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Abstract

It has been shown by this investigator and numerous others [6] [7]

[8] that exterior boundary value problems involving localized inhomo-

geneous media are most conveniently solved using finite difference or

finite element technique together with integral equations or harmonic

expansions, which satisfy the radiation conditions. The methods result

in large matrices which are partly full and partly sparse, and methods

to solve them, such as iteration or banded matrix methods are not very

satisfactory. The uni-moment method alleviates the difficulties by

decoupling enterior problems from the interior boundary value problems.

This is done by solving the interior problem many times so that N linearly

independent solutions are generated. The continuity conditions are then

enforced by a linear combination of the N independent solutions, which

may be done by solving much smaller matrices. Methods of generating

solutions of the interior problems are discussed.

Research sponsored by the National Science Foundation Grant GK-24960.



Introduction

Since computer aided analysis became a part of electromagnetic

research the integral equation [1] and the moment methods [2] have been

r^ the prima donas of numerical methods used in antenna and scattering

problems. Finite difference and finite element methods, stars of research

in structure engineering and many other engineering disciplines

have been essentially overshadowed for lack of appeal to the antenna

experts. The choice so made by the antenna specialists has indeed been

a natural one in that the radiation condition, vital to all antenna

problems, cannot be easily enforced in difference or finite element

equations, while it is automatically satisfied in the integral equation

formulations, and in that the nodal points of a discretized integral

equation are distributed only over the surface of the obstacle while

those of a finite difference or finite element equation are over the

volume of the obstacle and beyond. Integral equation formulations, however,

are limited by the availability of Green's functions, which are simple

functions only in linear isotropic media. Indeed, any excursion of the

integral equation or moment methods to inhomogeneous or anisotropic

media problems requires massive analytical and programming efforts, which

can be attested to by those few who have so tried [3] [4] [5]. Since

the finite difference or finite element equations are easily formulated

regardless of the complexity of the medium, they would be more attractive

than the integral equations particularly in the inhomogeneous media

j problems, if the above mentioned difficulties could be resolved. Recent

work by Mei, Stovall and Tremain [6], Silvester and Hsieh [7], and

McDonald and Wexler [8] has essentially pointed the way to incorporate
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the radiation condition in finite difference and finite element methods,

yet they still have not brought those methods within competitive range

to the moment methods either in speed or storage requirement. The

matrix operators resulted from the above references are large, although

they are partly full and partly sparse. Direct inversion of such

matrices are impractical and iterative methods are slow, and always

diverge when the source frequency is higher than a critical value,

usually the lowest resonant frequency of the finite difference or finite

element region.

The concept of uni-moment which this paper is to present promises

to solve the radiation conditioned finite difference or finite element

equations with great speed, less storage and simple programming.

With all these conditions secured the solutions to antennas or scatterings

in complex and inhomogeneous media are within reach. Hopefully this

elementary treatment of the subject will eventually open the door to

"A land so fascinating

Gathering countless heroes

ft
Working diligently to show their gallantry" .

Moment and Uni-moment

Consider the problem of scattering by a dielectric obstacle in a

two dimensional space as shown in Fig. 1. The mathematical problem is

to solve the scalar Helmholtz equation subject to the illuminating field

<j> , the continuity conditions on the boundary c, and radiation condition

at infinity. The integral equation formulation of the problem results

*

Verse from a Chinese poem.
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in the following two coupled integral equations:

C — ^G (r r'^~H't) =̂ (r) - lim J (Go(r,r') ^p- -<|>(r') —^ dcM (1)
C-a

•|*<r)» lim J {G1(r,r') -^P -<Kr') —1^~> dc' (2)
C-a

where r and r1 are both points on C;

G.(?,r') -=± H<2) (kjr-r'l)

is the Green's function in the respective regions, and a denotes an

infinitesimal segment of C surrounding the singularity of G.(r,r').

