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ABSTRACT

Let (&,<?, P) be a probability space and let 3 , t £ R , be an

increasing family of sub-cr-fields of 3 such that 3* is trivial and

^ = V 3. Let ^ be the family of all square-integrable martingales
t 2 ^mfc with mQ = 0. Suppose that L (£2, 3, P) is separable. Then there exists

a finite or countable sequence in ^T, m , m , ..., such that i) the stable

i 1 12
subspaces generated by m , nr are orthogonal for i ^ j; ii) <m >><m >>..

where <m > is the nonnegative measure on the predictable a-field on

8 x R+ induced by the quadratic variation process <m > of m , and iii)

every m in ^ has a representation m =£. I <J>. (s)dm a.s. for some
t ± J0 i s

1 2
predictable integrands <f> . Furthermore, if n , n , ... is another such

i i
sequence, then <n >~<m > for all i.
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The Multiplicity of an Increasing Family of a-fields

by

M.H.A. Davis1" and P. Varaiya1"1"

I. Introduction. Let x , t € R be a zero-mean, real-valued, right-

continuous, separable Gaussian process. Cramer (1964, 1967) has shown

that there exists a finite or countable sequence of Gaussian processes
1 o

Zt' Zt* *" with independent increments such that i) z , z** are orthogonal
12 i

for i ^ j, ii) <z > V <z >*r ... where <z > is the nonnegative Stieltjes

measure on R+ defined by the increasing function <z1 > =ECz1) ,and

iii) *t =* L, J Ki(t,s)dzg for some real-valued kernels K ;the integral
12is a Wiener integral. Furthermore if y , y , ... is any other sequence of

processes with independent increments satisfying i), ii) and iii) then

<z > ~ <y > for all i. The result depends crucially upon the Hellinger-

Hahn Theorem.

This paper extends the result above in the following manner. Let

(ft, £?, P) be a probability space and let 9, te R ,be an increasing
t T

family of sub-a-fields of 3"such that ^. is trivial and J = V 5^.
t t

Let ITt be the family of all square-integrable martingales m with mn =0.

Suppose that L (ft, J% P) is separable. Then there exists a finite or

countable sequence in *fy£, mt> mt> ..., such that i) the stable subspaces
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generated by m , nr are orthogonal for i f j i.e., the quadratic co

variation of m ,m ,<m ,m*M = 0 a.s., te R+; ii) <m >>- <m >T ...

where <m > is the nonnegative measure on the predictable a-field on

ft x R induced by the quadratic variation process <m > of m , and iii)
t

every m in etlT has a representation m = 2-# J <j>. (s)dm a.s. for some
L i "0 1 S

predictable integrands <}>.; the integral is a stochastic integral. Further

more, if n ,n ,...is another sequence inTWr satisfying i),ii) and iii) then

(n1 >^<mi > for i=l,2,3,... . The proof of this result is an adaptation of that

of the Hellinger-Hahn theorem as presented in Stone (1932), and uses some impor

tant properties of the spaceVc. The length of the 'base* sequence m ,ra ,... is

called the multiplicity of the family (ft, J*l, P) and as a corollary of the result

it follows that the multiplicity is the minimum number of martingales

o

necessary to generate (via stochastic integration) the entire family Jfl .

One example illustrating the main theorem is presented in Section 4

while the main result is proved in Section 3. The next section is merely

a collection, from the literature, of definitions and results which are

preliminary to the main theorem.

II. Preliminaries. Throughout (ft, jy P) is a fixed probability space

and !3l, t € R is a fixed, increasing family of sub-a-fields of ^} with

30 trivial and 3 =V J:, Jfo denotes the family of all martingales m
2

(with respect to (ft, J t P), t e R ) such that mn = 0 and sup Em < «».
C ° te R+ t

*">• is a Hilbert space under the inner product (m,n) = E m n (see [4, Thm. 1]).

The predictable a-field J^is the a-field of subsets of ft x R generated by

all the adapted process y on (ft, ^ , P) which have left-continuous

sample paths. A process x on (ft, *£ , P) is said to be predictable if
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P.
processes is also denoted by J0 and there will not be any confusion

between the two interpretations.

To each m G uf there is associated a unique predictable process

denoted (m > with nondecreasing sample paths and with <m >Q = 0, such

that the process m - <m > is a martingale [4, Thm. 2]. To each pair

m, n in*77t is associated a unique process <m,n > e y^with <m,n >Q«0

such that <m,n > is the difference of two processes in J$J with nondecreasing

the function (w, t) H- x (w) is -Y-measurable. The set of all predictable

sample paths and such that m n - <m,n > is a martingale. It turns out

that <m,n > = •=• (<m+n > - <m > - <n >) and <m > = <m,m > (see [4, p. 80]).

