

Copyright © 1973, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

7
•

4

J

\>-«•

4

CORRECTNESS OF PROGRAMS MANIPULATING

DATA STRUCTURE

by

Tomasz Kowaltowski

Memorandum No. ERL-M404

September 1973

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

9

CORRECTNESS OF PROGRAMS MANIPULATING DATA STRUCTURES

Tomasz Kowaltowski

f
* Abstract

A technique for proving correctness of programs manipulating

data structures is proposed. The three major components of the

technique are: (i) an abstract representation for data structures,

called FSD (for Free State Description); (ii) a set of propositions

which allow transformations of such FSD's; and (iii) semantics

of assignment statements in terms of FSD transformations.

The technique provides a framework for rigorous proofs about

programs manipulating data structures with arbitrary sharing of

pointers and circularities. Several examples of application are

exhibited, including the Deutsch-Schorr-Waite marking algorithm

and the Fischer-Galler equivalence relation algorithm.

A graphic interpretation of several proofs is given in order

to illustrate the intuitive concepts hidden behind the proposed

method. It becomes apparent that these graphical proofs, based

on rigorous propositions, are often sufficiently convincing

so that analytical proof can be omitted.

The proposed method is compared with other techniques

described in the literature, and among them the one proposed by

Burstall from which this work borrows many ideas. Finally, the

applicability of this method is discussed, showing its scope and

limitations.

n

%3*

Acknowledgements

9 I would like to express my gratitude to my thesis advisor,

^ Professor James H. Morris, Jr., who introduced me to this research

area, and who provided guidance and constant help. I would also

like to thank Professors Richard M. Karp and Domenico Ferrari for

their valuable comments.

I also wish to thank my colleagues from the Faculdade de

Economia e Administracao da Universidade de Sao Paulo, whose

cooperation made this work possible.

Financial support of the Universidade de Sao Paulo (Brazil)

and of the Agency for International Development - Department of

State is gratefully appreciated.

Publication of this dissertation as a technical memorandum

was partially supported by the National Science Foundation under

contract No. GJ-34342X, and its excellent typing I owe to

Ruth Suzuki.

I dedicate this work to my wife Doris, whose constant

encouragement and understanding made it all possible.

%

1

"Ill

CONTENTS

Abstract

Acknowledgements

Chapter 1: Introduction and Preliminaries

Chapter 2: Machine Model and Semantics
of Assignment Statements

Chapter 3: Free Trees

Chapter 4: Free State Descriptions

Chapter 5: Some Properties of Free State Descriptions

Chapter 6: Transformation of Free State Descriptions
Under Assignment Statements

Chapter 7: Examples of Application

Chapter 8: Conclusions

References

Page

ii

iii

1

7

13

19

31

39

48

113

118

IV

CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

Since Floyd published his original paper in 1967 there has

been considerable interest in the area of proving assertions

about programs, and the related area of semantics of programming

languages (cf. London [1970a & b]). Floyd's original ideas were

presented more formally, extended and applied in various subse

quent works, among them Manna [1969] and Hoare [1969 & 1971],

In principle, Floyd's technique of inductive assertions,

which dealt with simple variables only, can be easily extended

in order to handle arrays, lists and similar structured values.

The case of arrays has been treated by McCarthy and Painter [1967],

King [1969], Good [1970] and others. A common approach is to

treat an array like a function whose value is modified by assign

ment statements. Thus if A stands for an array, and the

statement A[E] «- F is performed, then the new value A' of the

array is given (in X-calcuius notation) by:

A' * (Xj. if j=E then F else A[j]) .

It is easy to see that after a few assignment statements, with

possibly complicated expressions E and F, the resulting

description of an array value may become complex and unmanageable.

In practice, this complex build-up of descriptive expressions may

not occur if the arrays are used in a "reasonable" way. By

"reasonable" we mean here that the array represents an ordered

1

sequence of some atomic values which is directly related to the

problem being solved. In such a case the assignments to array K

components are usually performed in an orderly fashion, resulting

in simplification of the expressions describing the value of the f

array. The situation becomes different if we use arrays for other

purposes, such as representing trees, recursion stacks, etc.

Several programming languages, such as LISP, SNOBOL, PL/I

and ALG0L68 provide facilities for definition and manipulation

of more complex structured values, to which we shall refer as

data structures. In dealing with this kind of objects, a simple

approach, similar to that for arrays, would be to use the concept

of contents function (or functions) to describe the state of

computation. In the case of LISP we could think of two functions

car and cdr, describing the state of computer memory. If an

assignment statement of the form CAR(X) «- E (or more properly

(RPLACA X E)) is performed, then the new state is described by

functions car' and cdr' given by:

car' - (Ay. if.y=X then E else car(y))

cdr1 = cdr

and similarly in case of CDR(X) «- E (for a more complete dis

cussion see Morris [1972]). This approach is perfectly adequate

to describe precisely the semantics of an assignment statement to

a language implementor. However, if we try this approach for the

purpose of proving properties of programs, we run immediately into

difficulties analogous to those mentioned in connection with

arrays. The descriptive expressions become very complex and

i

1

difficult to follow, and the proofs turn out to be very tedious

and overcrowded with details extraneous to the problem in question.

The main reason for these difficulties lies clearly in the fact

* that we are using a very low level language to describe complex

concepts. Most of the efforts in this area have gone into devising

more convenient ways of representing the state of computation,

involving simple concepts and bringing the description of the data

structure closer to its intended meaning. In analogy with Floyd's

verification conditions, we will have to know the transformations

of such representations corresponding to assignment statements.

In addition, we will usually have to know some properties of such

representations in order to draw conclusions about the state of

computation, or to be able to apply the transformations mentioned

above.

Some techniques have been proposed and described in the

literature, and among them we mention the concept of restricted

descendant functions in Morris [1972], covering functions in

Poupon and Wegbreit [1972] and the distinct non-repetitive list

and tree systems in Burstall [1972]. In this dissertation we

propose the concept of free state descriptions, closely related

to that described by Burstall from whom we borrow heavily. The

technique we propose can be used to provide rigorous proofs of

correctness of programs manipulating complex data structures

involving arbitrary circularities and sharing patterns. On the

other hand, we also show how to use this technique to justify

very intuitive and simple proofs through graphical interpretation.

Although we do not formalize this idea of graphical proofs, and

actually we do not know how to do it, we consider it an important

aspect of this work. •-. •

Since our main interest here is in data structures, we do ^

not treat other aspects of program proofs such as simple variables,

arrays, procedure calls, in a very rigorous way. For the sake of

clarity, we try to be precise in our basic definitions and formu

lation of propositions. However we shall be rather sketchy in

their proofs since most of them are very intuitive and obvious.

In our examples, we shall exhibit a varying degree of rigor.

The plan of this dissertation is as follows:

We complete this Chapter 1 with notations and conventions to

be used. In Chapter 2 we define precisely the machine model we

have in mind in order to use it as a reference for later develop

ment. In Chapter 3 we introduce the definitions of abstract free

trees, which are used in Chapter 4 to describe our basic concept

of free state descriptions. In Chapter 5 we study some of the

properties of these free state descriptions, and in Chapter 6 we

provide the transformations corresponding to the assignment state

ments. Chapter 7 contains some examples of application of this

technique, and we follow with final conclusions in Chapter 8, where

we also point out how our technique is related to others.

1.2 Notations and Conventions

We use standard mathematical notation, introducing some

convenient extensions and additions.

Symbols A (conjunction), v (disjunction), ~ (negation),

=> (implication), 3 (existential quantifier) and V (universal

*

quantifier) will be used in logical expressions. In addition we
k k

shall use A and v for multiple conjunctions and disjunc-
i=l i=l

tions. The abbreviation "iff" stands for "if and only if".

Symbols e (membership), n (intersection), u (union),

~ (difference), c (inclusion) and 0 (empty set) will be used
k k

in dealing with sets. n and u denote multiple intersection
1*1 i=l

and union. If S is a set, |S| will denote its cardinality,
S

and 2 the power set of S.

We shall extend the set-theoretic notation to sequences,

which will be usually denoted by underlined letters. If

u^ = (u,,...,u) for some n >_ 0, and S is a set then:

|u| = n

u_c s iff {u1,...,un> c S

z e u iff z = u. for some i = l,...,n

If u = (u,,...,u) and v_ = (v,,...,v) then (n»y.)

shall denote the sequence (u..,...,u ,v, ,...,v). In the case

of unitary sets or sequences we shall identify them with their

only components; thus u = {u} = (u).

For notational convenience we shall use two different tuple

building functions: <•••> will denote tuples whose components

are selected by integers 0,1,2,..., and {•••} will denote

tuples whose components are selected by 1,2,... . The selection

is denoted by the "." operator in either case. Thus

<a,b,o.l = b

<a,b,c>.0 = a

{a,b,c}.l = a

{a,b,c:|>.3 = c

Also, if x=<xo,x19...,xn> and y={y-j ,y2,...,yj> then

|x| = n and \y\ = m.

The notation "E, = E2" stands for "E, is defined to

be E2".

X-i ,. **,x

[E] represents the result of simultaneous substi-
Er...,En

tution of the expressions E,,...,E for the variables x,,...,x

in the expression E.

A sequence of expressions Em»"-»Eic may De abbreviated by

When we state an assertion about a program statement (or a

sequence of statements) we shall use the notation introduced by

Hoare [1969]; thus

P{T}Q

means that if the property P was true before T was executed,

then the property Q will be true after the execution of T.

Some additional notations will be defined within the text.

CHAPTER 2

MACHINE MODEL AND SEMANTICS OF ASSIGNMENT STATEMENTS

In this chapter we shall define the machine model we have in

mind, and the meaning of assignment statements for the model. We

chose to use the contents function as the basic concept in our

definition because of its simplicity and intuitive appeal. A

number of different definitions could have been chosen, and among

them one which starts directly with the concept of free state

description as presented in Chapter 4. All later results will be

proved with relation to the model presented here.

We shall assume in our model that the memory is a finite set

of locations, each one of them capable of holding a tuple over

the set of location names (references or pointers) and some

unspecified objects called atoms. The tuple contained in each

location will be determined by the contents function. The follow

ing definitions formalize these intuitive concepts.

2.1 Definition. Let M be a finite set of (currently used)

memory references, and let A be a set of objects (atoms) such

that MHA = 0. Let D = MUA be the set of primitive objects.

The elements of D will be usually denoted by the letters

u, v, w, t, z, with or without subscripts and superscripts.

2.2 Definition. Let the set G of tuples over D be defined by

G= {+u1,...,uJ\ {u-|,...,u }c D, p> 1}

Any function c: M -*• G will be called a contents function.

In order to simplify further the notation, whenever only one

contents function c is mentioned in some context, xf will ^ ?

stand for c(x). ^

The following definitions make precise some of the intuitive '*

notions used in dealing with data structures.

2.3 Definition. Given a contents function c, let E :D ->• 2M
c

be'defi ned by :

|u*l
Eju) = if ueA then 0 else [{u}u u Efu+.i)]
c . i=l c

Intuitively, E (u) is the set of all references which can

be reached from u in zero or more applications of c. We shall

extend the definition of E to sequences over D in a natural

way; if £ = (^,...,11), u. e D, then

m

E(u) fi UE(u.) .
c i=1 c i

2.4 Definition. Given a contents function c, let the predicate

FREEC on D be defined by:

|u+|
FREEfu) M[ueA]v A [FREEfu+.i) A u <j> Eju+.i)

c 1*1 c c

M
A A (E(u+.1)nEr(u+.j) = 0)]} .

j=l c c ^ .

Intuitively, FREE (u) means that for any z e E.(u), there

is exactly one path from u to z. In other words, the data

structure rooted at u and defined by c has neither circularities

nor sharing of pointers. ^
f • —— .

This recursive definition may have more than one fixed point; our
intended meaning is the unique least fixed point (cf. Manna et al.
rin-»o"l>

2«5 Definition. Given a contents function c, let the predicate

NONCIRC on D be defined by:
c

|u+|
NONCIRC (u) i {[u e A] v A [u $ Er(u+.i) a NONCIRC (u+.i)]}c .=1 c c

Thus, NONCIRC (u) means that there are no circularities in
c '

the data structure, but there may be sharing.

The set M of currently used memory references and the

contents function c give a static description of the state of the

machine. In what follows we shall show the state transformations

under assignment statements. First we shall define the concept

of program expression which will model expressions appearing in

different programming languages. We shall assume that 1/ and C

are the sets of variables and constants, respectively, and we

shall not specify them precisely.

2.6 Definition. Let the set P of program expressions be

defined by:

(i) l/uccp

(ii) if E e P and i is an integer then (E.i) e P

(iii) if E,,...,E e P and e is a p-ary operator symbol

then e(Els...,E)eP

(iv) P is the smallest set satisfying (i), (ii) and (iii).

Thus P is the set of expressions built up from variables

and constants, using the selector operator "." and some unspeci

fied operator symbols. Next we define the value to which a pro

gram expression is bound through a contents function c.

2.7 Definition. Let .E be a program expression, and let c be

a contents function; then VAL (E) is defined by:

VALJE) I J

E if E is a variable
or constant0(VALC(E1),...,VALc(Ep)) if E=0(E],. ..,Ep)

(cfVAL^E^)).!' if E=(Eri) .

Notice that this definition implies that we do not treat

variables as references. We assume that they are bound to some

values in our universe of discourse D; this binding may be

changed by assignment statements to variables. Another implica

tion of this definition is that we adopted a convention similar

to that of SN0B0L and ALG0L68, where an automatic coercion

(contents function application) takes place before component

selection is done.

We can proceed now with the definitions of semantics of

assignment statements.

2.8 Definition. Let cQ: MQ •»- GQ be a contents function, and

let E-j and E2 be two program expressions. Let v, = VAL (E,)
o

and v2 = VAL (E2). Then the semantics of the (component) assign

ment statement is defined by:

(c=CQ a M=Mo){Eri «- E2>(c=c1 a M=M)

where

c-j(x) = if_ x=v-j then y else c (x)

with

y t {c_(x).l,...,c (x).i-l,v9,c (x).i+l,...,c (x).|c (x)|} .
w 0 t 0 o O

10

H

In other words the current set of memory references remains

the same, and the contents function c is replaced by c,,

which agrees with cQ for all arguments except v,. Notice that

this definition assumes that v, e M and |c (v,)| < i; other-
i o • o I ' —

wise the effect of this assignment is undefined.

