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A LIMITING CASE FOR ABSOLUTE STABILITY CRITERION*

by

E. I. Juryt and B. W. Lee^

2
V. M. Popov had investigated the absolute stability of a class of

continuous nonlinear control systems such as represented in Fig. 1,

where the nonlinear function <p{ar) is assumed to be Class A, i. e. , a

continuous function satisfies the conditions:

<p{0) = 0 (1)

and

<p(<r) o- > 0 for d 0. (2)

Popov's theorem states that a continuous system of this class is ab
solutely stable if a non-negative q exist such that the inequality

Re G(jw) 1+jwql > 0 (3)

is satisfied for all real w in the interval (- oo, + oo).

Despite the obvious difference that these systems are continuous
rather than discrete, they nevertheless bear strong resemblances to
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the sampled-data systems represented in Fig. 2. We shall establish

that the continuous systems of Fig. 1 are the limits of corresponding

sampled-data systems represented in Fig. 2 when T—>0. Further,

we shall establish that Popov's theorem may be obtained as a limiting

case of the new stability theorem developed for Class T., and in the

process, obtain an extension of Popov's theorem, applicable to a

broader class of nonlinear functions.

As a starting point, we first consider the transform of the signal

applied in Fig. 2 to the linear plant whose Laplace transform is G(s).

This is given by:

oo

t (?) = jT<p(cr[nT])| =̂ T «>(cr[nT] )e

where it is noted that

Ts
z = e

-nTs
(4)

(5)

By taking the limit of (4) as T—> 0 in a way such that nT—>t, we

have- the result

oo

lim X(v(t))=J *(<r[t]) e-tSdt =r^(o-[t])). (6)

Since the transform of the signal applied in Fig. 1 to the linear plant

G(s) is given by the last term on the right of (6), we have established
the result that, in the limit as T—> 0, identical input signals are

applied to the linear plants (which is identical) in both Figs. 1and 2,
provided the inputs to the nonlinear element <p{<r) are identical. The
latter, however, must be true in the limit since the systems are closed
loop systems and, in the absence of external inputs, the inputs to the
nonlinear element are the outputs of the linear plants which are identical

-2



in the limit. These considerations lead to the result that in the limit

as T—> 0 the responses and behaviors of both the continuous system

represented in Fig. 1 and the sampled-data system represented in Fig. 2

are identical. This establishes the assertion that the continuous systems

considered by Popov may be taken as the limits as T—-^>0 of the

corresponding sampled-data systems of class F..

Next, we consider the block in Fig. 2 containing the gain factor

"T" as a part of a new linear plant whose z-transform is given by

00

-nTs /-,v
e (7)Gd(z) =XTG(S)] =y Tg(nT)

n^D

where g(t) is the impulse response of G(s). With this linear plant,

the sampled-data system is of Class T. for each value of the sampling

period T, provided the nonlinear element <p satisfies the conditions

<p(0) = 0,

<p(<r)0 < Zl^J. < K, for cr 4 0,
or

1^11 <KI.
dtr

(8)

(9)

(10)

We then can apply the new stability theorem to obtain the result that
the sampled-data system of Fig. 2 is absolutely stable for each T if
a non-negative qd(T) exist for each T such that the inequality

ReG* eJwT ) 1+Tqd(T) >T-f

+ K"

! T^CDK' ;jwT-i */ jwT
Gde

is satisfied for all real w in the interval \~ T +T/

-3-

> 0

(ID



To obtain the stability criterion for the system in the limit as

T > 0, we shall consider the limit of each term on the left of in

equality (11). First, we have from (7) that

oo

iim G*(z)=lim S g(nT)e"nTsT= fgttje'^dt =G(s):
T-> 0 T-> 0 Z_

n~

(12)

and therefore

lim G*(ejwT ) = G(jw) . (13)
T->0

Second, we have

^0(^^)=i*>- <">(^.
Next, we can consider (11) as an inequality dependent on the continuous

variable T. Then for each value of T, either a finite non-negative

q,(T) exist or the system may not be absolutely stable. It follows

therefore that in the limit as T—^ 0 either

q = lim T q,(T) (15)
c T->0

exist as a finite non-negative quantity or the system may not be ab

solutely stable in the limit. For the case qc exist, we have

T2q,(T)K'' TqK1lim d = Um c = 0 (16)

Combining the results (12) to (16), the inequality (11) in the limit

as T ^ 0 is equivalent to the following inequality;

Re G(jw) 1 + jwqc +^ > 0 (17)
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for all real w in the interval ( - oo, oo). Since the response and

behavior of the sampled-data system approaches that of the continuous

system in the limit, they in the limit must be governed by an identical

stability criterion. We therefore have established the following corollary

to the new stability theorem developed for sample-data systems belonging

to class r.:

Corollary: "A nonlinear sampled-data system of T. represented

by Fig. 2 in the limit as T—£-0, or a continuous nonlinear system such

as represented by Fig. 1, is absolutely stable with respect to its null

solution for a nonlinear function <p{(r) satisfying the conditions <p{(r) = 0

and

0 < £l <K, for o-^O,

if a non-negative q exist such that the inequality

Re G(jw)fl +jwqcJ+ I >0

is satisfied for all real w in the interval (-oo, + oo). " Note that this

corollary places no restriction on K' (i. e. , the slope of the function tp)

except that its derivation implies the condition

lim T K' =0 (18)
T-*0 maX

should be satisfied.

2
The above corollary reduces to Popov's theorem as a special case

for class A functions. For these functions,

K=oo (19)
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and the stability criterion from the above corollary reduces to

[•Re G(jw) 1 + jwq > 0,

which is identical to that of Popov's theorem. However, the above

corollary extends Popov's theorem to a class of nonlinear function

which are less restrictive than class A, namely, functions which

are confined to given sectors of the first and third quadrants of the

<p-a- plane. For these cases, the above corollary yields significantly
less conservative sufficient conditions for absolute stability.

^<X>r = 0

r=0

T(t)
<p(<r)

r(t)
G(s)

) -

Fig. 1.

Fig. 2.
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