The processes <m >, respectively <m,n ) , are called the predictable

quadratic variation of m, respectively predictable quadratic covariation

of m and n; the adjective "predictable" will be dropped in the sequel but

should be kept in mind when referring to Meyer (1970).

Let m, n € wPl . Then <m,n > induces a finite (signed) measure, also

denoted by <m,n >, on the a-field Jr via the linear functional <J> G Jr Y>-
00

E J <f> d<m,n > . The measure <m > is nonnegative. Let Lp( <m,n >) =
0 00

{<f> e J)\e / \$ |p |d <m,n >| <»}, p » 1, 2. Let <J> e L2( <m >), then
"0 s "

f GL (<m,n>) for all n € W and there is a unique martingale <J>©m € TK

called the stochastic integral of <$> with respect to m such that for all

.t

<<j>om,n >^ - § <j> d <m.n > a.s.T ' t «Jj Ys ' s

Throughout "unique" means unique modulo modification; xt is a modification
of yt if xt = yt a.s. for t € R^., and this will sometimes be written x ^
yt or x = y.
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(see [4, Thm. 3.])

A closed subspace cL of the Hilbert space >n, is stable if m € jk,

$<= L2( <m >)implies ^6 ot. If Tfcc 7^6 then ^(ft) is the smallest
stable subspace containing j[ . The fact that for m € Th. the mapping

<f) h>» $om is an isometric injection from L ( <m >) into 7Y\ implies that

'joCm) »" {4>om|<() e L2( <m >)}. If & is astable subspace %L =(m e ?y^|

(m,n) = Enj^^ ao for all ne J^}. if <£, ^£f are two stable subspaces

*. i. £ «•«• £• C£X.

Lemma 1. If ^ is a stable subspace and n € Jl, then <m,n > =0 for

2
Proof. En (i|»om) » 0 for all <f> € L ( <m >). By the differential rule

(see [4])

Thus

W* W U9

noo<4,om>oo = / nt.*tdmt + / (*°m)t_dnt + / *td[n,m]t

0 « En (♦•n) - E / A d[n,m]
0 E c

However, from [4] again,

/CO 00

<fV d[n,m] - E / <f> d <n,m>
0 0

2
Since these relations must hold for all <|> € L ( <m >) it follows that

<n,m > = 0. n

The following result follows easily from the Hilbert space structure
2

of s7v\t and Lemma 1 above.
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Theorem 1. Let jf C V?T be a stable subspace. Then

(i) 4L is stable,

2
(ii) for each m € "ttv there is a unique decomposition of m, m =

n + n1, such that n € ^C and <n1 ,y > =0 for all y € flC.

Remark. If c£ =^(y) it is easily shown that ,m'y> € L (<y>) and
———— a \ y /

in the above decomposition, n =—^7—*?— ° y.

III. The Main Result. For m, n in %7)t, <m>^<n> or<n>-^<m> means

that the measure <n > on (P is absolutely continuous with respect to <m >
00 00 —.

i.e., E / <f> d<m > =0 implies E f <J> d<n > =0 for ^e ^, <m > ~
0 s s 0 8 s

(n > means <m >fr" <n > and <m>-^<n>, whereas <m > j_ <n > means that

the two measures are mutually singular i.e., for some set A € (r <m >(A) = 0

and <n > (AC) = 0.

Proposition 1. Let ©L = ^k(m ,...,m),K£00. Then there exists a
1 K V0 11

sequence n , ..., n in dv such that n = m and

(i) ^.(n1, ...,nK)-^,

(ii) ^(n1) j.&(«r>), 1* J

Proof. Let n = m •. For i > 1 let m • n + n' be the unique decomposi-

i i \i> 1 i-1 i- i v/? 1 i-1
tion of m such that n € (cL(m , ..., m )) and n' e ^(m , ..., m ).

It is easy to check that (i) and (ii) are satisfied.
13

9 12
TC = 00 simply means that m , m ... is a countable sequence.
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Theorem 2. Let d£ = 3<m , ..., m ), K <_ °°. Then there exists a
1 R ^-P isequence n , ..., n , in<A_ with R <_ K and n £ 0 for all i such that

(i) £(n , ..., n )= <£*

(ii) ^(n1) ± £<nj), i*j

(iii) <n1 > >• <n2 >> <n3 >> ...

Proof. By Proposition 1 it can be assumed that <s(m ) j_ J£(nr) i ^ j.