2.9 Definition. Let c : M -»• G be a contents function, let
0 0 0

I be a program variable and let E.j,...,E be program expressions

(p > 1). Let v. = VALr(E.)» i = l»...,p. Then the semantics
1 o 1

of the assignment statement I «- TUPLE(E ,E) is defined by:
1 p J

(c=cqa M=MQ){I + TUPLE(Er...,E)}

(HzMc^ a I^M^ a M=MQU{I})

where

K - cvJ
and

,i

cl(x)i f^-:^ if X=I
|[c0(x)]^ if x M, x eM' .

Thus the current set of memory references is extended by a

new one (bound to the variable I), and c1 is an extension of

cQ as defined above. TUPLE is the operator corresponding to

cons in LISP, but accepting a variable number of arguments. The

substitution of z for I is necessary in case I was bound to a

t value and appeared in the expressions for c or M .
o o

The semantics of more complicated assignment statements,

involving several TUPLE operators or simultaneous assignments

11

could be easily described in a similar way. We will not do it

formally since such statements can be always replaced by an equiva

lent sequence of simple assignments. However we shall frequently

use such statements in our examples.

Since simple assignment statements are very frequently used,

we shall give the corresponding rule:

2.10 Definition. Let cQ: MQ •> GQ be acontents function, let

I be a program variable and let E be a program expression. Let

v = VAL (E). Then the semantics of the assignment statement
co

I + E is defined by:

PCI <- E}(3z)[P]* AI=v

where P is any predicate describing the state of computation.

Thus a simple assignment merely changes the binding of a

variable. The contents function and the set of current references

remain the same, since P might have included c=c a M=M .
o o

12

•*

CHAPTER 3

FREE TREES

In this chapter we shall define the concept of abstract free

trees which constitute the basic element in our state representation

described in the next chapter.

3.1 Definition. Let Xn ={x1,...,xn>, n >0 denote the set of

n distinct variables such that Dn xn =0. For each n, let

Tn be the set of trees generated by Xn u A and defined by:

(i) XnUACTn;

(ii) if t15...,t eT , p>l and ueM then

<u,T.j,...,Tp> e Tn ;

(iii) Tn is the smallest set satisfying (i) and (ii).

Tn is the set of symbolic expressions built up from X u A,

using the operation symbol <...> with a variable number of argu

ments, where the first argument is always a memory reference.

3.2 Definition. Let X={x^Xg,...} be the set of variables,

and let the set T of trees be defined by:

00

n ut, .
1=0 1

The elements of T will be usually denoted by the Greek

letters t, a, £.

h The following are examples of elements of T assuming

M= {u.j,u2,u3} and A = {a,b}:

13

b

x2

<u1 »<u2»xi »a>9<u3,b,x2»

<u2,<u^ ,<u2,x-j ,a>,x2,b,x3>,x-j>

In what follows we shall define several functions and predicates

on the set T. Since this set, together with the operation <•••>

constitutes an absolutely free structure, any recursive definition

based on X UA and extended to tuples in terms of its components

will yield a well defined function on the whole set T.

3.3 Definition. Let the predicates atom, var and el em on T

be defined by:

atom(x) = (T e A)

var(x) t (T e X)

elem(T) = (t e AUX)

These definitions are extended to sequences over T; thus if

t = (x1,...,Tn), t. e T, then:

atom(T) t Aatpm(T.)
1=1 n

n

var(T) = A var(x.)
1=1 n

n

elem(x) t A elem(T.)
1=1 n

3.4 Definition. Let the predicate order on {l,2,...}xT be

defined by:

n

order(n,T) = ^elemtx) => [|t| =n a A order(n,T.i)]
1=1

14

In other words, order(n,x) means that all tuples within x

have n+1 components (a memory reference and n subtrees).

3.5 Definition. Let the function NX: XxT + {0,1,2,...} be

defined by:

NX(xn. ,x) = if elem(x) then [if x=x1 then 1else 0]
|t|

else I NX(x.,x.j)
j=l

NX(x.,x) denotes the number of occurrences of the variable

x. in the tree x.

3.6 Definition. Let the function NM: MxT-* {0,1,2,...} be

defined by:

NM(u,x) t if elem(x) then 0 else

{[if x.0=u then 1 else 0] + I NM(u,x.j)}
j=l

NM(u,x) denotes the number of occurrences of the reference

u as the first component of a tuple in x.

X
3.7 Definition. Let the function V: T + 2 be defined by:

V(x) t {x.| NX(x.,x) > 1} .

Thus V(x) is the set of all variables x. occurring in x

3.8 Definition. Let the function S: T -> 2 be defined by:

S(x) i {u| NM(u,x) > 1} .

15

Thus S(x) is the set of all memory references occurring in x.

3.9 Definition. We extend the functions defined in 3.5-3.8 to

sequences over T; thus if x= (x-j,...,xn), x.. eT, then:

NX(x.,x) t I NX(x.,x.)
1' j=l ^ J

n

NM(u,x) = 7 NM(u,x.)
' j=l J

V(x) = UV(x.)
j=l J

S(x) 4 US(x.)
j=l J

Notations

(i) (x. e x) 4 (x. e V(x))

(ii) (u e x) = u e S(x)

(iii) (x. It) i NX(x.,t) = 1

3.10 Definition. Let the partial operation of composition on T

(denoted by "o") be defined by:

If x. e T , j = l,...,m and <s. e T, k = l,...,n for
j n k

some m, n j> 0, then:

(T1,...,T|n)o(a1,...,an) = (^r...,Cm)

where

Al) > • <)A

C, : [t,] 1 n j= l,...,tn .
J J rt

1
0-,,... >a

Thus each C- is obtained by substituting simultaneously
j

a-j,...,a for all occurrences of x-j,...,xn in x.. It is easy

16

to prove that this operation is associative, and that for any

n 2l 0, (x,,...,x) is the right identity element.

3.11 Definition. Let the predicate free be defined by:

free(x) 4 (Vu)[NM(u,x) < 1] .

Thus free(x) means that any reference u occurs at most

once in some tree of the sequence x.

Notice that the predicate free is not related to the predi

cate FREE,, defined in 2.4. As a matter of fact we shall use
c

free trees to describe data structures which are not FREE.

3.12 Definition. Let

Fn = {x| x eTn a free(x)}

and
oo

F = u F. .

i=l n

Thus F is the set of all free trees.

3.13 Proposition. Let x e T , and a = (a,,...,a), a. e T

for some n :> 0. Assume that

(i) free((x,a,,...,a)) and

(ii) -elemfa^) => NXfx^,x) _< 1 for i= l,...,n

Then free(Tog).

Proof. A simple induction on x e T. •

This proposition guarantees that the freedom property is

preserved whenever in a composition operation, only variables

17

18

which occur at most once in the tree are substituted for by non-

elementary terms. Otherwise the memory references occurring in % '

the substituting term would be multiplied by the number of occur- ^

rences of the corresponding variable.

CHAPTER 4

FREE STATE DESCRIPTIONS

In this chapter we show how the abstract trees defined in

Chapter 3 can be used to represent arbitrary data structures.

The adequacy of this representation is shown by exhibiting its

relationship to the concepts defined in Chapter 2.

4.1 Definition. Let c: M -»- G be a contents function, u e D,

xe Fn and y= (v1,...,vn), v.. eD for some n >_ 0. Then the

triple (u,x,y) is said to be compatible with c (notation:

u y) if and only if:

either (i) atom(x) a atom(u) a u =x;

or (ii) var(x) a t=x. a u=v. for some i;
It -

or (iii) -elem(x) a x.0=u a |t| = |u+| a A (u+.i -^J-» v)
j=l c "

Conceptually, we shall say that the tree x connects u

(root) to y (endpoints). Graphically, we shall represent this

fact by:

or

Notice that even though the memory references occurring in x

are all distinct (since free(x)), v-|,...,v are not necessarily

19

in x, •and they may be repeated.

The following example should clarify these concepts.

4.2 Example. Let M= {u-j,u2,u3,u4,u5}, A = {a,b,d}, and assume

that the contents function c describes the following data

structure:

The following are some of the relations which hold:

a^c (VWV'V
x3a >Q (u1,b,a,u2,d)

x.

ui -H (uTu2»u3»u4»u5)

*c (U2'U3)
<u^9x^9x^>

<u2,x.j,a>

*cu4

i = 1,2,3,4,5

20

<u9,x,,x9>
u2 2 ' Z>c (u4>a)

<uKtx1,d>

U5 -5-L—c "2
<u1,<u2,<u4,<u5,x1,d>,b>,a>,<u3,x2,x2»

U] >c (u2,u4)

<un >x9,<u,,x1 ,<u/,,<Uc,<u9,xQ,a>,d>,b>»
Ul 1 2 3 y 4 5 2 3 »c (u4,u2,u4)

<U/i»<Uc»<u9,x1,a>,d>,b>
u, — —— > uA

4 c 4

The concept of compatibility can be extended to sequences

over D and F in a natural way:

^•3 Definition. Let c: M -*• G be a contents function,

u = (u1,...,um), u.. e D, x = (x1,...,xm), x.. e Fn, and

v= (v-j,...,v), v. e D, for some m >_ 1 and n^ 0. Then the

triple (u»x,y) is compatible with £ (notation: u -=-> y)

if and only if

xi
(i) u. >Q v , i= l,...,m

and (ii) free(x) .

Notice that free(x) implies free(x.) for each i (but

not the converse), and S(x.)°S(x.) = 0 for i f j. In case of
• j

the example 4.2 the following holds:

(<u9,<uzl,<u(-,x1,d>,b>,a>,<u,,x9,x9>)(u2,u3) *—5—5_J * <• * >c (U2,U4) #

21

22

Remarks

(i) Whenever no ambiguity is possible, the subscript c on -. '

—» will be dropped. ^

(ii) Notation: (u -5* v—*w) =(u -^» y) a(y -^Uw)
(u +t) t (y^O)

(() is the empty sequence).

4.4 Definition. Let x= (xr...,xm), x. e Fn, y= (v] ,...,vn),

v. e D, for some m > 1 and n > 0, such that free(x) holds,

and let z e S(x). Then R(z,x,y) is defined by

R(z,x,y) = R1(z,xk,y) if zeS(xk)

where

R1(z,a,y) £ if a.0 =zthen ^R2(a.l,y),...,R2(a. |a| ,y)+

else R(z,(a.l,...,a.|a|),y)

and

R2(a,y) = if atom(o) then a else

[if var(a) a a =x. then v. else a.O] .
j j

The definition of R is rather complicated, but its intuitive

meaning is very simple. Namely R "reconstructs" the function

c as shown by the following:

x

4.5 Proposition. If u -=-^ y and z e S(x) then R(z,x,y)

- c(z).

Proof. Can be carried out easily by induction on x e T, and

noting the following fact about R2: if t -2-» w then
R2(a,w) = t. •

4.6 Definition. Let K = (A,,...,A) for some m > 0, where
I m ~~

each A. is a triple of the form:

Then K is a free state description (FSD) compatible with c
x.

(notation: *QK or *c(u-, -=^>y1,...,um -JznL^ym)) if and only if:
x..

(i) u. —1->Q v.. , i= l,...,m

and (ii) free((xi,...,xm))

Remarks

(i) Whenever no ambiguity is possible, the subscript c on

* will be dropped,

(ii) * () holds for any c.

(iii) Notation:
T T.

-m-I -m. .. \ a ^ /.. -i

23

m

a [US(x.) = L] .
i=l -1

An FSD is thus a sequence of compatible triples in which no

reference occurs more than once. Notice however the remark about

the endpoints after Definition 4.1.

Graphically, we shall represent an FSD
X-j x

*(u1 —Uy^....!^ —^vj by:

The fact that the triangles representing t1s...9t do not
m

overlap emphasizes the property of the sets S(x..) being pairwise

disjoint.

4.7 Examples. Let c be the contents function from Example 4.2.

Then the following hold:

*(ui -^ui)0
xx x

*("l -J-»u1§ u2 -J^(Ul>u2), u5 —Uu5),

*(u.
<u1,x1,x2>

*(u2Su3), (u2,u3)
(<u2,x1,a>,<u3,x1,x1>)

»u4,

<u4,x19b>
*V u5

<u5sXrx2>
»vu2» ^{Ul,u2,u3,u4,u5}

<u-i »<u9,<uA,<Uc»x1 ,d>,b>,a>,<uQ,x0,x9»(Ul —J 2 4 5 1 3_2_2_M))
29M4'

{u19u2,u3,u4,u5}

Notice that the first two examples hold for any contents

function c.

24

4.8 Definition. An FSD K=((UjtTj.Vj),...,(u .j^.y)) is said
to be closed (notation: n k) if and only if:

(1) *CKL

m

and (ii) [u v. c L u A] .
i=l-1 ~

The same remarks following Definition 4.6 apply here.

A closed FSD is one in which all endpoints are either atoms

or occur somewhere in a descriptive tree. The last two examples

in 4.7 are closed FSD's. Intuitively such a closed FSD contains

all the information necessary to describe a data structure rooted

at Up...»ym. This concept is formalized by the following:

Xi x

4.9 Proposition. If *Q{u} -LL*y1,... ,ym -^U ym)L then:

m

(i) UE(u.) = L
1=1 c -1

m

and (ii) A (Vu)[u e S(x.) => R(u,x.,v.)= c(u)] .
i=l -1 -1 -1

Proof. Claim (i) can be proved easily by showing first (by induc

tion) two lemmas:

(a) If u-^*y then S(x) c Er(u) .
x

(b) If u -^»y and z e S(x) then zt.i e [S(x)UAUy]

for i = l,...,|zt| (i.e. all direct descendants of z

which are not atoms, are also either in S(t) or in v).

Claim (ii) is a direct consequence of Proposition 4.5. •

This last proposition shows that a closed FSD is an accurate

25

description of a data structure (or several data structures). The

following proposition shows that every data structure can be

described in such a way.

4.10 Proposition. Let c: M •* G be a contents function, and

u e D. Then there exists n ^ 0, x e F and y = (v,,...^),

v. e M, such that:

»c(uJL*Y> .

