 0.8/(1,1) + 0.9/(1,2) + 0.2/(1,3) (8.6)

+ 0.6/(2,1) + 1/(2,2) + 0.4/(2,3)

+ 0.5/(3,1) + 0.8/(3,2) + 1/(3,3)

Expressing A and F in terms of their relation matrices and forming the

matrix product (8.4), we obtain

[0.2 1 0.3]

0.8 0.9 0.2

0.6 1 0.4

0.5 0.8 1

B

= [0.6 1 0.4] (8.7)

The foregoing comments and examples serve to motivate the following

rule of inference.

Rule 8.2 Let U and V be two universes of discourse with base variables

u and v, respectively. Let R(u), R(u,v) and R(v) denote restrictions

on u, (u,v) and v, respectively, with the understanding that R(u), R(u,v)

and R(v) are fuzzy relations in U, U * V and V. Let A and F denote

particular fuzzy subsets of U and U x V. Then, the compositional rule

of inference asserts that the solution of the relational assignment
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equations

R(u) = A (8.8)

and

R(u,v) = F (8.9)

is given by

R(v) = AoF (8.10)

where A°F is the composition of A and F. In this sense, we can infer

R(v) = A°F from R(u) = A and R(u,v) = F.

As a simple illustration of the use of this rule, assume that

U=V=l+2+3+4 (8.11)

A = small = 1/1 + 0.6/2 + 0.2/3 (8.12)

and

F = approximately equal (8.13)

= 1/(1,1) + 1/(2,2) + 1/(3,3) + 1/(4,4)

+ 0.5/((l,2) + (2,1) + (2,3) + (3,2) + (3,4) + (4,3))

In other words, A is unary fuzzy relation in U named small and F is a

binary fuzzy relation inU x V named approximately equal.

The relational assignment equations in this case read

R(u) = small (8.14)

R(u,v) = approximately equal (8.15)

R(v) = small ° approximately equal (8.16)
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= [1 0.6 0.2 0]

[1 0.6 0.5 0.2]

1 0.5 0

0.5 1

0 0.5

L0 0

0.5

1

0.5

which may be approximated by the linguistic term

R(v) = more or less small

if more or less is defined as a fuzzifier (see (3.48)), with

K(l) = 1/1 + 0.7/2 '

K(2) = 1/2 + 0.7/3

K(3) = 1/3 + 0.7/4

K(4) - 1/4

Note that the application of this fuzzifier to R(u) yields

[1 0.7 0.42 0.14]

0

0.5

1

(8.17)

(8.18)

(8.19)

as an approximation to [1 0.6 0.5 0.2.].

In summary, then, by using the compositional rule of inference,

we have infered from R(u) = small and R(u,v) » approximately equal

R(v) = [1 0.6 0.5 0.21 exactly (8.20)

and

R(v) - more or less small as a linguistic approximation

(8.21)

Stated in English, this approximate inference may be expressed as

u is small premiss (8.22)

-150-



Jf^v

JjpN

u and v are approximately equal premiss

v is more or less small approximate conclusion

The general idea behind the method sketched above is the following.

Each fact or a premiss is translated into a relational assignment equation

involving one or more restrictions on the base variables. These equations

are solved for the desired restrictions by the use of the composition of

fuzzy relations. The solutions to the equations, then, represent deductions

from the given set of premisses.

Modus Ponens as a Special Case of the Compositional Rule of Inference

As we shall see in the sequel, modus ponens may be viewed as a

special case of the compositional rule of inference. To establish this

connection, we shall first extend the notion of material implication from

propositional variables to fuzzy sets.

In traditional logic, the material implication =*• is defined as a

logical connective for propositional variables. Thus, if A and B are

propositional variables, the truth table for A => B or, equivalently, IF

A THEN B, is defined to be (see Table 6.8)

B

T F Table 8.4

T T

In much of human discourse, however, the expression IF A THEN B is

used in situations in which A and B are fuzzy sets (or fuzzy predicates)

rather than propositional variables. For example, in the case of the

statement IF John is ill THEN John is cranky, which may be abbreviated
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as ill =» cranky, ill and cranky are, in effect, names of fuzzy sets.

The same is true of the statement IF apple is red THEN apple is ripe,

where red and ripe play the role of fuzzy sets.

To extend the notion of material implication to fuzzy sets, let U

and V be two possibly different universes of discourse and let A, B

and C be fuzzy subsets of U, V and V respectively. First, we shall

define the meaning of the expression IF A THEN B ELSE C and then will

define IF A THEN B as a special case of IF A THEN B ELSE C.