Both <J>(r) and ;^ ' are unknowns to be found. The moment method of
dn

solving (1) and (2) starts with a set of trial functions, tj>,, ij^, •••

i^N, and the solutions are represented by two sets of linear combinations

of the trial functions,

N

(r) - £ a 0 (r) (3)
i=i

U (r) =£ b± ^(r) (4)
i=l

The coefficient vectors a. and b. may be found by substituting (3) and

(4) into eq's (1) and (2) and each equation is enforced either by

collocation or by weighting integrals.
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The uni-moment method of solving the same problem starts with trial

function pairs,

1 ' ^2

3^ 8ij>2

an" • atT

^

"\

*.
N

(5)

3i|;
N

9n

J

We have assumed that for each trial function iK on C, there is available

an associated unique function -—. Assuming such pairs have been found,
dn

the solutions of the integral equations may be obtained by a single

coefficient vector a,, and only eq. (1) is needed to obtain the solution

by substituting,

N ^
<f>(r) = £ a1>i(r)

1=1

(6)

In the way the problem is formulated by eqs (1) and (2), however, the

uni-movement approach as suggested by (5) and (6) really does not offer

any advantage, since the trial function pairs are actually solutions

of eq. (2). The advantage should become obvious if eq. (2) could be

replaced by other formulas, whose solutions can be easily generated.

Finite difference and finite element formulations are good candidates

for the task. Because, their solutions can be generated relatively easily

in C, and their formulations are relatively indifferent to the complexities
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of the medium and geometry. Indeed, the integral equation (2) would not

be available if the medium inside C is inhomogeneous.

In many instances when finite difference or finite element

formulations are used, it is more advantageous to extend C to a separable

boundary C1, which is a circle in the 2-dimensional problem as described

by the dashed curve in Fig. 1. In such cases, of course, the trial

functions \\>. will be assigned on Cf. Assuming the medium outside C'

is uniform and isotropic we may expand i/j (r) outside C' by cylindrical

harmonics.

N

>°(r) = £ (Ae cos n6 + A° sin nO) H(2)(k r) (7)
*~*. n n no
n=J

Eq. (1) can now be replaced by the continuity conditions on C', which

may be enforced either by collocation or by the method of weighting

functions. Using the latter we should have,

C2" 2N f2* N
{£ an*n(a,e)}Ci(6)de= { £ (A^

J„ n=l Jn n=0
cos n6

+A° sin n6) Hfl2) (kQa) +<|>inC (A,0)} £ (0) d6

$27T 2N 3ty f?7r N
«WMUi(6)d9= {^(An cos n0

/2) aA*+A° sin n6) ±£- (kQa) +^- (a,6)} q(9) d6

where 5^(6) is the weighting function set which may be chosen quite
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arbitrary. For i = 1, ... 2N, (8) and (9) represent 4N linear equations,

e o
which may be solved for A., A. and a.. Because, equations (8) and (9)

are easier to generate than (1), much computer time can be saved by

e o
this extension. Furthermore, once the coefficients A. and A, of the

exterior expansion are found, it is quite a trivail computational matter

to obtain either the near fields or far fields outside C*.

Generation of Trial Function Pairs

The successful application of the uni-moment methods depends on how

fast the trial function pairs can be generated. Actually, the function

pairs cannot be found without solving the field equations inside C'.

In the following we shall discuss the methodology of generating solutions

of the Helmholtz equation in a closed region. We shall assume that the

reader is already familiar with the finite difference approximations

of partial differential equations. For convenience in the ensuing

discussions we shall use only rectangular mesh as shown in Fig. 2a. The

finite difference form of Helmholtz equation at a point i in Fig. 3a is,

*i+N +*i+l +<k2h2 "4) +1 +*i-l +*i-N =° (10)

The finite element formulation of the same problem requires the minimization

of the functional,

I = 1 (| V<J> |2- 2k2<f>) dS (11)
S

In general the mesh in the finite element method is triangular.