A rigorous proof of this fact is not too difficult but rather

tedious, and we will not carry it out. The main idea of the proof

would be to define two functions which "build" x and y for a

given contents function c and u e D. Then we would prove by

induction that these x and y satisfy the relation above. In

order to illustrate this procedure we will exhibit the functions

for the case of binary trees. Thus let c: M •*- G be a contents

function such that for all z e M, |c(z)| = 2. Then the func

tions 8 and 7T are defined by:

6(z,(v,,...,v),E) = if atom(z) then z else

[if z e (v,,...,v) a z =vk then xk else

[If z e E then x +, else

<z,e(zf.l,(v1,...,vn),EUz),0(zf.2,7r(z+.l,(v1),...,vn),EUz),

6(zt.l,EUz))>]]

tt(z,(v.-|,...,v),E) =if atom(z) then (v-|,...,vn) else

[if ze (v1,...,vn) then (v1»...,vn) else

CUL z e E then (v,,...,v ,z) else

Tr(zf.2,ir(zf.l,(v1,...,vn),EUz),6(zt.l,EUz))]]

26

where

6(z,E) = if atom(z) then E else

[if zeE then E else 6(zt.2,6(zt.l,EUz))]

Finally, we put:

x = G(u,(),0)
and

y = 7r(u,(),0)

Notice that 6(u,E) = EUE (u).

Let us consider the contents function c from Example 4.2

and compute the corresponding x and v.

T= 6(ur(),0)

v=7r(ur(),0) .

Applying the definitions we get:

x = <u1,<u2,<u4,<u5,x1,d>,b>,a>,<u3,x2,x2»

y= (u2,u4)

(cf. last example in 4.7).

Notice that x built as above has a special form in which a

memory reference v.. e y appears always "to the left" or "above"

the variable x.. in the tree x. This comes from the fact that

the function 6 "visits" the data structure in what Knuth [1968]

calls pre-order traversal.

In general, however, x and y satisfying ° (u -^y) are

not unique. Intuitively, x and y can be obtained by "cutting"

27

all but one link pointing to a shared node and replacing them by

variable names. Some of the possible cases for the Example 4.2

are (broken lines represent links which were "cut"):

x = <u-j,<u2,<u4,<u5,x1,d>,b>,a>,<u3,x2,x2»

v=(u2,u4)

28

x = <u1,<u2,x1,a>,<u3,<u4,<u5,x2,d>,b>,x3»

y = (u4»u2»u4)

4.11 Proposition. Let c: M-• G be a contents function, and

ueD such that FREE_(u) holds. Then there exists x e F
L o

such that:

ac(u + x)

(i.e., nc(u-L>())).

Again, we will not prove this proposition, but it is easy to

see in the preceding discussion that FREE (u) implies

ir(u,()„0) = (). Also, no "cutting" of links would be necessary

since there is no sharing of pointers.

29

4.12 Definition. Let K=((y1,x1,y1),...,(u^yj) be an FSD,
and let zeS(tj) for some i. Then we define RK(z) by:

RK(z) = R(z,x.,y.) .

4.13 Proposition. If K=((u1,x1,y1),...,(um,xm,ym)) and

*cKL nolds» tnen;

(Vu)[u eL=>RK(u)=c(u)] .

Proof. Immediate consequence of 4.9. D

RK(u) "reconstructs" the value of c(u) as determined by

the FSD K.

30

CHAPTER 5

SOME PROPERTIES OF FREE STATE DESCRIPTIONS

In carrying out proofs of program correctness, we will fre

quently use certain properties of FSD's in order to draw conclu

sions about the state of computation or to be able to apply trans

formations described in the next chapter. This situation is

analogous, for instance, to applying algebraic laws when dealing

with programs manipulating numbers.

In this chapter we shall see a series of propositions concern

ing FSD's. Our aim is to provide enough propositions, so that

proofs can be carried out without resorting to the definitions

of an FSD. It would be interesting to know if there exists a

finite set of such propositions, but we will not pursue this

subject here. Most of the propositions shown in this chapter are

actually used in our examples in Chapter 7.

Whenever a property holds for both * and n, we shall use

*H instead.

5.1 Relations —>. and*
c c

X T

u -=-> v iff * (u -=-»v)
c - c -

Proof. Trivial, using definitions. •

5.2 Relations * and °. If n^ then *Kj_.

Proof. Trivial, using definitions. •

5.3 Permutation. If *a(A,,...,A V. then *n(x. ,...,A.).i n l ^ in l

where (ip...,in) is a permutation of (l,...,n).

31

Proof. Obvious. O

In practice we shall apply this property without mentioning it.

5.4 Deletion

(a) If *(u-=^v,A1,...,An)L then *Uv"An)L~S(x)'

(b) If *(u _^^y,A1,...,An)|_ and elem(x) then °(A] ,...,An)L.

Proof. Trivial, using definitions; notice that elem(x) implies

S(x) = 0. D

5.5 Merging. If *n(^»...»^m)L and *°(y1 un)N and

LON =0 then *«(V"'VV'">VluN-

Proof. Trivial, using definitions. •

This proposition can be used when the program execution

provides somehow the information LHN = 0. The references in L

and N might have been produced by independent sections of the

program or they might have been declared as being of different

type.

5.6 Expansion

(a) If *(A1,...,An)L then *(y,A1>...,An)L.

(b) If H(A1,...,An) and (u-,,...,um) C LUA then n(y,A1>.. .,An)L
(x. ,...,x.)

1 m
where y= (u. ,...,u.) ' ^ (u,,...,uj and

I m

I,* e {l,...9m}, j = l,...,m.

Proof. Using the definitions and propositions 5.1 and 5.5. Notice

that S((x. ,...,x.)) = 0.

32

(c) If *(Als...,An)L and atom(u) then

(Vy)[*(u—>y,A-j,...,An)L]

(d) If °(A1,...,An) and atom(u) then

(Vy)[(y c LUA) => °(u -^ y,A1,...,An)L] .

Proof. As parts (a) and (b), noticing that S(u) =0. •

This property allows the extension of an FSD by a trivial

compatible triple (i.e., one not involving any references). It

will be used mainly in adjusting an FSD to the initial conditions

of a loop, so that an induction can be carried out.

5.7 Tupling and Untupling

X-j x
*n(u-| —U y,...,um —^ y,A-,,...,An)L

iff

x

*n(u -=1->y,A1,...,An)L

where u= (u,,...,u) and x= (x-j ,...,xm).

Proof. Obvious by using definitions. D

5.8 Distinctness. If *n(u -^ y, u-£»w,A1,...,Ap) then

either elem(x) or el em(a)

Proof. Otherwise u e S(x) and u e S(a), and S(x)ns(a) f 0,

which is a contradiction by definition of an FSD. •

33

5.9 Atoms. If *h(u-l^(v1 v)^,...,*) and itom(u),
then elem(x) and either x = u, or x = x. and u = v. for

some 1 < i < m.

Proof. Trivial, by applying the definition of a compatible

triple to u-^ (v,,...,v). •
1 m

5.10 Non-atoms. If *B(u -^-> (v,,...,v),A,,...,A) and

~atom(u) then

either (i) elem(x) and x = x. a u = v. for some j;

or (ii) ~elem(x) and there exists a p >. 1 and

x-,,...,x^ e F„ such that x = <u,x,,...,x >
I p m I p

Proof. Simple application of definitions. •

This proposition will be used very frequently as a result of

a test of the form "atom(u)?". In case (ii) we shall decompose

the tree x into its components. This fact will be interpreted

graphically by:

~atom(u) a ~elem(x)

34

5.11 Composition

T

(a) If *(u -a^(v1t...fV|n)
(ar...,am)

*w,A,,. ..,A), and

~elem(q.) =>NX(x.,x) _< 1 for i = l,...,m then

x°(a1,...,o)
*(u * 1!L->w,A1,...,An)N

and N c L.

x

(b) If *«(u-^(vr...,vm)

~elem(q..) => xi ex for i= 1,... ,m then

(al-'"am) >w,A,,...,A), and

*°(u
To(ar...>am)

>W,A-,,. .. ,A J
1 n7L

Proof. Straightforward by induction on x e T. Notice that in

part (b) we require NX(x4,x) = 1; otherwise some of the trees

o\. might "disappear" in the process of composition, and the set L

would not be preserved anymore. •

This proposition will be used mainly to put together "pieces'"

of data structure which have been processed already, and we are

not interested anymore in their exact shape. It will turn out

that in general the values v,s...,v are not bound anymore to

any of the program variables (unless they appear also elsewhere).

Graphically, this proposition may be interpreted by:

§ M'' w

w w

35

5.12 Decomposition

XoQ

(a) (i) If *(u " ">w,A-|,...,An)L then there exists y such
x a

that *(u -^-»v -=1»w,A1,...,An)L.

(ii) If °(u " "> w,A-j,...,An)L then there exists vCLUA
x a

such that n(u-=^y-=->w,A-j,...,An)L.

Proof. Again by a straightforward induction on x e T.

(b) If *a(u -Z-> (v1,...,vm),A1,...,An)L and zeS(x) then

there exist x-j, x2 such that:

*n(u —U(Vl,...,vm,z), z—£> (vr...,vm),Ar...,Am)L

with x= x1o(x1,...,xm,x2), -elem(xp) and xm+1 e x-j.

Proof. By induction on x e T. •

Part (a) of this proposition is a converse of Proposition 5.1"!,

and its graphical interpretation may be obtained by reversing that

of 5.11. It will be applied frequently in conjunction with

Proposition 5.10. Part (b) will be used in order to "split" a

tree x into two parts for further processing. Graphically we

shall interpret it by:

V-, v9 •••vm
I 2 ,m

v,. ..v
m

36

5.13 Containment. If HK, and *(z-^-»y)N and zeL then

N c L.

Proof. By induction on x e T. Intuitively since K is a closed

FSD, and z e L, all descendants of z must be in L. D

5.14 Conservation. If *° K, and (Vu)[u e L => c'(u) =c(u)]

then *« ,K. .
C L

Proof. Each triple in K is compatible with c and thus also

compatible with c' (easy by induction on T). •

In Chapter 8 we advocate a separate approach for linear lists

because of the different way in which they are used. However,

since we wish to exhibit a correctness proof of the Fischer-Galler

algorithm, we shall introduce a restricted concept of linear lists

into our general definitions.

5.15 Linearity. Let the predicate linear be defined by:

M
linear(x) = [var(x) at =x,]v [linear(x.l) a Aatom(x.j)] .

' j=2

Intuitively, in a linear list the first field denotes a pointer

to the next list element, and other fields contain arbitrary infor

mation. Now the linearity property can be expressed as:

If *(u -1->v,A1,...,An)L a *(u -^>w,y-,,...,ym)N a linear(x)
A linear(q) then

37

(3£){linearQ-) a ([*(u-^v -^w^,...,^ a a=xo£]

v[*(u -2-»w -^v,A1 An)L a x=ao£])}
a {t= a => v =w}

Essentially, this property means that if there is a linear

path from u to v, and from u to w, then either v is an

ancestor of w, or vice-versa, or v = w.

The proof is trivial by induction on t (or a), and using

the definition of linear. •

It is easy to show (using Proposition 4.13) that in all

transformations of FSD's proved in this chapter the function R

is preserved (cf. Definition 4.12), i.e. if the transformation is

*KL into *K£, (L» c L) then the following holds:

(Vu)[u e L' =>RK,(u) =RK(u)] .

38

i

i.

CHAPTER 6

TRANSFORMATION OF FREE STATE DESCRIPTIONS UNDER ASSIGNMENT STATEMENTS

In previous chapters we have shown that FSD's can be adequately

used for static representation of data structures. In this chapter

we shall see the transformation of FSD's when assignment statements

are performed.

In the first place we shall define the concept of the value

to which an expression is bound through an FSD, consistent with

the definition of VAL (cf. Definition 2.7).
c

6.1 Definition. Let E be a program expression, and assume *K.

Then valK(E) is defined by:

!E if E is a variable or
, v a constant

6(valK(E1),...,valK(Ep)) if E=e(E],...,Ep)

39

v •j if E= E^.i and *K, =>
<u,x,,...,x >

val^) i B_* (vr...,vp)
for some p, u, v,,...^

1 P

Notice that in the last case, the value of valK(E) is

defined only if val^E-j) is defined and belongs to L. The

existence of such p, u, v, v is guaranteed by 5.12(b) and

5.10.

The following proposition shows that the definition of va.l„
K

is consistent with that of VAL :
c

6.2 Proposition. If *cKL and E is a program expression, then

either valK(E) is undefined or valK(E) = VAL (E).

Proof. By induction on E:

If E is a variable or constant, then val„(E) = VAL (E)
K c

holds trivially.

If E=e(E.j,...,E), then by inductive hypothesis, either

valK(E.) =VALc(E.), i =l,...,p, and thus valK(E) =VALC(E),
or some valK(E..) is undefined or not in: L, and then valK(E)
is undefined.

Finally, if E= E-j.i, then by inductive hypothesis, either

val^Ej) is undefined or not in L, and then valK(E) is unde
fined, or val|<(E1) =VALc(E]). Let u =val^E^. Since u e L,
by 5.12(b), 5.10 and 5.12(a) we can write:

<u»x1 x > (x,,...,xn)u 3 iu (Vi Vp)_J lUw

for some p, v,,...,v , x,,...,x and w.
I p I p

Finally by Proposition 4.5,

c(u) =R(u,<u,x.j,...,x >,(vlf...,v))

=^(xpfVp-.^Vp)) R2(xp,(v1,...,vp))+
=+vr...,vpt

and thus

VALc(E) =(cfVAL^))).!* =(c(u)).i =v. . •

40

Notice that VAL (E) e L does not necessarily imply that

valw(E) is defined, since for some subexpression of E the value

of VAL might not be in L, leaving valK undefined.

The next two propositions will show how FSD's are transformed

under assignment statement:

V

6.3 Proposition. Let c : M •+ G be a contents function, and

let * K,. Let E, and E2 be two program expressions and let
o

v] = VALC (E^ and v2 = VALC (E2). Then the following hold:

<v1,x1,...,x >
* » IW «l

v-i e L), then:

(a) If K= (v, '— E—> (wls...,w),A1,...,An) (and thus

41

<v1,x1,...,x„>
(1) *KL(E1.1 + E2}*(v1 !—! e~>w',A1,...,An)L

(ii) °KL a v2 e (LUA){Er1 <- E2}°(v] LLHHLLfi^ ^ ,X],... ,An)L

where w' = (w1,...,wi_1,v2,wi+1,...,w).