Applying the Lebesgue decomposition theorem to the measures <m > for i > 1,

there exist measures y_, u. on ^such that

, i < i , i<m > o ux + y2

i ±'1 ^

i i""1 i
n,l E <m >»

and sets A. € fr^such that

^(A^) - 0, <mj >(A±) - 0 j - 1, ..., i-1.

Now set A- « ft x R and define

nl •" £ i 1i TA om±- (1)
i«l 2 E <m > Ai

00

Clearly n € JL it will be shown that it has the following properties:

-6-



(a) m1^ ^(n1)

(b) (n1) ^m1 > for all i

K

To prove (a) let B = ( U A )c. Then
i»2 1

K 2E <m1 >
2E <n£ >I^n1 =£ " 1^ ./ =I^m1

i=l 21 <m > i
00

Now <m >(A±) =0 for i >2 sod > (BC) =0. Thus I om « 0 and hence
B

m. » 2E <m1 > I on1 e ^(n1)
1 » B

To prove (b) take E€ ^such that <n >(E) • 0. Since the nr are

orthogonal, this implies, from (1), that

(m1 >(E nA±) «0 i-1, 2, ... (2)

For i = 1 this says <m > (E) = 0 so that <n > Y <m > and the result is

established by induction, if

<mj > (E) =0 for j= 1, ..., i-1 (3)

implies <m ) (E) • 0. Suppose (3) is true. Now

(m1) (E)=»<mi> (EOAJ+<mi> (E n A?)
i i

- <m1 >(EH a£) from (2)

» y* (E na£) since y*(A^) - °
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i i"1 1 iBut y- < £ <nr > so that, using (3), <m >(E) = 0 as required.
j=l

Thus n satisfies (a) and (b) above. Now let q , i >_ 2, be the

i ^ i 1
projection of m on («Mn )) i.e.,

i i d <m ,n >„ 1 i 1 //x
q = m V=— °n , « m - a.°n say. (4)

.d <n > l

Apply Proposition 1 to dUq , q , ...) to obtain a sequence p , p , ...

with p o q such that c£(q ,q , ...) = <£(p ,p , ...) and ^(p ) j_

<£(p )> i ^ j. Then, using (4), it follows that

dk m «s(n ,m ,m , ...) = c£.(n , p , p , ...) .

2 2 3 2
To obtain n , start with the sequence p , p , ... and construct n

1 12 2
in the same way that n was constructed from m , m , ... . Then n will

have the properties

(a») p2 € <£(n2)

(b») <n2 >y (p1 > for all i >2.

Now m € ^(n ,n ) since m-p«m-q€ jj(n ) by (4) and p S X(n )

by (a1). Also from (4)

<q > » <m > + <a. <>n > - 2 <m ,a. °n ).

From (b) above, <n > *y <m > for all i so that this equation implies

<n > y <q > and consequently <n >^ <n >.

2 3 4 f 1 2 •*-
Having constructed n one projects p , p , .. on (<^-(n ,n )) and
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3 AS
then n is constructed. This procedure continues for n , n , ... and

it is clear that the sequence thus obtained satisfies the assertion. El

Theorem 3. Let ^ - ^(m1, ..., mK) - ^(n1, ..., nR) K, R<_ « and
suppose that

(i) ^(m1) 1 £(mj); ^(n1) _l £(nj), i * j

(ii) <m1 > ><m2 >>*....• (n1) V<n2 >>-... .

Then <m > ~ <n1 > for all i, in particular K= R.

Proof. Because of (ii) there exist predictable processes <J>. € L2( <n1 >),
a = !L— 9 such that for a e (p
1 d <n >

00

(n1 >(A) =E f IA i± d(n1 >i =1, 2

Also for each i m e £.(n , ..., n ) so that there exist predictable

processes f± e L ( <nJ >) such that

j J

Because of (i) it follows from this representation that

^jrtfikVkd<nl> *«•«

-9-
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In particular, putting i • j gives

d(m1 > v *2 a tc\
d <n > k lk k '

and since <*<m ) j_ ^.(mJ) for i # j

5^fikfjA " ° a,s- <q1> fori^ <7>

It is immediate from (6) that <m >"^ <n > and by symmetry <n >*^<m >,

thus <m > - <n > .