Definition 8.3. The expression IF A THEN B ELSE C is a binary fuzzy

relation in U x V defined by

IF A THEN B ELSE C = AxB + -»AxC (8.23)

That is, if A, B and C are unary fuzzy relations in U, V and V, then

IF A THEN B ELSE C is a binary fuzzy relation in U x V which is the

union of the cartesian product of A and B (see (3.45)) and the cartesian

product of the negation of A and C.

Now IF A THEN B may be viewed as a special case of IF A THEN B ELSE

C which results when C is allowed to be the entire universe V. Thus

IF A THEN B = IF A THEN B ELSE V (8.24)

= AxB + -iAxV

In effect, this amounts to interpreting IF A THEN B as IF A THEN B ELSE

don't care.

It is helpful to observe that in terms of the relation matrices of

1It is conceivable that a better definition for A => B could be formulated
by an explicit use in (8.24) of the truth-value unknown (see (6.52)).
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A, B and C, (8.23) may be expressed as the sum of dyadic products in

volving A and B (and -»A and C) as column and row matrices, respectively

Thus,

r nE b ] + [ C ]

IF A THEN B ELSE C (8.25)

Example 8.4 As a simple illustration of (8.23) and (8.24), assume that

Then

IF A THEN B ELSE C

U = V = l+2 + 3

A = small = 1/1 + 0.4/2

B « large = 0.4/2 +1/3

C » not large = 1/1 + 0.6/2

(8.26)

(8.27)

(8.28)

(8.29)

= (1/1 + 0.4/2)x(0.4/2 + l/3)+(0.6/2 + l/3)x(l/l

+ 0.6/2) (8.30)

= 0.4/(1,2) + 1/(1,3) + 0.6/(2,1) + 0.6/(2,2)

+ 0.4/(2,3) + 1/(3,1) + 0.6/(3,2)

which, represented as a relation matrix, reads

IF A THEN B ELSE C =

ft 0.4 1"

0.6 0.6 0.4

1 0.6 0

(8.31)

Similarly

IF A THEN B = (1/1 + 0.4/2)x(0.4/2 + l/3)+(0.6/2 + l/3)x(l/l + 1/2 + 1/3)

= 0.4/(1,2) + 1/(1,3) + 0.6/(2,1) + 0.6/(2,2)

+ 0.6/(2,3) + 1/(3,1) + 1/(3,2) + 1/(3,3)
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or equivalently

0 0.4 1

IF A THEN B = 0.6 0.6 0.6

11 1

L

(8.32)

Comment 8.5 It should be noted that in defining IF A THEN B by (8.24)

we are tacitly assuming that A and B are noninteractive in the sense

that there is no joint constraint involving the base variables u and v.

This would not be the case in the nonfuzzy statement IF u € A THEN

u e B, which may be expressed as IF u £ A THEN v e B, subject to the

constraint u = v. Denoting this constraint by R(u = v), the relation

representing the statement in question would b

IF u € A TEEN ueB=(AxB + -iAxV)H (R(u = v) ) (3.33)

Remark 8.6 In defining A => B, we assumed that IF A THEN B is a special ^

case of IF A THEN B ELSE C resulting from setting C = V.. If we set C

equal to 6 (empty set) rather than V, the right-hand member of (8.23)

reduces to the cartesian product A x B - which may be interpreted as A

COUPLED WITH B (rather than A CAUSES B.) Thus, by definition

A COUPLED WITH B = A x B (8.34)

and hence

A •* B ^ A COUPLED WITH B plus -t A COUPLED WITH V (8.35)

More generally, an expression of the form

An x B- + ... + A x B„ (8.36)
linn

^*%

would be expressed in words as
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A. COUPLED WITH Bn plus ... plus A COUPLED WITH B (8.37)
11 n n

It should be noted that expressions such as (8.37) may be employed

to represent a fuzzy graph as a union of fuzzy points (see Fig. 8.4).

For example, a fuzzy graph G may be represented as

G = "u " x "v " + "u " x 'V " + ... + "u " x "v " (8.38)
112 2 n n

where the u and v are points in U and V, respectively, and "u " and

"v.," i = 1,... ,n, represent fuzzy sets named close to u and close to

v± (see (7.12)).