Triangularizing the rectangular mesh of Fig. 2a, we get that of Fig. 2b.
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In the special case of Fig. 3b, the finite element formulation, i.e.,

minimization of (11) gives exactly the same equation as (10). This is

not to say, however, finite difference and finite element formulations

are the same. In fact, the finite element has definite advantages

over the finite difference formulations in dealing with complex geometries.

Using the simple mesh, we shall illustrate the following methods of

generating solutions to equation (10).

(A) Shooting Method

We note that trial functions in (5) are rather arbitrary, although

they need to be complete and linearly independent. Instead of solving

the boundary value problem as suggested by (10), we may generate solutions

to (10) by specifying one row of 4»(r) next to a boundary with known

boundary values, such as the bottom boundary of Fig. 2a. Specifying

two adjacent rows of (J> is equivalent to specifying 4 values of <j> in

the five point equation of (10). Consequently the values of <J> on a new

row can be found. This step-marching towards the top of Fig. 2a,

gives the trial function pair at the top boundary. The one dimensional

equivalence of this method is to solve a second order ordinary differential

equation with specified f(t ) and f'(t ), which are respectively the

initial position and slope of a trajectile, and hence the name shooting.

As may be seen from the simple algebra that the shooting method is

fast and requires little memory space. The results of computing the

scattering by a periodic metal groove using the shooting method is shown

in Fig. 3, together with the results of other methods. The computation

time for this problem using integral equation (Kalhor and Neureuther [9] )

is 32 sec. on a CDC-6400 computer, it only takes 2 sec. using the
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uni-moment method (with shooting technique) on the same computer.

Furthermore, the uni-moment method is easily modified to accommodate

inhomogeneous dielectric loading of the groove, or grooves on dielectric

substrate.

Attractive as it may seem, however, the shooting method is basically

unstable, i.e., errors accumulate quickly in the step marching calculations,

Furthermore, one cannot shoot from a singular point or its vicinity, such

as the origin of a polar or spherical coordinate, otherwise high

order modes would overwhelm the results. Where it is applicable, such

as secattering by aperture of finite thickness, scattering by

inhomogeneous dielectric shell, etc., the uni-moment method using shooting

technique offers a very attractive alternative to existing methods.

(B) Ricatti Transformation

The equations of (10) for i = 1, 2, ...., mN, where m is the total

number of rows of the mesh, may be written in a matrix form,

4+1 + Q^ + 4.! = 0 (12)

for k = 2, 3, ..., m-1. The vector jr. is defined as,

*j = (<f>(J-D N+l' ^(j-1) N+2' '••, *(j-l) N+N} (13)

which represents the jth row of Fig. 3a. And,
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r

Q =

2 2
k h -4 1

2 2
k h -4 1

k2h2-4 1

2 2
kV-4

(14)

is a tridalgonal matrix. It is evident that for each k, (12) represents

N equations of (10). The Ricatti transformation of (12) assumes a

solution of the form,

(J).,- = R.<J>. + s.

where the matrices R. and vectors £. are independent of £,.

.s. could be found for all j, it would be possible to find all £.

starting from the known boundary values. We substitute (15) in (12)

to get,

(\ +Q+\\) ^ +(i^ -\\ sk-i> -°

(15)

If R. and

(16)

It is noticed that (16) like (12), represents the Helmholtz equation

without the complete boundary conditions, hence it has to be satisfied

by many <J>± which represent solutions of the Helmholtz equation. Since

4>±y in this case, is not unique, (16) can only be true if the

coefficients of 4, vanish, i.e.,

-1

•k + Q + Vi " (17)
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hence

-1

-k Vivr0 (18)

Referring to Fig. 3a, let us consider (15) for j = m - 1,

K " Vl 4-1 +^,-1 (19)

where §_ is the specified boundary value, which should be independent

of j|> i• Hence,

R , = 0 (20)
m—±

and

An-l '= *. (21)

The recurrence relation (17) can now be solved starting with k = m - 1

in

Vi= - (\+ Q)"1 (22)

After the R.'s are found s. may be computed from (18) and (21). With

all R. and j3. determined, we can calculate ta from the boundary value

Jkf j£o from ^« etc, using (19).