Now assume that <m > - <n > for i « 1, ..., r. It will be shown

that <m >~<n >. By the Lebesgue decomposition theorem there are

measures y , y on 6^ with <m > = y + y , such that

1/, r+1. 2 , r+1 .y-s<n > , y ^ <n >

i.e., there exists B€ P such that y (BC) = 0, <nr >(B) «• 0. Suppose

y (B) > 0. Then <m >(B) > 0 and there exists BQ C B, B € /Tsuch that

J-00

I I„ d<nr+1 > -0 a.s. (8)
n'0 B0

f x* d<m
J0 B0

1+1 >>0and d<m ± >>0a.s. <n1 >on BQ (9)
d < n >

Now (n1 >y (n1^1 >> <nk > for k >. r+1, so, using (5), (8) implies

I» *v =0 a.s. (n1 > for k^ r+1. (10)
a0 K

-10-



Also (n1 > - (m1 >>* <mk >> (m**1 > for 1 <k < r+1 so that from (9)

d<m1 >>0 as. (n1 >on B_ for 1<_ k <_ r+1 (11)
d <n > U

Combining (7) with (10) it follows that

r t
£ f±j£jk <J>k - 0 a.s. <n >on BQ for i * j (12)

whereas from (6), (10) and (11)

f2 <f>. >0 a.s. in" > on Bn for 1 <i <r+1 (13)
ik k 0 — —

r .2 . _ , 1

k=l

Now fix (u»,t) eBQ such that (12), (13) hold, and let x1 eRr be the
vector with jth component equal to / <j>.(w,t) f (w,t). Then (12) implies

that x , x~ are orthogonal in Rr for 1 < i ^ j < r+1 whereas (13) implies

that these vectors are non-zero which is a contradiction so it must be

the case that <m > ^ <n > and by symmetry <m > >* <n >. The

result follows by induction. ™

Definition. The multiplicity of the family (ft, rJ- 9 P)t € R is the
12 K

length K of (any) sequence m , m , ..., m of non-zero martingales in

T/f such that

(i) ^2 = ^(m1, ..., mK)

(ii) ^(m1) x £(mj) i*j

(iii) ^m1 >><m2 >Y ...
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Denote the multiplicity by M(*T»t).

From Theorems 2 and 3 follows immediately the following result.

Corollary. If d^n1, ..., nR) - >Hl then R>M(7>£) .

Remarks. 1. Kunita and Watanabe [6, p. 227] have shown that every

martingale which is measurable with respect to the family of a-fields

generated by a vector Brownian motion can be represented as a Stochastic

Integral with respect to the Brownian motion. This result implies that

if (8» 3\» P)t e R is generated by aGaussian process then the definition

of multiplicity given here coincides with the one due to Cramer.

2. The definition of multiplicity and the main results similarly extend

the corresponding ones given in Motoo and Watanabe (1965) for the case

of martingales of a Hunt process.

3. Let x , t € R be a process defined on the probability space (ft, ?, P)
t T

and let & be the sub-a-algebra of J" generated byx ,0 £ s £ t. Suppose

that *3f is trivial and j= V J0 and suppose that L (ft, 3*, P) is
t

separable. Then one could define the multiplicity of the process x, M(x) ,

as equal to M(7n ) where 7)\ is the family of square-integrable martingales

on (ft, 3v> P) • It: should be kept in mind however that M(x) is not in

variant under modifications i.e. y » x a.s., t € R does not necessarily

imply that M(x) = M(y). Of course if x and y are separable modifications

of each other then M(x) » M(y).

IV. An example. Let x , t6R , be a process on (ft, 3*> p) taking values

in a countable state space Z with discrete topology. The sample paths

-12-



of the process are assummed right-continuous, and x is fixed. Let J

be the a-field generated by x ,s <_ t, and I?"=V jf". Let "WT? be
8 t t

defined as usual. Suppose that from each state z e z the process can

jump to at most n different values. This is illustrated in the state-

transition diagram, Figure 1, where the different transitions are

labeled a., ..., a . Define the "counting" processes P , 1 < i < n, by

P (w) - the number of transitions of type i taken by x (uj) in the

interval [0,t]. The integer-valued processes P are locally square-

integrable and so there exist nondecreasing predictable processes P

such that

i i -i

mt Pt Pt» 1 -1 -n

is a locally square-integrable martingale. Furthermore^: (m )x^(mr)

if i * j.

Assume that the processes P have continuous sample paths. Then

it is shown in [1] that (m1 > = 21, and TU2 » Vftn1 m11). Assume
ai

further that the P have a representation of the form

ds

V Jo 8

for some predictable processes X , 1 < i < n, and that X > 0 a.s. for

all i and all t, (Note that A ^ 0 a.s. always since P is nondecreasing

Then (m1 > - (nr* > for all i, j so that M(>r6 » n.
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Fig. 1. State-transition diagram for the example.
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