Comment 8.7 The connection between (8.24) and the conventional definition

of material implication becomes clearer by noting that

-»AxBC-,AxV (8.39)

and hence that (8.24) may be rewritten as

IF A THEN B = AxB + nAxB + -tAxV (8.40)

= (A + -iA)xB + -iAxV

Now, if A is a nonfuzzy subset of U, then

A + nA= U (8.41)

and hence IF A THEN B reduces to

IF A THEN B = UxB + -«AxV (8.42)

which is similar in form to the familiar expression for A => B in the

case of propositional variables, namely

-155-



A=>B = -iAvB (8.43)

Turning to the connection between modus ponens and the compositional

rule of inference, we first define a generalized modus ponens as follows.

Definition 8.8 Let A-, A2 and B be fuzzy subsets of U, U and V, re

spectively. Assume that A is assigned to the restriction R(u), and

the relation A„ => B (defined by (3.24)) is assigned to the restriction

R(u,v). Thus

R(u) = Ax (8.44)

R(u,v) = A2 => B (8.45)

As was shown earlier, these relational assignment equations may be

solved for the restriction on v, yielding

R(v) - A1°(A2 => B) (8.46)

An expression for this conclusion in the form

A premiss (8.47)

A => B implication (8.48)

A-o(A« =» B) conclusion (8.49)

constitutes the statement of the generalized modus ponens
2

2The generalized modus ponens as defined here is unrelated to probabilistic
rules of inference. A discussion of such rules and related issues may be
found in [50].
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Comment8.9Theabovestatementdiffersfromthetraditionalmodus

ponensintworespects:First,A,AandBareallowedtobefuzzy

sets,andsecond,AneednotbeidenticalwithA2.Tocheckonwhat

happenswhenA1=A=AandAisnonfuzzy,wesubstitutetheexpression

forA=>Bin.(8.46),yielding

Ao(A=*B)=Ao(AxB+-rAxV)(8.50)

=AAB+A(-,A)V
rcrrcr

whererandcstandforrowandcolumn,respectively;AandAdenote

therelationmatricesforAexpressedasarowmatrixandacolumn

matrix,respectively;andthematrixproductisunderstoodtobetaken

inthemax-minsense.

Now,sinceAisnonfuzzy

A(iA)=o(8.51)
re

andsolongasAisnormal(see(3.23))

AA=1(8.52)
rc

Consequently

A<>(A=>B)=B(8.53)

whichagreeswiththeconclusionyieldedbymodusponens.

Example8.10Asasimpleillustrationof(8.49),assumethat

U=V=l+2+3(8.54)

A^=small=1/1+0.4/2(8.55)
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and

Then

A = more or less small = 1/1 + 0.4/2 + 0.2/3

B = large = 0.4/2 + 1/3

small © large

r 0 0.4 1

0.6 0.6 0.6

1 1 1

and

more or less small <> (small =» large) = [1 0.4 0.2] °
——— —" ^^ ,_,

0 0.4 1 (8.59)

0.6 0.6 0.6

11 1

= [0.4 0.4 1]

which may be roughly approximated as more or less large. Thus, in the

case under consideration, the generalized modus ponens yields

u is more or less small premiss

IF u is small THEN v is large implication

v is more or less large approximate conclusion

(8.56)

(8.57)

(8.58)

(8.60)

Comment 8.11 Because of the way in which A => B is defined, namely,

A=>B = AxB + -iAxV

the grade of membership of a point (u,v) will be high in A=> B if the

grade of membership of u is low in A. This gives rise to an overlap
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between the terms A x b and n A x V when A is fuzzy, with the result

3
that (see (8.50)), the inference drawn from A and A => B is not B but

A • (A =» B) = B + Ao(-, A x V) (8.61)

where the difference term A°(-> A x V) represents the effect of the overlap,

To avoid this phenomenon it may be necessary to define A =* B in a way

that differentiates between the numerical truth-values in [0,1] and the

truth-value unknown (see (6.52)). Also, it should be noted that for A

COUPLED WITH B (see (8.34)), we do have

A°(A COUPLEDWITH B) « B (8.62)

so long as A is a normal fuzzy set.

Fuzzy Theorems

By a fuzzy theorem or an assertion we mean a statement, generally

of the form IF A THEN B, whose truth-value is true in an approximate

sense and which can be inferred from a set of axioms by the use of

approximate reasoning, e.g., by repeated application of the generalized

modus ponens or similar rules.