Using the above procedure the solution of the difference equations

(10) actually involves inversion of N x N matrices m - 2 times. Since

in lossless time harmonic wave equations, real boundary values result

in real solutions, all R. and s^. will be real if we use only real

trial functions. Furthermore, if we are only interested in the expansion
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coefficients outside, there is no need to store all the R., only IL

3*
(and R« for quadratic approximation) is needed to find -— from <K.

Therefore, the trial function pairs of (5) can be generated speedily

without large storage spaces.

We notice in the above development that R. and js. are found from

i=m-ltoi=l, and ^ are found from i=ltoi=m-l. This

procedure is known as a two sweep method, and numerous discussions may

be found on a one sweep method [10], [11]. In our application where

only the solutions next to the boundaries are needed the one sweep

method does not seem to offer us much advantage.

The stability of the Ricatti transformation on Laplaces equations

has been studied by Angel [12]. Our computations using Ricatti

transformation on wave equations have not yet experienced any

instability even when the region exceeds several wavelengths.

(C) Sparse Matrix Algorithm

The Ricatti transformation of the scalar Helmholtz equation in

difference form offers a simple algorithm for direct solutions. It

is easy to formulate and easy to program. It is, however, by no

means the best method, especially when the dimension of $. is large.

Methods of the Elimination Form of Inverse using optimum pivoting

should result in even greater speed, but its storage and algorithmic

schemes are more sophisticated and a self-contained discussion of the

subject is beyond the scope of this paper. Interested readers may

t
Optimum in preserving sparsity rather than reducing round off errors.
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consult the text by Tewarson [13], which also contains up to date

references. In the following we shall discuss Ricatti transformation

with reference to sparse matrix algorithms. It is intended to present

a different viewpoint and to show where a more sophisticated approach

may be used to advantage.

The name Ricatti transformation is often used by authors working

with potential problems. It is so named because (15) transforms an

elliptical differential equation to a nonlinear, Ricatti type equation.

The discussion of the method in the context of elliptical partial

differentialequation is really not necessary. We have adopted that

approach because of the readers' familiarity with the scalar Helmholtz

equation. Indeed, eqs. (10) is a banded matrix, where the matrix

elements

a±. =0 for |j - l| >N (23)

A banded matrix may be partition as illustrated in Fig. 4. The

partitioned matrix equations take the form,

Vk-A-i + \,A +.Vk+i 4+i= ° (24)

which is a generalized form of (12). The transformation (15) applies

equally well to the 3-term recurrence formual of (24), and hence the

solution [14]. If one wishes to use a 9-point difference equation

instead of the 5-point of (10) the formulation of (12) suggests a 5-term

recurrence formula which may not be solved with the transformation (15).

The banded matrix, however, immediately suggests that, if ^ now

represents two rows of Fig. 3a, i.e.,
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±i - (<{)2(j-l)N+l, ^(i-Dm** '."* *2(j-l)N+2N)' (25)

the three term recurrence formula should prevail and transformation (15)

may still apply, yet the matrices to be inverted would be twice in

rank but half as many.

As we now see that the Ricatti transformation is essentially an

algorithm for solving banded matrices, and its application is not

limited to the elliptical difference equations. Of special interest is

formula (22), which shows the relation between two adjacent R.'s. In

the special case of the scalar Helmholtz equation Q is a tridiagonal

matrix, but the R.'s are in general full matrices. Therefore,

calculations of(22) should in general involve N x N full matrices.

In other words, the Ricatti transformation does not take advantage of

the sparsity of Q, except in the special case where Q is diagonal. In

order to take full advantage of the sparsity within the band, the

direct sparse matrix algorithm seems to be the only solution.