<v.,x,,...,x >
(b) If K=(v1 !—! e->w,A1,...,An) (thus v] e L),

and v2 e A, then:

(i) *KL{Eri «- E2}*(v] -g->w,A1,...,An)L^$, .
i

(ii) °KL a elem(xi){E1.i ^- E2}°(v1 -g->w,A1,.. .,An)L

where a = <v1 ,x1>...,xi_1 ,v2,x1.+1,...,x >.

(c) If v, $ L but V-. e M , then

°KL{E-|.i «- E2}«KL

(d) If *KL{E-,.i «- E2}*K^, as in parts (a), (b) and (c), then:

(Vu)[u e (L' ~ V]) =*RK(u) =RK,(u)]

a {V] 6 L' => C(Vj)(l <j < |RK(v1)| AJ/i =•

RK(v1).j= RK,(v1).j)] a [R|<I(v1).i =v2]}

Proof.

(a) According to the Definition 2.8, we have to prove:

where

and

<v,,x1,...,x >
* (v, !—Ll_ B_»w« x a)C-, v 1 J 2 »A]»'««»An^

•1

clM =11 x=v-j then y else cQ(x)

y =+cQ(x).l co(x).i-l,v2,co(x).i+l,...,co(x).pt .

Thus c^ agrees with c for all arguments, except v,.

Consequently Ap...,An are compatible with c, since v,

cannot occur in any A. (it occurs already in <v1,x1,...,x >).
<vrxis...,x> p

Also, it is easy to see that v1 •—! E-»w' is compatible
with c.|. The reference set associated with each triple did not

change, and thus the set L remains the same. As for part (ii),

all the endpoints in A1,...,An are in LUA, and so are

w.|,...,w ; by hypothesis v2 € LUA and thus w' clua. Conse

quently, the FSD remains closed.

(b) Comes as an easy consequence of part (a), by using composition

and decomposition (cf. 5.11 and 5.12). Notice that <v,,x,,...,t >
l I p

= <V-| 9X-J ,.. .,X >o (x-j,... ,x).

(c) Follows directly from Proposition 5.14.

(d) In case of part (a), if u = v,, then the result follows

trivially by definition of RK- If ue (L'~v,), then, since

L' c L, u must belong to the reference set associated with some

A^, and the value RKi(u) = RK(u), since it depends only on A.

itself (cf. Definitions 4.12 and 4.4). Case of part (b) follows

from part (a) and the remarks at the end of Chapter 5. Finally

case (c) is trivial. D

42

43

Notice that in formulating this last proposition, we use the

function VAL and not valK as one might expect. In practice,

however, we shall always use the function valK in applying parts

(a) and (b), and the Proposition 6.2 allows us to do so. In

case (c), valK(E.j) would be obviously undefined; usually in such

a case we would be working with more than one FSD describing the

state of computation, and the value of VAL(,(E1) might be given

by one of them.

6.4 Examples. (Assume that I is a program variable and atom(a).)

<I,x,,x9> <I,x,,x9>
(i) *(I J—=-*(ufv)){I}{I.2 +a}*(I —^-»(u,a)){1}

<I,x,,x9> <I,x1,x9>
(ii) »(I J—*-* (I,I)){I}{I.l *• aWl L-L^ (a,I)){I}

<I,x-,,x9> <u,xlsx9> <v,x-,,a>
(iii) b(i !_£-» (UjV), u ' L >(z,a), v ! >z,

<z,x-,,a> <t,Xi,x2>
z ! ** *(u'a))U,u,v,z,t}

• {(I.l).2 * (I.2).l)

•

<I>x1,x9> <u,x1sx9> <v,x-,,a>
(I ' Z >(u,v), U l—±-> (Z,Z), V ! »Z,

<z,x,,a> <t,x-,,x2>
z ! "* *(u'a)){I,u,v,z,t}

We can interpret Proposition 6.3 graphically by:

wi wi wp

.•An

{Eri +• E2}

6.5 Proposition. Let cq: Mq -• Gq be acontents function, and

let * K. . Let I be a program variable, and let E, ,...,E be

program expressions (p>l). Let y= (vls...,v), where

vi =VALc ^E1^* 1= 1»--"P» and assume K= (A-j,...,An). Then
the following.hold:

(a) (i) *KL{I ^-TUPLE(Er...,Ep)}
^i »X-i,... ,x >. (3z)[*(i ! B^v',A],...,Ar;)L,UI]

(ii) hKla yc (LUA){I «• TUPLE(E],.. .,E)}

.(3z)[n(i <,Xl?>",Xp>>y',A],...,At;)L,UI]
(iii) *nKL{I ^TUPLE(E1,...,Ep)}*n(x^,...,A|;)L,
(iv) *«KL a I£L{I «- TUPLE(Er...,E)}«KL

44

(b) If *KL{I <-TUPLE(Ev...,E)}*K1L as in part (a), then:

(Vu)[u e L=>RK (u)=[Rk(u)]^]a[I € L1 =>Rk (I)=+vj,...,v'̂]

where

v! =[v.]z i = l,...,p

v' = (v^-.-.v')

A] =[A.]* 1=l,...,n
L' =[L]*

Proof.

(a) For part (i), we have to prove, according to the Definition 2.9,

that * K, implies:
co L

<I ,X-i ,... ,x >(32)[*Ci(I i ^y.,A',...,Ar;)LluI]
where

c-(x)t ;C*V-'VP*]z =V' if X=I
1 " ' Cc0(x)]^ if xM, xe [MQ]z

Since all references associated with A. are in M , any
1 o

reference x in A^ is in [MQ]z, and c^x) agrees with

[cQ(x)]z. Thus A.! is compatible with c1. Clearly

<I ,X-| ,... »x >
I tL->y' is compatible with c-.. Also, the set of

references in Aj,...,A^ is L', and thus the result follows.

As for part (ii), we have yc (LUA), and thus y' c (L'UA)

Clearly, all the endpoints of A. are in LUA and those in A.'

are in L'UA. Consequently the resulting FSD is closed.

45

Part (iii) is trivial since as shown above, all endpoints of

A^ are in L'UA, and part (iv) is a consequence of (iii), since

no substitution takes place: L' = L and A! = A., i = l,...,n.
ii

(b) For each u e L, u must be in a reference set associated

with some A., and the result follows trivially from definition

of RK. D'

6.6 Examples. (Assume that I is a program variable, and

atom((a,b,d)).)

<T y y y > '

(i) trueU +- TUPLE(a,b,d)}n(l ' r r 3 >(a,b,d)){][}
<I,xvx9>

(11) *(I —^-* (u,w)){I}{I «- TUPLE(a,I)}
<I,x,,x9> <z,x,,x„>(3z)[*(I i~^ (a>z)j 2 L_2_^ (u,w)){I>z}]

Notice that we used again the function VAL to compute v.'s,

but in actual applications valK will be used. The usual appli

cations of Proposition 6.5 will be based on part (a)(ii), consist

ing simply of renaming the occurrences of I in K, and adding

the new triple.

46

Graphically, we shall interpret Proposition 6.5 by:

{I + TUPLE(E ..,E)}
1 P

V

xi A .. . xA1 •/-' ' * 4.
/ \

vp

V

47

CHAPTER 7

EXAMPLES OF APPLICATION

In this chapter we shall see some examples of application of

the technique proposed in previous chapters. The purpose of these

examples is two-fold. In the first place we hope that they will

show the usefulness of the proposed technique, its relative simpli

city and the intuitive reasoning hidden behind it. In the second

place, the examples should illustrate the application of proposi

tions proved in Chapters 4, 5 and 6 in different situations. We

also show via examples how to handle procedure calls.

We chose Example 7.2 to carry out a more detailed proof,

mentioning all the propositions being applied. In the subsequent

examples we are more sketchy, skipping the obvious applications of

some properties. We also drop the explicit use of existential quan

tifiers, but it should be clear from the context where they should

be placed.

7.1 A Tree Reversing Algorithm. In developing our technique we

had in mind applications to data structures with arbitrary sharing.

However, in order to show that the price paid in applying our

technique to free data structures is insignificant as compared

with the method proposed in Burstall [1972], we start with one of

his examples, slightly modified.

The purpose of the algorithm is to reverse a binary tree.

We shall assume that for all trees x in this proof order(2,x)

holds. The algorithm is presented as a recursive procedure in the

following flow chart:

48

[REVERSE(u)J

Tno

Yes
->

n

i '

-Q2

REVERSE(u.l)

< t

REVERSE(u.2)

f

Q3.

n

t <- u.l

1 t

Q4

n

u.l •♦- u.2

• *

Q5

u.2 <• t

f ^6

f RETURN J
D

49

Let REV be an auxiliary function defined by:

REV(x) = if elem(x) then x else <x.0,REV(x.2),REV(x.l)>

The inductive assertions are:

Qo 4 «(u^x,Ar...,An)L

<u,x,,x2>
Q1 =H(u !—^—>(z,w), (z,w)+(a1,a2),A1,...,An)L ax=<u,a-,,a2>

<u,x,,x9>
Q2 1 a(u !—£_>(z,w), zH1»Wia2,A1,...,An)L

a t=<u,a-j ,a2> a ^ =REV(a,)

<u,x,,x9>
Q3 =*(u >(z,w), zHrwH2,Ar...,An)L

at=<u,a1,a2> a ^ =REVfo^) a £2= REV(a2)

Q4 1 Q3 at=z

<u,xvx9>
Q5 i n(u L-JL-»(W>W), UC1,wH2,A1,...,An)L

at=<u,a-j ,a2> a C-j =REV(a1) a £2 =REV(a2)

Q6 i «(uH,Ar...,An)L a £=REV(x)

We shall now verify the above assertions by simple application

of the propositions given in Chapters 5 and 6:

1. Since the procedure is recursive, we shall adopt the following

inductive hypothesis:

(Vu,x,Ar...,An)[Qo{REVERSE(u)}Q6]

and prove that Q {S}Q6 holds, where S is the body of the

50

procedure. For a more detailed treatment of such proofs see

Hoare [1971] and Morris [1971b].

2. Q a atom(u) => Qg: trivial, since by Proposition 5.9 x=u

and REV(x) = x.

3. QQ a -atom(u) => Q-,: by 5.10 and 5.12.

4. Q1{REVERSE(u.l)}Q2: follows by inductive hypothesis.

5. Q2{REVERSE(u.2)}Q3: by inductive hypothesis.

6. Q3{t •*• u.l}Q4: trivial.

7. Q-Cu.l «- u.2}Q5: by Proposition 6.3(a).

8. Q5{u.2 «*- t}Qg: By Proposition 6.3(a) we have after the

assignment:

<u,x,,x9>
h(u !—^-» (w,t),tH1>w4-^2,A1,...,An)L

a x=<u,a-j ,a2> a £.j =REV(a^) a £2 =REV(a2)

By 5.7 (tupling), 5.11(b) (composition) and using the defini

tion of REV:

n(uH,Ar...,An)L a £=REV(x)

which is Qg.

This concludes the verifications, and we can state thus:

(Vu,x)[H(u+x)L{REVERSE(u)}n(u+REV(x))L]

51

which proves the correctness of the procedure.

Notice that our assertions are analogous to those in Burstall's

example. Our proof seems slightly more complicated because we

treat procedure calls in a more rigorous way. Notice also, that

we prove a fact which cannot be expressed in Burstall's notation,

namely that the set L of relevant references remains the same.

7.2 A Marking Algorithm With a Stack. We shall assume that all

memory locations hold tuples composed of three fields, and thus

for all trees x in this proof, order(3,x) holds. The first

component is always an atom (initially 0), and the other two are

either atoms or pointers. There are no restrictions about circu

larities or sharing. The purpose of the algorithm is to mark all

the nodes reachable from a given location p, i.e., to change the

first field from 0 to 1.

Since it is clear from the algorithm that assignments are

made only to the mark fields, we shall not prove that the two

pointer fields remain the same. It would be trivial however, by

showing that RK(u).2 and RK(u).3 remain the same throughout

the algorithm for all the relevant references u.

The stack will be represented by a potentially infinite array

Z (starting with index 1). In this example we shall try to be

very careful in using propositions proved in Chapters 5 and 6, men

tioning explicitly each application (with the exception of Propo

sition 5.3 involving permutation of triples).

We follow the proof by a more informal graphical interpretation.

The flow chart below represents the marking procedure MARK. We

52

shall use letters as symbolic selectors: m = l, s = 2, r = 3,

Q , Q-j, Q2» Q3 and Q- are the inductive assertions defined

later:

Q MARK(p) J
Q

q,k «- p,0

—-Qi
q.m,q,Z[k] «- l,q.s,q.r

Q

k <- k+1

Yes Q;

53

We shall define two auxiliary predicates:

M(t) 4 ~elem(T) =» [T.m=l a M(t.s) a M(x.r)]

U(t) = ~elem(x) => [T.m =0 a U(t.s) a U(x.r)]

Thus M(t) and U(t) mean that for all references in t,

the mark field is 1 and 0, respectively. Notice that

elem(T) => M(t) a U(t). Graphically, we shall represent marked and

unmarked trees by hatched and unhatched triangles, respectively.

We shall define now the inductive assertions:

Q0= (3r,w)[n(p-Uw)N aU(t)]

Q-j = (3T1,T2,a1,...,ak,w,y,y1,...,yk)

{n(p —i->(w,zr...,zk,q), q—^ v, [z- —^v..]^-,^

k
AMf^l a U(t2) a A [U(a.) a (X|w|+1 e Tj)] a (x|w|+k+1 e t^}

a k > 0

Q2 = (3T1,T3,T4,a1,...,ak,w,u,t,y,y1,...,yk)

t, <q,0,x1,x«> (tvt4)
{n(p __L> (w,zls...,zk,q), q >(u,t) >y,

k
AM(Tl) a U(t3) a U(t4) a A [U(a.) a (X|w| +. i t,)]

A(x|w|+k+l iTl)}
a k > 0

54

Q3 = (3T1,T3,x4,a1,...,ak-1,w,u,t,y,y1,...,yk-1)

r / Ti / x <q»o»x1,x2> (t3»t4){n(p _L> (w,zr...,zk_rq), q ' c >(u,t) J * >y,

c2l^y.];:])N

AM(Tl) aU(x3) a U(t4) a A[U(a.) A(X|W| +. i T])]

A(x|w|+k ixl)}
A k > 1

Q4 =(3T1,a1,...,ak,w,y1,...,yk)

{H(p —U(w,zr...,zk), [z. —Uy.]^=1)N
k

AMt^) a /Vu(ai) a (xjw|+1 e Tl)]} a k>0

Q5 =(3a,w)[n(p -2*w)N a M(a)]

In all these assertions z1,...,zk stand for Z[l],...,Z[k].