As an informal illustration of the concept of a fuzzy theorem, let

us consider the theorem in elementary geometry which asserts that if

M , M and M- are the midpoints of the sides of a triangle (see Fig. 8.5),

then the lines AM , BM«, and CM- intersect at a point.

A fuzzified version of this theorem may be stated as follows.

Fuzzy Theorem 8.12 Let AB, BC and CA be approximate straight lines which

3
We assume that A is normal, so that A A =1.

r c
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form an approximate equilateral triangle with vertices A, B, C (see

Fig. 8.6). Let M., M« and M be approximate midpoints of the sides BC,

CA and AB, respectively. Then the approximate straight lines AM. ,

BM and CM form an approximate triangle TTJ. which is more or less

(more or less small) in relation to ABC.

Before we can proceed to "prove" this fuzzy theorem, we must make

more specific the sense in which the terms approximate straight line,

approximate midpoint, etc. should be understood. To this end, let us

agree that by an approximate straight line AB we mean a curve passing

through A and B such that the distance of any point on the curve from

the straight line AB is small in relation to the length of AB. With

reference to Fig. 87, this implies that we are assigning a linguistic

value small to the distance d, with the understanding that d is interpreted

as a fuzzy variable.

Let (AB)° denote the straight line AB. Then, by an approximate
o ,

midpoint of AB we mean a point on AB whose distance from M1 , the

midpoint of (AB)°, is small.

Turning to the statement of the fuzzy theorem, let 0 be the inter

section of the straight lines (AM^)0 and (BM2°)° (Fig. 8.8). Since 1^
is assumed to be an approximate midpoint of BC, the distance of Mx from

M ° is small. Consequently, the distance of any point on (AM^ from

(AM °)° is small. Furthermore, since the distance of any point on AMX

from (AM )° is small, it follows that the distance of any point on M±

from (AM-0)0 is more or less small.

The same argument applies to the distance of points on BM£ from

(BM °)°. Then, taking into consideration that the angle between (AM^ and
(BM )° is approximately 120°, the distance between an intersection of AMX J
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2
and BM9 and 0 is (more or less) small (that is, more or less (more or

less small.) From this it follows that the distance of any vertex

2of the triangle T. T? T from 0 is (more or less) small. It is in this
2

sense that the triangle T. T2 T- is (more or less) small in relation

to ABC.

The reasoning used above is both approximate and qualitative in

nature. It uses as its point of departure the fact that AM., BM2 and CM^

intersect at 0, and employs what, in effect, are qualitative continuity

arguments. Clearly, the "proof" would be longer and more involved if

we had to start from the basic axioms of Euclidean geometry rather than

the nonfuzzy theorem which served as our point of departure.

At this point, what we can say about fuzzy theorems is highly

preliminary and incomplete in nature. Nonetheless, it appears to be

an intriguing area for further study and eventually may prove to be of

use in various types of ill-defined decision processes.

Graphical Representation by Fuzzy Flowcharts

As pointed out in [7], in the representation and execution of

fuzzy algorithms it is frequently very convenient to employ flowcharts

for the purpose of defining relations between variables and assigning

values to them.

In what follows, we shall not concern ourselves with the many

complex issues arising in the representation and execution of fuzzy

algorithms. Thus, our limited objective is merely to clarify the role

played by the decision boxes which are associated with fuzzy rather

than nonfuzzy predicates by relating their function to the assignment

of restrictions on base variables.
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In the conventional flowchart, a decision box such as A in Fig. 8.9,

4
represents a unary predicate, A(x). Thus, transfer from point 1 to

point 2 signifies that A(x) is true, while transfer from 1 to 3 signifies

that A(x) is false.

The concepts introduced in the preceding sections provide us with

a basis for extending the notion of a decision box to fuzzy sets (or

predicates). Specifically, with reference to Fig. 8.9, suppose that

A is a fuzzy subset of U, and the question associated with the decision

box is: "Is x A," as in "Is x small," where x is a generic name for

the input variable. Flowcharts containing decision boxes of this type

will be referred to as fuzzy flowcharts.

If the answer is simply YES, we assign A to the restriction on x.

That is, we set

R(x) » A (8.63)

and transfer x from 1 to 2.

On the other hand, if the answer is NO, we set

R(x) = -i A (8.64)

and transfer x from 1 to 3.