Results

The uni-moment method using Ricatti transformation to generate

the trial function pairs has been successfully applied to solve

biconical antennas. In this application we have used finite difference

inside the bicone region. Typical results of the impedances at the

antenna-freespace interface is shown in Fig. 5, together with the

results obtained by Tai [15]. Our curve is interpolated from 40

computations and the total running time is 40 seconds using a CDC 6400

computer. The results of scattering of E1110 fields by dielectric

cylindrical bodies are given in Fig. 6 and 7. These bistatic scattering
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patterns are computed at 10 sec. for seven different incident angles .

We have used finite element equations inside the circular regions of

the above two calculations. The speed and simple programming of the

uni-moment method in solving the above problems are not matched by

any existing methods in field computations.

Remarks

Throughout the discussion of the uni-moment method, we have used

the scalar Helmholtz equation to illustrate the principle techniques.

However, the reader should not be misled to believe that solving the

scalar Helmholtz equation is equivalent to solving Maxwell's equations.

It would be true only in a homogeneous medium. But, in inhomogeneous

media, where the uni-moment method finds its greatest usefulness,

Maxwell's equations can not be reduced to scalar Helmholtz type

equations. The only exceptions are the two dimensional scattering by

dielectric body in TE mode, and scattering by ferrite in TM mode. The

TM wave scattering by dielectric cylinder, should result in the

differential equation,

V2<f> +~ • V(J> + k2(|> =0 (26)

The variational formulation of (26) results in the optimization of the

functional,

*

Since the method always results in inverses of the matrices the running
time is not proportional to the number of incident angles.
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I =i {log e|v<J>|2-2k2(j>} ds (27)
•'s

In three dimensional inhomogeneous media the Maxwell's equations

may be formulated in coupled scalar partial differential equations,

which are more complicated. In the special case of rotational

symmetry, it is possible to reduce Maxwell's equations to two coupled

scalar partial differential equations, and corresponding functional

for the variational formulation can also be found. We shall present

these details when we discuss specific applications of uni-moment

methods in future papers.

Conclusion

The concept of uni-moment separates the exterior boundary value

problem of an antenna or scattering problem from an interior one.

The separation is made possible by generating many linearly independent

solutions both in the exterior and the interior regions. The final

solution is then obtained by enforcing continuity conditions. This

appraoch, while new in numerical methods, is a standard one in the

classical methods of separation of variables, (such as, scattering by

a dielectric circular cylinder) where the exterior fields are expanded

in series of Hankel's functions, and the interior parts in Bessel's

functions. The uni-moment method uses computer generated solutions

in the interior region. With the problem limited to a finite closed

region, it becomes possible to replace integral equations by finite

difference or finite element equations. The advantage of this change

is the easy formulation for inhomogeneous media problems, but we have
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also traded a stable system of (integral) equations for an unstable

system of (difference or finite element) equations. Because of the

instability of the equations, direct solutions are necessary. The

methods of generating solutions, as discussed in this paper are rather

elementary ones, yet they are applicable to many problems, which

hitherto were unsolvable. The power of the uni-moment method will be

further enhanced when better techniques of solving sparse banded

matrices are uncovered by antenna engineers. Hopefully, this intro

ductory discussion of the uni-moment method will influence many

antenna engineers to join our colleagues in industrial, structure,

power and circuit engineering in the fascinating land of sparse

matrix research.
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Figure Captions

Fig. 1 Schematic of scattering by a dielectric cylindrical obstacle

Fig. 2 (a) A rectangular mesh for the finite difference method

(b) A triangular mesh for the finite element method

Fig. 3 Results of computation of scattering of a plane wave by a

metal grating

Fig. 4 Partition of a banded matrix

Fig. 5 The impedance s a biconical antenna at the cone-free space

interface

Fig. 6 Scattered E-field by a dielectric semi-circular cylinder of

radius a=0.3X,e=5.0

Fig. 7 Scattered E-field by a middle section of a dielectric

circular cylinder of radius a = 0.3A, e = 3.0
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