We shall proceed now with the verifications imposed by the

control paths of the algorithm:

1. QQ is guaranteed by Proposition 4.10 and the initial assump

tion that all nodes are unmarked.

2. QQ{q,k «• p,0}Q1: By 5.6 we have:

x,

Q0 => n(p —^P. P-JL^w)N

and after the assignment, with p = q:

55

xln(p >q, q -^W^

and consequently we get Q1 with k =0, w= (), y =w.

3. [Q1 a -atom(q) a q.m?M] => Q2: Let us define Q\ to be iden

tical to Q1 but including in addition the term ~elem(T2).

Claim 1: [Q1 a-atom(q) a q.m ^1] => Q^

Since ^atom(q), thus q e N (either elem(xo) and q e ycn

or ~elem(Tj and qeS(t2) CN). Thus:

Case 1: q e S(t^) =»q.m=l =» contradiction

Case 2: q eS(t2) => S(t2) f0 => -elem(To) => Q-j

Case 3: q e S(a.) for some 1 < j < k.
j

Consequently q£S(t2), and thus elem(To). By 5.4(b) we can

delete q —*=-> y from the FSD. By 5.12(b), z. —^y. can be
— j ~ j

replaced by:

a\ a1'
zj —*^ (vj,q), q—^y-j

with ~elem(a!.') and a. =a'.°(x-,,...,Xi j»a!j)-
** j

Clearly, U(a.) =»U(al) a U(a!j). Thus we can take o\, a*.',
j j j j j

(y.,q), y. as the new values of a., t?, v., y, and Q' follows.
—J —J J c. —J — I

Claim 2: Q-j => Q2

Trivial, since Q.J a q.m^l => ~elem(Tp) =>

T2 =<0>T3»T4> =<0»x1.x2>o(t3,t4)

for some t3 and t4.

56

Also, U(t2) =>U(t3) a U(t4). By applying 5.12(a) we get Q2.

4. Q2(k «- k+l}Q3: Trivial; by substituting k-1 for k in Q2

we get Q-.

5. Q3{q.m,q,Z[k]-f-l,q.s,q.r}Q1: By 6.3(b) we get after the assign-

ment is performed:

. Ti <y,l,x,,x?>
n(p >(w,z1,...,zk_1,y), y !—^-> (q,zR),

k-l

aM(T]) aU(t3) aU(t4) a/\[U(a.) a(x|w|+.iTj)]

A(x|w|+k ixl> '

We shall show now that the two triples

t-\ <y,l,x,,x2>
P >(w.z1,...,z|c_1,y), y *=-> (q,zk)

can be replaced by a triple

p-£*• (w,z1,... ,zk,q)

k+1

where M(c) and A(xiw|+1 i c).

Intuitively, this fact is very clear since we shall compose t,

and <y,l,x1,x2> in a convenient way to get £. By Proposition

5.6(b), we can extend the FSD by adding the triple:

(w z z az) (xl'---»VV2'Vl) , „ , nvvw,z1,...,zk_^,q,zk; -> (w,z-j,... ,zk,q)

where m = |w| + k - 1.

57

Then by 5.7 (tupling and untupling) we can decompose the last

triple into:

(X-,...,Xi i)
w » liL->(wt21>...,2k,q)

(zv...f2M) X|wl+1 Xm >(w,zr...,zk,q)

(q,zk) (V2,Xm+l). (w,Zl,...,zk,q)
By 5.11(b) (composition), we can replace

<y,l,X,,X«> (Xmi.9tXmj.l)y L^~>(q,zk), (q,zk) ^ m+1 >(w,zr...,zk,q)

by:

y >(w,z.j ,...,zk,q)

Now by 5.7 we can tuple this triple with those remaining above

to get

\X.,,...,x ,<y,l,x -n,x_.-i>)(w,zr...,zk-1,y) 3 ffl m+2 m+1 >(w,zr...,zk,q)

and finally we compose this triple with p —^ (w,z,,. ..,z. -j ,y)

to get

p-£•» (w,z-j,...,zk,q)

where c =V^l* •••,xm9<y,1,xm+2,xm+l>^
We can do this since Q3 ^ x|wl+k = xm+l ®XT

Clearly M^) =>M(c).

Also, since xi i+.e t-j for i = l,...,k, easily

58

xlwl+i ^^ for n= "'••••»k+1« Consequently, Q^ follows.

6. Q-j a (atom(g) v q.m =1) =* Q4:

Claim: .elem(xo)

Case 1: atom(q) =» elem(Tp) by 5.9

Case 2: ~atom(g) a q.m=l

If -elem(x2) then qeS(t2) and U(t2) =»q.m =0; conse

quently we must have elemdrj.

x2
Now, elem(Tp) means that we can delete q > v from the

FSD by virtue of the Proposition 5.4(b).

We shall rearrange the FSD now in order to get the form

corresponding to that in Q.. In the first place we expand (5.6(b))

the FSD by:

(w,zr...,zk,q) (xT-'xlwl'Vrx|wi+r-'^> }

where m = |w| + k.

Coir

5.11(b):

or

where

and

Combining this triple with p > (w,z,,.. .,z.,q) we get by

p-£-» (w,q,z1,...,z|()

p-^> (w,,z1,...,zk)

w' = (w,q)

C=T1o(xl,...,Xjw|,Xnrf.1,X|w|+1,...,X)

59

Clearly M(Tl)-*M(c) and y|+jic for i =l,...,k, and we
finally get Q .

7. Q4 a k=0 =>Q5: trivial

8- Q4 a k?0{q,k <- Z[k],k-1}Q1: Trivial by a simple change of

names; zk becomes q and k-1 is the new value of k. D

This concludes the verification of inductive assertions. It

was rather lengthy and tedious since we wanted to exhibit one

detailed proof. Clearly Qg shows the desired property of the
algorithm. We shall give now the graphical interpretation of this

proof. In the first place we show the inductive assertions

(z stands for (z1,...,2|() and z' for (zr...,zk_-,)):

60

yo

Q,:

V

V

V

Qc:

M A A ••• A
w,z,q *1 *k

p

W,z,q A
y

A
y

zk

-A

61

We proceed now with the verifications

2. QQ{q,k <- p,0}Q.,:

A A
A A

p w

{q,k «- p,0}

p

4 *'

q

A
q w

Q-, (with k = 0)

62

3. [Q1 A-atom(q) A q.m?« 1] => Q2:

var(x2)
5.4

<yar(T2)

q.m = 1

(contradiction)

II (Renam ing)

w»?»q y i}

zk

•A

63

4. Q2(k^k+1}Q3: trivial.

5. Q3(q.m,q,Z[k] «- l.q.s.q.rKlj

V M
w,z',q

zl
A

zk-i
a

q 101/ I4

Au

A
A- ••A

/T3\ *i . Vi
V V

II {q.m,q,Z[k] *• l.q.s.q.r}

w,z',q,zk v V-l *k

I 5.6, 5.7, 5.11

64

5.6, 5.7, 5.11

6. Q1 a [atom(q) v q.m =1] => Q:
1 4

r -var(x2) => kkqA-A
w,z,q y y-j yk

'atom(q) <

V

q.m =0

(contradiction)

atom(q) =

5.4
var(Tp) =*

5.4 !

A '' '"
m A ••• A

II 5.6, 5.11

P Zl ' zk

m A ••• A

65

7. Q4 a k=0 =»Q5: trivial.

8. Q4 a MO{q,k + Z[k],k-.T}Q1

p

w,z

zi

/°\ ' • '
zk

A

| {q'k *Z[k],k-1}

p q=zk z]

w»?'»q yk v1

X1
••A

Xk-i

Q1 (for k-1). D

This concludes our graphical interpretation of the proof.

An interesting aspect of this proof is that it does not depend

on the particular choice of initial values of t and w in QQ

(according to Proposition 4.10 they are not unique)". However the

final tree a in Q5 will be a pre-order traversal tree (cf. Knuth

[1968]) imposed by the algorithm itself. The necessary adjustments

of the initial tree are due to the application of Proposition 5.12(b)

in step 3 of the proof. In particular, if the initial tree t were

already a pre-order tree, we would be able to prove that the applica

tion of this proposition would not be necessary.

66

67

7.3 A Recursive Marking Algorithm

The purpose of this algorithm is the same as that of the previous

example, and we shall assume the same definitions for m, s, r, U(t)

and M(t). The main difference between the two algorithms is that

in this one we shall use explicit recursion, and our proof will

account for this fact. Many details of the proof are similar to

that of Example 7.2. Consequently we shall give only sketchy

verifications.

(MARK(q) J
Q,

atom(q)v
q.m = 1

No Q.

q.m «- 1

Q,

-&.

MARK(q.s)

Q.

MARK(q.r)

(RETURN J

Yes

The inductive assertions are:

Q0 =(3T1,T2,w9y,a1,...iak,y1,...,yk)

{°(P—L>(w,71,...,zk,q), q—2*vf [z. A^y.]1^
k

aM(Ti) a.U(t2) a ACU(a.) a(xm +. i^)] a (X|„|+k+1 i^)}

Q-j =(3T1,T3,T4,w,y,a1,...,ak,y1,...,yk)

t, <q,0,x1,x?> (tvt.)
{n(p > (w,z1,...,zu,q)> q —*-» (u,t) J * >v,

a.
,k

'n
k

a M(t1) a u(t3) a U(t4) a A[U(a.) a (X|̂ |+i i t^]

[z. —Uv.]K J,
L i -iJi=l'l

A(x|w|+k+l ixl>}

Q2 s (3T1,T3,T4,w,y,a1,...,ak,y1,...,yk)

{n(p >(w,z-,,...,zk,t,u), u—±> y,[zi —U- y^^-j,

t^y)N
aM^) aU(t3) aA[U(a.) a(X|^|+1 it-,)] a(X|^|+k+1 iTj)

a(x.w|+k+2 i t-,) a u=q.s at=q.r}

Q3 = (3T1,T4,w,y,a1,...,ak,y1,...,yk)
Ti T

{n(p —U (w,zr...,zk,t), t—^Uy, [z1 —^y.]^-,),^
k

a«(t1) aU(t4) aA[U(a.) a(X|y|+i i.^)] a(X|y|+k+1 et^

At = q.r>

68

69

xl ai kQ4 i (3x1,w,a1,...,ak,y1,...,yk){a(p ^(w,z] ,...,zk), [zi •Vj]^),

k

aM(Ti) a A[U(a.) a(X|S|+1 iTl)]}

Intuitively, the assertions describe the state of computation

during a recursive call MARK(q); p is the root of initial tree

and we can think of z,,...,zk as the values stored on the stack

in the usual implementation of recursion. Notice that p,q,z,f...,z.

are constants in each recursive call of MARK, and thus in the

assertions Q - Q4-

Since the procedure MARK is recursive, we shall use the follow

ing inductive hypothesis for the recursive calls:

(Vp,q,Zl,...,zk)[QQ{MARK(q)}Q4] .

We proceed now with the verification of assertions:

1. [QQ a ~atom(q) a q.mjM] => Q^ As in step 3 of Example 7.2,

we prove that QQ can be replaced by Q^ where -elemfxj, and
then Q, follows easily.

2. Q.j{q.m«- 1}Q2: By Proposition 6.3(b), we can replace

<q,0,x1,x2> <q,l,x,,x9>
q ^(u.t) in Q1 by q !—£-> (Ust) after

the assignment is performed.

Then we can replace

Ti , % <q,l.x1,x?>
p >(w,z1,...,zk,q), q !—£-> (u,t)

by

p~^> (w,zl5...,zk,t,u)

with

C=T1o(x1,...,xm,<q,l,Xm+2,Xm+1>)

(cf. stup 5in Example 7.2). Thus M(c) and X|,+i e c for
i =l,...,k+2, and Q2 follows.

3. Q2{MARK(q.s)}Q3: Q2 has the form of QQ, with u for q,
zl zk» t for z.j,. ..,zk,zk+1. By inductive hypothesis we get

V

4. Q3{MARK(q.r)}Q4: By inductive hypothesis, as- above.

5. Q0 a [atom(q) vq.m =l] => Q^. As in step 6of Example 7.2, we
— T

show that elem(T2) holds, and then replace p—L> (w,z,,...,zk,q)

by P-£» (w',z1,...,zk) with w* =(w,q).

This concludes the verifications. By Proposition 4.10 and the

initial assumption we have:

n(P "^n aU(x)
or,

X-.

«(p >q, q-^w^ a MfXj) au(t) a p=q .

As a result of the proof above, we can write (for k = 0):

n(p —L*q, q-I^w)N aM^) aU(x){MARK(q)}

(3xT,w)[n(p—Uw)N aM(Tl)]

which shows the correctness of the algorithm.

We shall give now the graphical interpretation of this proof

(z = (zr...,zk)):

70

V

p q z1 Z|c

i'AA ••• A
w»2»q Y y1 yk

V A 7\ A-A
M* /3\ /4\ ^1 ^k

y y

V

P u=q.s z] zk t=q.r

MA-AA
w.z.t.u v v-| yk v

<v

P t=q.r z} zk

iAA-A
>?» y y1 yk

V M A ••• A
*'Z v-1 *k

71

1.

We proceed now to graphical verification:

[QQ a~atom(q) a q.m^l] =» Q1:

5.4
yar(x9) => 4

-var(Tp)

w,z,q Vj *1

I

contradiction

(q.m = l)

(Renaming)

P a zl zk

MAA--A
w,z,q V-l h

72

73

2. Q^q.m «- 1}Q2:

V

3.
Q2{M

ARK(q.s)}Q3:

Q2:

P
u=

q.s
z1

Z(c
t=

q.r

I
A

A
-
A

A
w

,z,t,u
y

y1
v.

v

]|{MARK(q.s)}
i1ndS!£t1Ye,

ty
v^

hypothesis)

V

P
t=

q.r
z]

zk

J
^

A
A

-
•
-A

w
,z,t

y
y-j

yk

4.
Q3{M

ARK(q.r)}Q4:

V

P
t=

q.r
z]

zk

M
A

A
-

•
-
A

w
,z,t

y
y1

yk

,|<«ARK(q.r)}
g

^
)

V

P
Z

l
zk

M
A

•
•

•
A

w
»?