As an illustration, if A = small, then (8.63) would read

R(x) » small. (8.65)

If the answer is Yes/y, where 0 <_ y <_ 1, then we transfer x to 2

with the conclusion that the grade of membership of x in A is y. We

^For simplicity, we shall not consider decision boxes having more than
one input and two outputs. ^1
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also transfer x to 3 with the conclusion that the grade of membership

of x in -» A is 1 - y.

If the grade of membership y is linguistic rather than numerical,

we represent it as a linguistic truth-value. Typically, then, the

answer would have the form Yes/true or YES/very true or YES/more or less

true, etc. As before, we conclude that the grade of membership of x in

A is y, where y is a linguistic truth-value, and transfer x to 3 with

the conclusion that the grade of membership of x in i A is 1 - y.

If we have a chain of decision boxes as in Fig. 8.10, a succession

of YES answers would transfer x from 1 to n + 1 and would result in the

assignment to R(x) of the intersection of A ,...,A . Thus,

R(x) = A-jH ...O a (8.66)

where n denotes the intersection of fuzzy sets. (See also Fig. 8.11.)

As a simple illustration, suppose that x = John, A = tall and

A- = fat. Then, if the response to the question "Is John tall," Is

YES, and the response to "Is John fat," is YES, the restriction imposed

by John is expressed by

R(John) = tall n fat (8.67)

It should be noted that "John" is actually the name of a binary

linguistic variable with two components named Height and Weight. Thus,

(8.67) is equivalent to the assignment equations

Height = tall (8.68)

and

Weight = fat (8.69)
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As implied by (8.66), a tandem connection of decision boxes represents

the intersection of the fuzzy sets (or, equivalently, the conjunction of '

the fuzzy predicates) associated with them. In the case of nonfuzzy

sets, their union may be realized by the scheme shown in Fig. 8.12. In

this arrangement of decision boxes, it is clear that transfer from 1 to

2 implies that

R(u) = A + -i A n B (8.70)

and since A n B C A (8.71)

it follows that (8.70) may be rewritten as

R(u) »A + AnB + -»AHB (8.72)

»A+(A+-jA)HB

= A + B <-=%

since

A + -, A = U (8.73)

and

U n B = B (8.74)

The same scheme would not yield the union of fuzzy sets since the identity

A + -, A - U (8.75)

does not hold exactly if A is fuzzy. Nevertheless, we can agree to

interpret the arrangement of decision boxes in Fig. 8.12 as one that

represents the union of A and B. In this way, we can remain on the

familiar ground of flowcharts involving nonfuzzy decision boxes. The

flowchart shown in Fig. 8.14 illustrates the use of this convention in ^

the definition of Hippie.
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The conventions described above may be used to represent in a

graphical form the assignment of a linguistic value to a linguistic

variable. Of particular use in this connection is a tandem connection

of decision boxes which represent a series of bracketing questions which

are intended to narrow down the range of possible values of a variable.

As ah illustration, suppose that x = John and (see Fig. 8.13)

Ax - tall (8.76)

A« = very tall

A = very very tall

A. = extremely tall

If the answer to the first question is YES, we have

R(x) = tall (8.77)

If the answer to the second question is YES and to the third question

is NO, then

R(John) = very tall and not very very tall (8.78)

which brackets the height of John between very tall and not very very

tall.

By providing a mechanism - as in bracketing - for assigning linguistic

values in stages rather than in one step, fuzzy flowcharts can be very

helpful in the representation of algorithmic definitions of fuzzy concepts.

The basic idea in this instance is to define a complex or a new fuzzy

concept in terms of simpler or more familiar ones. Since a fuzzy concept

may be viewed as a name for a fuzzy set, what is involved in this approach

is, in effect, the decomposition of a fuzzy set into a combination of
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simpler fuzzy sets.

As an illustration, suppose that we wish to define the term Hippie,

which may be viewed as a name of a fuzzy subset of the universe of

humans. To this end, we employ the fuzzy flowchart5 shown in Fig. 8.14.

In essence, this flowchart defines the fuzzy set Hippie in terms of the

fuzzy sets labeled Long Hair, Bald, Shaved, Job and Drugs. More specifically,

it defines the fuzzy set Hippie as (+ = union)

Hippie = (Long Hair + Bald + Shaved) n Drugs n -, Job (8.79)

Suppose that we pose the following questions and receive the

indicated answers.

Does x have Long Hair? YES

Does x have a Job? NO

Does x take Drugs? YES

Then, we assign to x the restriction

R(x) = Long Hair n n Job n Drugs

and since it is contained in the tight-hand member of (8.79), we conclude

that x is a Hippie.