Y7
vk

7
4

5. QQ a [atom(g) v q.m=l] => Q4:

>-var(To)

~atom(q) <

atom(q)

var(x2)
5.4

5.4

k irA-w,z,q y y1

zk

•A

q.m= 0

(contradiction)

75

7-4 A "heap" Forming Algorithm

We shall assume here that all nodes have three fields, i.e.,

order(3,T) holds for all trees t appearing in the proof. The

first field is always a number and the other fields are either

pointers or atoms (nil). A "heap" is a tree in which the number

at any node is not smaller than the numbers at its descendants.

The procedure HEAP transforms a given arbitrary tree rooted at

u into a "heap" by moving the numbers appearing as first fields

of the nodes. For a discussion about "heaps" see Knuth [1973],

p. 149.

The procedure HEAP is recursive, and it uses another proce

dure SINK, which is also recursive. SINK(u,q) assumes that q

is a number and u is the root of the "heap". The value returned

by SINK is the maximum among q and the numbers in the heap.

The number q is "sunk" into the heap.

Since the only assignments are to the first fields, we shall

not prove that the pointers remain the same.

We use symbolic selectors: n = 1, s = 2, r = 3.

We shall also assume that whenever the second field (s) of a

node is nil, so is the third field (r).

76

Yes

f <- SINK(u.s,u.n)

No
v

HEAP(u.s)

H.

HEAP(u.r)

f + SINK(u.r,u.n)

H,

u.n «- f

• H-
* 5

(^ RETURN J

77

78

^SINK(u.q) ^

g •*- q ; ^

Yes f-q

jL

f <- SINK(u.s,q) f <- SINK(u.r,q)

^_£. J
S,

g «- u.n

—t-S.

u.n «- f

S

^ RETURN g^
•<f *

79

We shall use the following auxiliary definitions:

C(t) = if x=nil then 0 else {x.n} u C(x.s) u C(x.r)

H(t) 4 xfoil => (Vx)[x e C(t) =>x.n>x] a H(t.s) a H(x.r)

Thus C(t) denotes the set of values (numbers) appearing in

t. However, in order to take care of possible repetition of values,

we shall think of C(x) as a "bag" of values in which repetitions

are allowed. The operations u and e are redefined conveniently.

Consequently, in this context {a}u{a} = {a,a}? {a}.

H(t) means that x represents a heap.

The inductive assertions are (we drop the existential quantifiers

which should be clear from the context):

H1 = n(uK,X1,...,An) a u^nil a A=C(x)

<u,p,xlfx9>
H2 i b(u l—^-*(z,t

a A={p}uC(x1)UC(T2

<u,p,x,,x9>H3 4 n(u L-JL_»(Zjt

a A={p}UC(x1)UC(x3

<u,p,x,,x9>
H4 i «(u 1—£-* (z.t

a A={f}UC(x4)UC(x5

a (Vx)[x e C(x4)UC(x5) =>f>x]

H5 4 °(u+a,X1,...,Xn) a A=C(a) a H(a)

, z+x^t+T .X^ An)

a H(t^) a z^nil

, ZyX-j jtyX-j, A-i , . . . ,A)

a H(t}) a H(x3) a z?nil a t^nil

9 ZyX* ,tYX|-,A^ , . .. ,A)

a H(x4) a H(x5)

51 t a(urx,A1,...,Xn) a A=C(x)U{q} AH(x) a u^nil

<u,p,x1,x«>
52 =b(u L_JL_»(z>t)s 2+TlitTT2,A1 Xn)

aH(x7) a H(x2) a A= C(x1)UC(x2)U{p,f} Ap>f

a(Vx)[x e C(x])UC(x2) =*f>x]

53 = S2 a g=p

54 4 °(ura,X1,...,Xn) a A=C(a)u{g} a h(c) a (Vx)[x e C(a) =>g>x]

We shall verify now the inductive assertions given above:

1. Inductive hypotheses:

H^HEAPfu)^

and

S^d +SINKfu.qJJCS^j}

2. H] a u.s^nil{HEAP(u.s)}H2:

Hi A u's ^nil =»

<u,p,x,,x2>
n(u. *-»(z,t), Zya1,Ua2,X1,...,Xn)

a z=u.s a z^njiAA= {p}uc(a1)uc(x2) a Z=C{o})

By inductive hypothesis, after HEAP(u.s), we have:

<u,p,x-|,x2>
(u >(z.t), Zrx1,tTX2,X1,...,Xn) a B=C(x.,) a h(Ti)

Since A= {p}uc(i2) ucfaj) = {p}UC(x2)UB ={p}uc(x1)uc(x2),

H2 follows.

80

3. H2 a u.r?nil{HEAP(u.r)}H3:

H2 a u.r j nil =>

<u,p,xrx?>
n(u •—£—> (z,t), Z+X-. ,Ux2,X-j,... ,X) a z ^nil

At^nii Au-r =t a A={p}UO(x1)UC(x2) a H(x-,) a D= C(x2)

As before, by inductive hypothesis, after HEAP(u.r):

<u,p,x,,x?>
*(u >(z,t), zK1,Ux3,X1,...,Xn) a D=C(x3) a h(t3)

Since A={p}U Cfx^UD ={p}UC(x1)UC(x3), and H3 follows.

4. H2 a u.r= niKf <- SINK(u.s,u.n)}H4:

H2 a u.r=nil =>

<u,p,x,,x2>
n(u >(z,t), z+x1,Ux3,X1,...,Xn)

a A= {p}uc(x,) a x2= n11_ a H(x-,) a z ^ nil a u.n= p a u.s =z

By inductive hypothesis, after SINK(u.s,u.n):

<u,p,x-,,x?>
D(u !_£-5.(Z5t), z^x4,Unil,X1,...,Xn)

AA ={f}UC(x4) a H(x4) a (Vx)[x e C(t4) => f>x]

and H4 follows, since C(nil) =0 and H(nil) holds.

81

5- H3 a [(u.s).n>_(u.r).n]{f «-. SINK(u.s,u.n)}H4:

H3 a (u.s).n > (u.r).n =>

<u,p,x,,x2>
n(u >(z,t), z^x1,Ux3,X1,...,Xn) a z^nil

a t^niiA A={p}uc(x1)uc(x3) a H(Tl) a h(.t3)
AT].n>T3.n a B={p}uc(x1) au.s =z Au.n =p

By inductive hypothesis, after SINK(u.s,u.n):

<u,p,x,,x?>
n(u L_£_*(2>t)f Z+x4,Ux3,X1,.,.,Xn)

a B=C(x4) U{f} a H(x4) a (Vx)[x e C(t4) =* f >x]

Since A=C(x3)UB => A={f}U c(t4) UC(t3).

Also, x^n >x3.n => (Vx)[x e C(x3) => xrn>x]. Since

xrn e B=>f >xrn => (Vx)[x e C(x3) =* f >x]. Thus finally:

(Vx)[x e C(x4)uc(x3) =*f >x], and H4 follows (with t5 =x3).

6. H3 a [(u.s).n <(u.r).n]{f <- SINK(u.r,u.n)}H4: Proof analogous

to that in 5, using t and x3 instead of z and x-,.

7. H4{u.n «- f}H5: After u.n «- f, we have:

<u,.f,x-,,x?>
n(u >(z,t), z+T4,t+T5>Ar...,An)

AA ={f}UC(x4)UC(x5) aH(x4) a H(x5)

a (Vx)[x e C(x4)UC(x5) =>f>x]

and consequently:

n(u+a,X1,...,Xn) a A=C(a) a H(a)

82

with a = <u,f,x4,x5>.

8. [H, a u.s =nij]=> H_:

<u,p,x1,x«>
[H1 a u.s =niT]=*a(u !—^-» (z,t), z+x-j ^x^X^. ..,Xn)

a x-j =rvH. a x2 =nil a A={p}

and H5 follows trivially, with a = <u,p,nil,nil>.

9. S-j a u.n£q{g «- q}S4: After the assignment g «- q:

S-jAu.n<qAg =q => A=C(x) U{g} a h(x)

Also, H(x) => (Vx)[x e C(x) =>x.n>x] =» (Vx)[x e C(x) =*g>x] (since

u.n = x.n), and S4 follows with a = x.

10. S1AU.n>qAu.s =nil{f «- q}S2:

S-j Au.n>q a u.s - nil =>

<u,p,x,,x?>
n(u c >(z,t), z+x1,Ux2,X1,...,Xn)

ati =nil a x2 =nil a A={p,q} a p>q

After the assignment we have f = q and S2 follows easily since

C(t.,) =C(x2) =0.

11. S«jAu.n>qAu.s frn± a u.r =ni1{f «*- SINK(u.s,q)}S2:

S, a u.n> q a u.s ^ nil a u.r = nil =»

<u,p,xlfx2>
n(u ' >(z,t), z4-a-,,t4'a2,Xi,...,Xn) a zj nil

a a2 =nil_ a A={p,q}UC(a1) a h(x.j) a (Vx)[x e Cfo^) => p>x]

a B={q}UC(a,) a p^q a u.s =z

83

By inductive hypothesis after SINK(u.s,q):

<u,p,x,,x?>
n(u L_*_»(2ft), z^T1,Unil,X1,...,Xn)

^'C^luff} aH(T]) a (Vx)[x e C(t7) =*f>x]

Since A= {p}UB => A= {p,f}uc(x1). Also, since feB=*p>f,

and S2 follows (with x2 = nil).

12. S1 a u.n>q a u.sj*nij_ a u.r^nii a (u.s).n >(u.r).n

{f «- SINK(u.s,q)}S2:

S^ a u.n >q a u.s7* njj[a u.r ^ ni]_A(u.s).n >(u.r).n =»

<u,p,x,,x2>
n(u >(z,t), z+a1,t+a2>A1,...,X) Az?nil

At^nil a A= {p,q}UC(a1)UC(a2) AH{o}) a H(a2)

a (Vx)[x e C(a1)UC(a2) => p>x] a B={q}UC(a-,) a p>q

a u.s = z a a-j.n>^a2.n

By inductive hypothesis, after SINK(u.s,q):

<u,p,x,,x2>
n(u £_»(Zjt), z4x1,Ua2,X1,...,Xn)

aB =C(x1) U{f} a h^) a (Vx)[x e C^) «* f >x]

Since A= {p}uc(o2)UB => A= {p.fjuc^Jucl^). Also,

f e B =* p>_f and

a-j.n e B-*• f >, a-j.n =*• f > a2.n => (Vx)[x e C(a2) => f >_ x]

since H(a2). Thus S2 follows, with x2 = a2.

84

13. S-j a u.n>q a u.s j nil A u.r?4 nil A (u.s).n <(u.r).n

{f «- SINK(u.r,q)}S2: The proof is analogous to that in 12,

using t and a2> instead of z and o\.

14. S2(g «- u.n}S3: trivial.

15. S3{u.n «- f}S4: After the assignment:

<u,f,x,,x?>
q(u >(z,t), z+x1,Ux2,X1,...,Xn) a H(t}) a H(x2)

a A=C(x1)UC(x2)U{g,f} A g>f A (Vx)[x e C(x])UC(x2) =>f^x]

(u+a,Xr...,Xn) a A=C(a)u{g} a h(o) a (Vx)[x e C(o) =>g>x]=> n

=> S
^4 *

This concludes the verification of inductive assertions. The

final conclusion is:

n(u+x) a A=C(x) a u?nil{HEAP(u)Mu+g) a A=C(a) a H(a) .

85

7.5 The Deutsch-Waite-Schorr Marking Algorithm

The purpose of this algorithm is again to mark all the nodes

accessible from a given location p. The algorithm is complicated

by the fact that a stack is kept in the data structure itself and

several pointers are temporarily modified during the execution.

We shall assume that each node is composed of four fields, and

therefore order(4,x) holds for all trees x in this proof. The

first two fields, referred to by symbolic selectors m = 1 (marker),

and a = 2 (auxiliary flag) are always 0 or 1. The other two

fields s = 3 (left son) and r = 4 (right son) are atoms or

pointers to other locations. For a more detailed description of

this algorithm see Knuth [1968], p. 417.

Since the algorithm involves modification of pointer fields,

our correctness condition will have to involve also an assertion

showing that the final pointers are the same as those at the

beginning of execution. The proof will be followed by a graphical

interpretation.

86

t| q.m,q.a,q.s,q,t
-*• l,l,t,q.s,q

q,t.a,t.s,t.r
*- t.r,0,q,t.s

(MARK(p) J
Q

q,t «• p,nil

Q

yesf

87

RETURN }

t.r,q,t •+• q,t,t.r

88

As before, we shall use two auxiliary predicates:

M(x) %~elem(x) =*[x.m =l a M(x.s) a M(x.r)]

U(x) = -elem(x) => [x.m =0 a U(x.s) a U(x.r)]

We shall define an auxiliary assertion P by:

P = VP2AP3

where

>. <z.,l,d. ,x,,x9> (a.,x.) .
P] *{n(q^u,[z. —J L-l-JU(v.,W>) * 1 ^]-=1)N

Ak>0 a (zk+1 =q) a (zk=t) a (zQ =nil)}

P2 £ (Vx)[x e (N -{z19...,zk}) => (Rj(x).s= RK(x).s a Rj(x).r= RK(x).r)]

k

P3 =A{[di =1 Avi=zi-l Am.(°i) AU(x.) a Rj(z.).s=zi+1
ARJ(zi).r =wi]

v [d^O a wi =zi-1 a var^.) a M(o.) a RJ(zi).s =v.

ARj(z.).r=z1+1]}

where K is the FSD appearing in P,, and J is the one appear

ing in Q below (initial state).

P seems rather complex, and we shall try to explain its

intuitive meaning. The references z,,z. ,,...,z, form the stack

for this algorithm. The connections between these elements are

determined by the auxiliary flags d. as shown in P3. All pointers,

except those in z,,...,z. are the same as original, as described

by P2. P3 describes also the original values of the pointers

for zlf...,zk.

89

The inductive assertions are:

Qo S{n(p-I»u)N aU(C)>

Qt = Pa U(£)

Q2 =Pa M(£)

Q3 £{n(q -£» u)N a M(£) a(Vx)[x eN=>*(R0(x).s =RL(x).s
ARj(x).r=RL(x).r)]}

where L denotes the FSD appearing in Q3> Notice that we omit

the existential quantifiers which should precede each Q., and

which should be clear from the context. We shall outline now the

verification of these assertions:

1. QQ is guaranteed by Proposition 4.10 and the initial assump

tion that all nodes are unmarked.