By modifying the fuzzy sets entering into the definition of Hippie

through the use of hedges such as very., more or less, extremely, etc.,

and by allowing the answers to be of the form YES/y or NO/y, where yis

5it should be understood, of course, that this highly oversimplified
definition is used merely as an illustration and has no pretense at
being accurate, complete or realistic.
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a numerical or linguistic truth-value, the definition of Hippie can

be adjusted to fit more closely our conception of what we want to

define. Furthermore, we may use a soft and (see Comment 3.7) to allow

some trade-offs between the characteristics which define a hippie. And,

finally, we may allow our decision boxes to have multiple inputs and

multiple outputs. In this way, a concept such as Hippie can be defined

as completely as one may desire in terms of a set of constituent

concepts each of which, in turn, may be defined algorithmically. In

essence, then, in employing a fuzzy flowchart to define a fuzzy concept

such as Hippie, we are decomposing a statement of the general form

(8.80)

v(u is: linguistic value of a Boolean linguistic variable A) =

linguistic value of a Boolean linguistic truth-variable r)

into truth-value assignments of the same form, but involving simpler or

more familiar variables in the left-hand member of (8.80).

Concluding Remarks

In this as well as in the preceding sections, our main concern

centered on the development of a conceptual framework for what may be

called a linguistic approach to the analysis of complex or ill-defined

systems and decision processes. The substantive differences between

this approach and the conventional quantitative techniques of system

analysis raise many issues and problems which are novel in

nature and hence require a great deal of additional study and experi

mentation. This is true, in particular, of some of the basic aspects

of the concept of a linguistic variable on which we have dwelt only

briefly in our exposition, namely: linguistic approximation, representation
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of linguistic hedges, nonnumerical base variables, A- and 3-interaction,

fuzzy theorems, linguistic probability distributions, fuzzy flowcharts

and others.

Although the linguistic approach is orthogonal to what have become

the prevailing attitudes in scientific research, it may well prove

to be a step in the right direction, that is, in the direction of

lesser preoccupation with exact quantitative analyses and greater

acceptance of the pervasiveness of imprecision in much of human

thinking and perception. It is our belief that, by accepting this

reality rather than assuming that the opposite is the case, we are

likely to make more real progress in the understanding of the behavior

of humanistic systems than is possible within the confines of

traditional methods.
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X 1 2 3 4 Iv2 2v4

1 1 2 3 4 Iv2 2v4

2 2 4 6 8 Iv4 4v8

3 3 6 9 12 3v6 6vl2

4 1 8 12 16 4v8 8vl6

Iv2 Iv2 2v4 3v6 4v8 Iv2v4 2v4v8

3v5v6

2v4 v6

6 v 10 v 12

I2v20v24

I8v30v36

6 Vl0vl2vl8v20v24v30v36

Table 3.4. Extension of the multiplication table to subsets of integers,

1V 2 means 1 or 2.
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Fig.5.7. Representation of the linguistic variable Age as a Vienna

definition language object.
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Fig.8.2. Illustration of the compositional rule of inference in the

case of interval-valued variables.
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variables.
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Fig.8.7. Definition of approximately straight line.
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Fig.8.8. Illustration of an approximate proof of the fuzzy theorem.
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Fig. 8.13. Use of a tandem combination of decision boxes for purposes

of bracketing.
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Fig.7.2. Computation of the linguistic value of a-^ + a2P2«

y*^
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Fig.8.1. Infering y = b from x = a arid y = f(x).

Fig.8.2. Illustration of the compositional rule of inference in the

case of interval-valued variables.

Fig.8.3. Illustration of the compositional rule of inference for fuzzy

variables.

Fig.8.4. Representation of a fuzzy graph as a union of fuzzy points.

Fig.8.5. An elementary theorem in geometry.

Fig.8.6. A fuzzy theorem in geometry.

Fig.8.7. Definition of approximately straight line.

Fig.8.8. Illustration of an approximate proof of the fuzzy theorem.

Fig.8.9. A fuzzy decision box.

Fig.8.10. A tandem combination of decision boxes.

Fig.8.11. Restrictions associated with various exits from a fuzzy flow

chart .

Fig.8.12. A graphical representation of the disjunction of fuzzy predi

cates.

Fig.8.13. Use of a tandem combination of decision boxes for purposes

of bracketing.

Fig.8.14. Algorithmic definition of Hippie presented in the form of a

fuzzy flowchart.
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