2. QQ{q,t «- p,nil}Q1: trivial with p =q, t =nil and k =0.

3. Q-j a [atom(q) v q.m =1] => Q2:

Case 1: atom(q) => elem(S) => M(£) =• Q2

Case 2: -atom(q) =» q.m= 1

2a: ~elem(£) =>€.m=q.m =0 => contradiction

2b: elem(0 =» M(£) => Q2

4. [Q2 a t=niT|=>Q3: trivial, since t= nil => k=0

5- Q2 a t^njl a t.a=0{t.r,q,t «- q,t,t.r}Q2: It follows easily

that k > 0 and dK =0. Thus the FSD can be rewritten (since z. =t)

tr <t,l ,0,X., ,x«> $

<zi,l,d.,x1,x2> (o-.t.) k,[2. _j—i_l_ju (v.)Wi) _l_u._u];:i,h

and after the assignment:

f <q>l»0,x1,x9> a.
n(q' -^u. q L-^(vk,q'), vk-^u,

<z.,l,d.,Xl,x2^ (a.,x.) . 1

Notice that the values of pointers at z. = q are restored

to its original values, and Q2 follows for k-1.

6. Q2 a t^njl a t.a =l{q,t.a,t.s,t.r «- t.r,0,q,t.s}Q-j: It follows

that k > 0 and dK = 1. Thus the FSD can be rewritten:

, p <t,l,l,XrX2> (ak»Tk)«(q -**U, t : L_i_» (vk,Wk) K K >U,

<z..,l,d.,x1,x?> (a. ,x.) k i

After the assignment:

fr <t,l,0,X15X9> O.
«(q' -^->u, t L_^(q.>Vk), vk-^u, q-^u,

<z.,l,d.,x1,x?> (a.,x.) k ,[z. _J_J_LJ^(V.,W.) 1 1>u]jf:])w

By a convenient renaming we get Q, (with the same value of k)

7. Q-j a ~atom(q) a q.m =0{q.m,q.a,q.s,q,t «- 1,1 ,t,q.s,q}Q-,:

Claim: Q, can be rewritten so that -elem(C) holds:

Case!: q 6 S(£) •» S(g),?0 =>~elem(£);

V.. _ Tk

90

91

Case 2: q £ S(£) =* S(£) « 0 =* elem(g)

and thus q -£-» u can be deleted from the FSD.

2a: q = z. for some i; then q.m =1 •=> contradiction;

2b: q e S(o\) for some i; then M(a.) =>q.m =l => contradiction;
x *2c: q e S(x..) for some i; then w^ —*-» u can be replaced

x! Ti'
by Wi >(u,q), q—Uy where ^ =x.,<>(x1 ,...,x.| ,xp,
and ~elem(xV). Easily U(x.) =* U(x!) a u(xV). Thus we

can take xj, x^' as the new values of x. and £. Also,

it is easy to prove that u can be replaced by u' = (u,q)

throughout the FSD.

Thus we proved the claim, and ~elem(E) holds. Consequently,

the FSD can be rewritten as:

t <q,0,d,xrx> (£ £)n(q L-Z_» (g>h) 1 2 >̂
<z.,l,d ,x,,x9> (a.,x.) .

and after the assignment:

. <t,l,l,X1,X?> £, Co

<Z.,l,d.,Xl,x2> (qt.) .[z. -J L-J-iU (v. ,w.) _L-L-> u]k=1)N

It is easy to show now that Q1 holds for k+1, with

zk+l =*• vk+l =V ak+l =X|u|+T wk+l =n* Vl =^2'

This concludes the verifications. We shall give now a

graphical interpretation of this proof. We shall adopt the conven

tion that all pointers not shown explicitly are the same as in the

original structure. Additional broken lines indicate the original

pointers whenever they differ from the current ones. As indicated

by P3, we have two possibilities for each zi, depending on the
value of d.:

1 7
z.

92

t z.

i+1 vi=2i-l
or

i+l i EQ
wrzi-i

ai

We shall represent these two possibilities by

i+l

We represent now the assertions QQ, Q-,, Q2 and Q3 by:

V

<v

V

Q,:

t = z,

——* •

zk-l z2

zl

0 nil

« V

93

94

We proceed now with the verification

2. Q0{qst + P,nil}Q1:

t = nil

Q1 (for k=0)

3. Q1 a [atom(q) v q.m =1] =• Q2:

5.9
atom(q) ===» elem(g)

var(g)

-atom(q) a <

~var(g)

I
q.m= 0

(contradiction)

95

96

4. Q« a t =nil => Q~: trivial

5. Q2 a t?«nil a t.a =0{t.r,q,t <- q,t,t.r}Q2:

II {t.r,q,t «- q,t,t.r}

t =z

C \H*" • "•*2 \ / Ml

1
Q9 (for k-1)

6. Q2 a 17*nil A*'* =Hq»t.a,t.s,t.r «- t.r,0,q,t.s}Q-j:

' t=7 *

"^nte
Wi

4^ rTToTTT^

• • • «—

zk-2 z2 nil

{q,t.a,t.s,t. r «- t.r,0,q,t.s}

I (Rearranging)

*—

nil

1
Qj (with dk =0)

97

7. Q1 a ~atom(q) a q.m =0{q.m,q.a,q.s,q,t «- 1,1 ,t,q.s,q}Q1:

var(g)

v

98

q.m = 1

(contra
diction)

-var(C)

t =zk zl

7W\—» • • . »—^A y~,

AAV zk-i Z2 V
''nil

I y y

99

{q.m,q.a,q.s,q,t «- l,l,t,q.s,q>

Q1 (for k+1 and d.+, =l)

7.6 A List Moving Algorithm

This algorithm is a slight adaptation of that described by

Reingold [1973]. Its purpose is to produce a new copy of a given

data structure rooted at p. The original data structure is

destroyed by the algorithm. Such an algorithm can be used for

compacting purposes. We shall assume that all nodes have three

components (thus order(3,x) for all x in this proof). The first

field is 0 for all nodes belonging to the original data structure

and 1 for all nodes in the new copy (in actual implementation

this one bit field can be avoided, as it is shown in the paper

mentioned above). Our final correctness condition will assert

that every node in the old structure has a corresponding node in

the new structure, and that this correspondence carries over to

the original components of the old nodes and the final components

of the new nodes. We shall use the symbolic selectors: a = 1,

s = 2, r = 3.

100

q «• y.s

U q«- y.r

y.s «- (y.s).s

y.r + (y.r).s

(COPY(p))

q.t «- p,nil

!1

y «- TUPLE(l,q.s,q.r)

Q,

q.s,q.r,t + y,t,q

trzrqj:

Yes/ ^at?mt.y.s)A
" [atom((y.s).s)v

((y.s).s).a =o;

No Q4
—i *

-atom(y.r)a
[atom((y.r).s)v

((y.r).s).a=o;

qst -*- q.r,q.r

8

No

YesT "^9
C RETURN J

y -*• q.s

—ji—

101

We shall define some auxiliary assertions:

k

P-, =AtCU^z^ ayar(a.) aS(x.) c Nq a Rj(z.) =+0,v. ,w.+)

v (wi =zi+1 a var^.) a elemfoj) a T(R](z..).s) =vi

ARjfz.J.r^w.)] aT(z.) =z!}

m

P2 t /\{T(c.)=c! a T^c.J.sjM. a T(Rj(c.).r) =e.}

P3 = (Vu){u e (NQ ~ {z1,...,zk,c1,...,cm}) =*Rj(u) =RK(u)}

P4 = (Vu){[u e NQ => RK(u).a =0] a [u e N=> RK(u).a =l]}

k

P5 = {N= {z-j,...,z£,c-j,...,cm} a L={z1,...,zk,c1,...,cm> u u S{i.)

a z = nil}
o

and

5

P = Ap,
i=l 1

The inductive assertions are:

Q ={n(p -^u)N a ~atom(p)}

<q,0,xrx > , x
i {°(q J—2-* (g,h) -1^H> u,

102

^1
<c ,0,x,,x,,> <c!,l,x1,x?>[c. _J L_J^(c.,b.), c. _J LiU^e.)]?^,
<z.,0,x,,x9>[z. _J L_l^(z.,Zi1),
<zJ>ltx1,x9> (a.,x.) k

0

a P a zk+1 =q a zk= t a Rj(q)- {O.g.hf a Lus(r) US(o) Uq =NQi

103

<q90,xlsx9> <y,l,x1,x«> (*Q2 t {n(q L_2_»(g,h), y !_?-> (g,h) <a'T' >u,
[cr..]i=1, CV^i^NgUNUy

a P a zk+1 =q a zk=t a Rj(q)={0,g,h:f a LUS(x) US(cr) Uq= NQ}

t <q»o,x1,x?> <y,i,xlsx«> / TxQ3 t {n(q L_L_* (y>Zk)9 y LJ^ (gjh) Ja^ yj

[c....]i=1, Czi —Di=1)N UNUy
0 J

A P A Z k+1 =q a zk+1 =t a Rj(q) ={0,g,h:f

a qULUS(a)US(x)= NQ a T(q) =y}

Q4 = Q3 a elem(a) a [atom(g) v g e {z],. ...z^c-j,...,^}]

Q5 = Q4 a elem(x) a [atom(h) v h e {z] z|<,c1 ,...,cm}]

<q»0,x1,x«> <y,l,x,,x9>Q6 t {*(q- L_^^(y>Zk), y !__2^(g.$n)j

[cr..].=r [zr..]1sl)N UN
0 J

aP AZk+l =q AVl=t ARj^) =+0»9»h:f AT(q)=y a T(g) =g

AqUL =NQ a [atom(h) v h e (z^.. .,zk,Cj ,...,cm>]}

<q,0,x1,x«> <y,l,x1,x0>q7 t {n(q L_?_* (yjZk), y LJ_^ (gl>h,)9

[cr..]1=1, [zr..]1sl)N UNU
0 J

AP Azk+l =q=t ARj(q) =+0»g.n:f a qUL =NQ AT(q)=y
AT(g) = g' AT(h) = h'}

Q8= <n([ci...]1,=1, [z....]^=1)N UN aP aL=N0 Azk =q=t}

Q9 -<b(Cci---Wn0un A{Cl,...,Crn}=N0
m

a A[T(c.)=c' ATtRjtc^.s)-^ ATfRjfc.l.r)^.]}

Intuitively, c^...,^ are old references whose copies are

c-j,...,c' respectively, and the contents of c^,...,c' reflects

already the changes as indicated by P2. z1,...,z|< constitute a
stack of old references, whose copies are z'...,z' Either one

(left) or none of the components of z! are changed as shown by

P-j. Finally {z^ z^Cp...,^} are the only references whose

copies (given by T) have been established. If x is a reference

in the old data structure, T(x) denotes its new image x' (if

defined) and then x+.s = T(x) = x'. K stands for the FSD

appearing in the Q1's itself; J is the FSD appearing in Q .

We will not carry out the complete proof for this example,

which is straightforward and similar to those exhibited before.

Its graphical interpretation can also be easily sketched by adopt

ing some conventions similar to those in 7.5.

104

105

7.7 The Fischer-Galler Algorithm

For a detailed discussion of this algorithm see Knuth [1968],

p. 354. Morris [1972] gives a similar proof using his descendant

functions.

We shall assume that {u, u } is a set of n >_ 1 dis

tinct references. The algorithm, presented here as a two-argument

procedure FG, will check whether a given pair of references in

{u-|,...,un} was declared previously as being equivalent; if not,

this new equivalence is recorded. We shall assume order(l,x)

and linear(x) for all the trees x in this proof. Also, before

the algorithm is performed for the first time, we shall assume
<u. ,x,>

u+ = <nil>, i.e. n(u —J—L-»nil_) for i = l,...,n.

In the first place we prove a relationship between the initial

and final states of the data structure. Then this result is

translated in terms of the equivalence relation we want to represent.

706

(FG(U'V))
Q

s •*- u

* s •*- s.l

t •*• v

T—> t «- t.l

s.l «- t

Q

? Qc
(RETURN J

The inductive assertions are:

x,. <zi,x1>
Qo i A[n(u. —Uz. —1—U>nil)L] au=uk av=um

Qi - Q0 An(\ —*s ~^zk >aiDLk Aaioa2 =Tk
al <s.x,> a. <zk,x,>Q2 =V °(uk—Us !->p -^zk —l~L-»nil)L

* a1o(<s,x1>oa3) =xk

Q3lQ0As=zk

€K*J2_ <zm»xl>(^ iQ3 A^-J^t-i^ _»_!_> jj^ A5lc€2=xm
m

Q5 =^3 An<um •~Ut U^ ^zm m] >nlDL
m

A^o(<t,X1>oC3)=Xni

Q6lQ0AS =zkAt =zm

Q7 = Q6 At/s

Ax. <z. ,x,>

o 1=1{[zi^zk An(ui —Uzi >nlUL.]

r / Ti ^k'V <2m»xl>v [z. =zk aH(u. _U2|C -i-U zm _nU^nii)L u{z }]>

^o

k m

We shall verify now the inductive assertions given above:

1. Q0 is guaranteed either by the initial assumption (just take

Ti =XT zi =ui for i ="'»•••»") or by Qg. uk and um are
the values of actual parameters (1 < k,m < n).

107

2. Q0<s + u}Q1:- trivial (s =uk, a1=x], a2 =xk)

3- Q] As.l^njl^Qg; Since zk.l =n1J_, we have zk ? s. By
Proposition 5.10, we get -elem(a2) and a2 =<s,a3> =<s,x1>°G
Finally by 5.12 we get (L.

4. Q1 a s.l =nil=» Q3: Assume s t zk; then by 5.10 and 5.12:

a1 <s,x,> a3 <Zi,»x1>
(uk >s ——L^P ~^zk —!L-L-»nn) a Valo(<s,xl>ba35

Thus s.l =p. Clearly -atom(p); otherwise atom(a3) and

~linear(x|c). But s.l = nij_ and atom(nil). Thus by contradiction

s = z, .
k

5. Q2{s «- s.UQ^ After the assignment

n(uk —U.y U> s-^»zk *—U> nil)

Aoy(<y,x1>°a3) =xk

which implies Q-,.

6. The. proofs of Q4, Qg, and Q6 are analogous; Q7 follows

trivially.

7. Q7(s.l •*- t}Qg: For each i= l,...,n:

Case 1: z. f z>

Claim: z.4 L.

Assume zk

linear(a). By 5.15 (linearity):

Assume zk eL..; thus u.. -£» zk for some a such that

108

109

(zk -£* z1 vz. -£-* zk) a linear(g)

Since zk.l = z..l = nil, we can prove (as in part 4) that

zk = z., which is a contradiction. Thus zk £ L^.

By Proposition 6.3(c), after the assignment (since s = z. £ L.)

Case 2: z. = z,
i k

x. <z.,x,>

»(u1 —^z. —]—!—»ni1)
L,

Since z f zk, we can prove as in Case 1, that z $ L.

Q7 implies:

t. <z.,xn> ^m'X-i*«(u. —U2|< —K_j->nii)L A n(Zm —Oi_L^nil)2
i m

By 5.5 (merging; since z £ L.):
m r i

x. <Zu»x1> <Zm»Xl>B(u _U zk k] >nil, zm m] >nH)L U2

and after the assignment (since s = zk):

Ti ^W'V <Zm»Xl>°(u. —Uzk k ' >zm m] >njD

i m

L.Uz
i m

8. Q8 => Qg: trivial (with zm and T1-°<z|<>x-|> as the new values

of z. and x. whenever z. = zk).

9. Q6 a s =t => Qg: trivial

This concludes the verification of inductive assertions. The

next step is to prove that the relation = represented by the data

structure is manipulated correctly.

Let = be defined by:

t. <z. ,x,>
(u. = u.) * n(u. —Uz. 1—U>nil)

x. <z.,x,>
a H(u _J-> z —d—!_>m\) A z. =z.

j j I i

Let = and a denote the relation and the predicate induced

by Q0» and =' and °' those induced by Qg.

We shall prove now:

if and only if

ui =-' uj n)

[u, 5Uj] V (2)

[ui - uk A uj 5um]v (3)

Cui '= um A uj - uk] (4)

I. Assume (1): u. =' u.
i j

Thus by definition of =:

xi <zi,x-,> t\ <z'.,x,>
n'(u. —Uz! 2—L_»nil) An-(u _J^Z'. —J—^—» nil)

• • j j

A Z I = Z '.
1 J

Also, by QQ:

x. <z.,Xt> x. <z.,x-,>
h(u. —L> z. !—!—> nil) a Q(u. —^ z. —d——> ni 1)
ii j j

Tl <z.,x-,> xm <zm»x,>
a n(u, _J<-> k_JL*nil) a »(u —ni* z ...—m-.J_._> nil)

v k k —' ni m - -

no

Ill

Case 1: z. = zk and z. = z.

Thus z. = z. and u. = u., implying (2).
i j i j

Case 2: z. = zk and z. f z.

Thus u.. = uk. Also z. = z'., by Qg and using the same argu

ment as in part 4 of the verifications. Similarly z! = z .
J i m

Therefore z^ = z\ = z\ =zm, and u. e um, implying (3).

Case 3: z. f zk and z. = zk

Similar to case 2, implying (4).

Case 4: z. f zR and z. f zR

As in case 2, we prove z! = z. and z'. = z.. Thus z. = z.
' * j j 'j

and u. e u., implying (2).

II. (a) Assume (2): u. = u.
• j

Thus

t, <z.,x,> x. <z,,x,>
n (u1 —U.Zi !—L-^rrMj a n(u. -^r>z. —J—!—»nij[) az.= z.

Case 1: z. = zk

Since zi = z^, by Qg:

•(u. —U^ m].nil) **'("< -*U zm —-*—U nil)

and thus u. =' u..
• j

Case 2: z. f z>

Thus Zj ?« zk, and by Qg:

x. <z.,x,> t. <z.,x-,>
n>(u, —L> Zi 1—i_» nil) A n'(u* —^z. —J—U^nil)

Since z. = z. we have u. =' u..
1 J i 3

(b) Assume (3): u. e u, a u. e u
i k j m

Thus

x. <z.,x,> T. <Z.,Xt>
*(u. >z. l_i-»nil) A°(uk —^zk ——^nil) a z.=

x. <z.,x,> xm <Z ,X',>a »{Uj -1*. z. _i_U nil) a B(Um _•* Zm -^1. nii) a z. =zm

By Q8:

X'i <Zm»Xl> T-i ^m'X^«• (u. —U zm m ' >nil) a n. (u _J^ z m ' >n^)
j m

and thus u. e' u..

(c) Assume (4): u. = um a u. e u.
i m j k

Similar to (b).

zk

Thus we proved that e' is the desired relation in terms of

e. We did not bother to prove the relation induced by Qg, since

it is trivial (either it is the one induced by Qg, or the same

one induced by Q , i.e. e).

112

r -

a

CHAPTER 8

CONCLUSIONS

In the preceding chapters we have shown how the FSD's can

be helpful in representing arbitrary data structures, and in proving

correctness of programs manipulating such structures.

The technique we proposed can be viewed as an extension of

the method described by Burstall [1972]. An important idea intro

duced by this method is the idea of partitioning a data structure

into disjoint parts, whose "meaning" is determined by the program

in question. This disjointness allows a very simple treatment of

assignment statements — only the part containing the reference

being assigned to is affected. In Burstall*s formulation the

abstract expressions used for state description do not contain

memory references. His system is used mainly for data structures

with no arbitrary sharing of pointers or circularities. We do not

see how his method could be used to handle our examples 7.2, 7.3,

7.5 and 7.6. Our extensions to Burstall's technique include the

explicit use of reference sets, the concept of a closed FSD, and

finally the function R with which we reconstruct the contents

function. The price to be paid is a somewhat clumsier notation,

but the inconvenience is minimal when the data structure can be

handled by both methods, as shown by Example 7.1.

We did not develop fully the case of linear lists, except for

a restricted definition in Proposition 5.15. In general it is

preferable to treat linear lists separately, since they present

some different properties and are used differently from general

trees. It seems that linear cases, even with arbitrary sharing,

113

as in Example 7.7, can be handled by Burstall's method with some

extensions, such as the linearity property.

The connection of our work with that done by Morris [1972] is

less apparent. However a closer look at actual proofs exhibits

several parallels. Morris partitions data structures into sets

of references with certain properties by using his restricted

descendant functions. D(E,F) — where E and F are sets of

references ~ is defined to be the set of all references reachable

from the references in E, without passing through those in F

(but possibly including them). Further refinement is given by

restricting the corresponding son functions (i.e., the set of

allowable direct descendants at each node) depending on some local

conditions such as tags, flags, etc. It turns out that in actual

proofs, the values of D(E,F) used correspond usually to some

S(x), and the property used to restrict the son function is

related to some property we state about x. It seems, however,

that our concepts are easier to represent graphically, and conse

quently should be more intuitive.

It is rather difficult to assess how valuable a given tech

nique is, and we hope that the examples in Chapter 7 show that

the one we propose can be used in a convenient way. We have found

that the use of graphical interpretations is very helpful, and

that once the graphical proof is carried out, the rigorous proof

is straightforward even if it involves complicated assertions such

as in Examples 7.5 and 7.6. As a matter of fact the graphical

proof is usually sufficiently convincing since it is based on

rigorously proved properties.

114

115

In principle, our method is as general as that of using con

tents functions, since we can use RK instead. It seems, however,

that it works nicely only in cases when the concept of trees can

be naturally associated (or already exists) with the actual

objects manipulated by the program. Programs which perform

basically data structure traversal seem to fit this class. We do

not know if our technique would fare equally well (and we suspect

it would not) in other cases, like for instance graph manipulation

or evaluation of X-expressions. A method described by Poupon &

Wegbreit [1972] might prove valuable in this case. There is

another class of data structures for which our technique is certainly

not. worthwhile. We are referring to the kind of data structures

described in Knuth [1968], Section 2.3.3, where heavy use of redun

dant pointers is made in order to represent objects which are

essentially free trees. In such a case the sharing and circularity

patterns are uniquely determined once the free tree is specified.

Some work done by us shows that it is possible to have a system

of predicates to specify redundancies, so that a language processor

can do automatically pointer updating for such elementary operations

as node insertion or deletion. It would be easy then to adapt

Burstall's technique to handle these cases.

There are several aspects of our technique which we have not

studied, and which might be of interest. As we mentioned in

Chapter 5 it would be interesting to have a finite set of properties

characterizing the FSD's, so they can be used as axioms. They

would be essential if we wanted to implement an automatic proof

verifier imbedding the concept of FSD. A related problem is that

of automatic generation of inductive assertions.

Another interesting problem is the treatment of subroutine

calls. In the examples we circumvented the problem by carrying a

global FSD into the procedure itself. It should be possible, at

least in case of free data structures, to get invocation rules

similar to those in Hoare [1971] and Morris [1971b],

An aspect we have not mentioned at all are proofs of termi

nation of algorithms. They are usually simpler than the other

part of correctness proof. The simplest way seems to be by proving

that the cardinality of some set of references (e.g. |S(x,)| in

Example 7.2) is strictly increasing (or decreasing) with the main

loop. Since the set of references is always finite, the algorithm

must eventually terminate.

It is easy to see that our technique can be easily adapted

to most programming languages with data structure facility. The

basic concepts would remain the same, but the relation between

program expressions or statements and FSD's might change. It would

be of interest to study how the application of our technique can

be simplified through convenient language design.

We would like to conclude this report with some remarks about

the activity of proving program correctness itself. We do not

believe that the present state of the art allows us to prove

rigorously and directly the correctness of such large programs as

compilers or operating systems. However, we do believe that certain

programs can and ought to be proved. We are referring mainly to

algorithms which are published for general use. Considering the

776

number of potential users of such algorithms, the effort spent

on providing their certification is certainly worthwhile. It is

still a matter of controversy how formal such a certification

should be. We know of published algorithms which were "proved" to

be correct in some informal way, and which turned out not to be so

We do believe that a certain amount of rigor is essential, however

a less formal proof based on sound and proven concepts will fre

quently suffice. As a final argument for proving activity we

would like to point out that it contributes enormously towards the

understanding of the algorithm and makes easier its implementation

and modifications.

117

118

REFERENCES

Burstall, R.M. [1972]. "Some Techniques for Proving Correctness
of Programs Which Alter Data Structures," Machine Intelligence 7.
D. Michie (ed.), American Elsevier, New York, N.Y., pp. 23-50.

Elspas, B., Levitt, K.N., Waldinger, R.J. and Waksman, A. [1972].
"An Assessment of Techniques for Proving Program Correctness,"
ACM Computing Surveys 4, 2, pp. 97-147.

Ferrari, D. [1970]. "An Algebraic Approach to the Implementation
of Data Structures," Department of Electrical Engineering and
Computer Science, University of California, Berkeley, California.

Floyd, R.W. [1967]. "Assigning Meanings to Programs," Proceedings
J. Schwartz
Rhode Island,

of a Symposium in Applied Mathematics, Vol. 19, J.T. Schwartz
(ed.;, American Mathematical Society, Providence, Rh
pp. 19-32.

Good, D.I. [1970]. "Toward a man-machine system for proving
program correctness," Ph.D. Thesis, University of Wisconsin,
Madison, Wisconsin.

Hoare, C.A.R. [1969]. "An Axiomatic Basis for Computer Programming,"
Communications of the ACM 12. 10, pp. 576-580, 583.

Hoare, C.A.R. [1970]. "Proof of a Program: FIND," Communications
of the ACM 14, 1, pp. 39-45.

Hoare, C.A.R. [1971]. "Procedures and Parameters, an Axiomatic
Approach," Lecture Notes in Mathematics. Vol. 188, E. Engeler
(ed.), Springer Verlag, Berlin, pp. 102-116.

King, J C. [1969], "A program verifier," Ph.D. Thesis, Carnegie-
Mellon University, Pittsburgh, Pennsylvania.

Knuth, D.E. [1968]. The Art of Computer Programming. Vol. 1,
Addison-Wesley, Reading, Massachusetts.

Knuth, D.E. [1973]. The Art of Computer Programming. Vol. 3,
Addison-Wesley, Heading, Massachusetts.

London, R.L. [1970a]. "Bibliography on Proving the Correctness of
Computer Programs," Machine Intelligence 5, D. Michie and
B. Meltzer (eds.), Edinburgh University Press, Edinburgh,
pp. 569-580. (Also Technical Report #64, Computer Science
Department, University of Wisconsin, Madison, Wisconsin).

London, R.L. [1970b], "Bibliography on Proving the Correctness of
Computer Programs - Addition No. 1," Technical Report #104,
Computer Science Department, University of Wisconsin, Madison,
Wisconsin.

)
t

119

London, R.L. [1970c]. "Proving Programs Correct: Some Techniques
and Examples," BIT 10, pp. 168-182.

Manna, Z. [1969]. "Properties of Programs and the First-Order
Predicate Calculus," Journal of the ACM 16, 2, pp. 244-255.

Manna, Z., Ness, S. and Vuillemin, J. [1972]. "Inductive Methods
for Proving Properties of Programs," Proceedings of an ACM
Conference on Proving Assertions About Programs, SIGPLAN
Notices 7, 1, pp. 27-50.

McCarthy, J. and Painter, J. [1967]. "Correctness of a Compiler
for Arithmetic Expressions," Proceedings of a Symposium in
Applied Mathematics, Vol. 19, J.T. Schwartz (ed.), American
Mathematical Society, Providence, Rhode Island, pp. 33-41.

Morris, J.H. Jr. [1971a]. "A correctness proof using recursively
defined functions," Formal Semantics of Programming Languages,
R. Rustin (ed.), McGraw-Hill, New York, N.Y.

Morris, J.H. Jr. [1971b]. "Comments on 'Procedures and Parameters',"
Department of Computer Science, University of California,
Berkeley, California.

Morris, J.H. Jr. [1972]. "Verification-Oriented Language Design,"
Technical Report #7, Department of Computer Science, University
of California, Berkeley, California.

Park, D. [1968]. "Some Semantics for Data Structures," Machine
Intelligence 3, D. Michie (ed.), American Elsevier, New York,
N.Y., pp. 351-371.

Poupon, J. and Wegbreit, B. [1972], "Covering Functions," Center
for Research in Computing Technology, Harvard University,
Cambridge, Massachusetts.

Reingold, E.M. [1973]. "A Nonrecursive List Moving Algorithm,"
Communications of the ACM 16, 5, pp. 305-307.

Thorelli, L.-E. [1972]. "Marking Algorithms," BIT 12, pp. 555-568.

	Copyright notice 1973
	ERL-404 (1 of 2)
	ERL-404 (2 of 2)

