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ABSTRACT

In the usual modified two stream instability (MTS) the drift between

the electrons and ions is well above the ion thermal velocity. The real

part of the frequency is well above u> , justifying leaving the ions

unmagnetized. This report considers lower drift velocities where the

resulting lower frequencies require that the ion y x B force be kept.

The more complicated dispersion relation is solved for a limited set of

parameters. For drifts on the order of twice ion thermal speed, it is

found that the MTS instability consists of distinct bands of interaction

(in both w and k), near each nu)c±, where the MTS waves interact with the

Bernstein modes. For lower relative drifts, the instability vanishes.

For larger drifts, the growth in bands remains and the usual MTS con

tinuous complex w roots appear, as found by others neglecting the ion

v x B force.

*This work was supported by AEC-AT04334 PA 128.



I. INTRODUCTION

In studies commonly made of the Modified Two Stream (MTS) instabil

ity, the possibility of ion cyclotron effects has been ignored through

the use of a nonmagnetic approximation to the ions. Although a non

magnetic approximation to the ions should be pretty good when the MTS

growth rates are much larger than the ion cyclotron frequencies, dis

crepancies might be expected for low drift velocities where the frequen

cies become comparable. Also, even though MTS growth rates may be large,

the saturation times of the MTS instability are usually on the order of

ion cyclotron times, opening up the possibility of ion cyclotron effects

again. For these reasons, a dispersion equation has been developed for

the MTS instability which includes magnetic ion effects and a preliminary

study has been made to determine how the inclusion of these effects will

modify the results normally obtained for the MTS instability. The re

sults at present indicate that, for small relative drift velocities,

ion cyclotron effects do indeed become more important to the basic dis

persion relation, thus opening the possibility of more accurate informa

tion on the threshold for initiation of the MTS instability. At larger

values of the relative drift velocity, the MTS interaction also appears

to excite growing Bernstein modes but with growth rates less than the

MTS growth rate.

II. DISPERSION RELATION

Figure 1 indicates the basic model underlying the MTS interaction.

Electrons are postulated to be drifting through the ions with a net
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velocity perpendicular to the magnetic field for some reason: E x B

effects, collisionless shock, etc. Waves which have a small component

k parallel to the magnetic field allow electron motion parallel to

the magnetic field to interact with the perpendicular electron drift

and the ions to produce the growing waves of the MTS instability. The

interaction is essentially electrostatic and allows the dispersion rela

tion to be written in the general form

e (k,.w) = 1+ ye(k, u>) + v±(k,u) ° 0 , (1)

where y, and y are the respective susceptibilities of the ions and the
x e

electrons. The difference between the study presented here and what others

have done is due to the inclusion of possible magnetic effects in the

ion susceptibility y. .

For the electron susceptibility, we use the same one as McBride

et al., in their study of the MTS interaction in the warm electron limit.

This susceptibility is given by

ue = 2 2
k \Z

de

1-e"XIo(X)
t/w-k±vd

(2)

2 2
where X =» k, p , I is the zeroth order modified Bessel function, and

Z is the derivative of the plasma dispersion function, p , X. , and v

are respectively the electron Larmor radius, Debye length, and thermal

velocity while vd is the relative drift velocity between the electrons

and ions. The only difference between the equation as written here and

the one used by McBride et al., is that we wish to consider the electrons
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drifting relative to the ion frame of reference while McBride et al.,

operated in the electron frame of reference. A transformation to the

i

doppler shifted frequency w • to - kx v, would bring the two formula

tions into correspondence. McBride1s susceptibility is good in the

range u> « G , and kp<< 1. We shall want to restrict this somewhat
e z e

further due to limitations on the ion susceptibility, and so require

kxP0<< 1* (In general, k « k, for the MTS interaction). This, how-
™ z

ever, allows us to make a small X approximation in the el (X) term

—X 2 2of the susceptibility, which becomes e I (X) ~ 1 - k± p and results

in a simplification. For further simplification, we normalize the

frequency to the ion plasma frequency, the wave number to the ion Debye

length, lump the different parameters together and use kj/k = 1. The

susceptibility then has the following form:

^-M<2'fe:(<-4M.-1.-I-5*--*,! f *[-=- lS-Vr.|J. O)

where we have used the new dimensionless variables defined by

W = •

pi

K = kXdi,

2

I «-&£ ,
r 2
r fl z

e
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, 2 2
z _pe

Kr " — 2
k V

T

T --* ,xr T± *

vd
r v±

Note that the normalization is such that a wave with phase velocity

W/K = 1 is traveling at the ion thermal velocity. For zero drift veloc

ity, the I term would be responsible for the cold plasma resonance

at the lower hybrid frequency. The Ky term, on the other hand, is

responsible for the MTS behavior. Examination shows it to be a meas

ure of the component of wave parallel to the magnetic field (small

K , small k , etc.) The MTS behavior arises because the term can be
r z'

used to represent an 'effective* electron mass. For example, Kr = 1

occurs when

^z 2 2
fc2 pe pi

and the electrons have a characteristic frequency equal to the ion plasma

frequency due to the small z component to their motion and thus an equal

'effective' mass (the result can best be seen by skipping ahead to Eq. 5

where the presence of the K factor in the cold electron approximation
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adds aterm of the form ^ to the susceptibility). In terms

of the effective mass concept, it is worth nothing that K < 1 implies

that the electrons act more massive than the ions, while for Kr > 1 the

electrons act less massive than the ions.

For the magnetic ion susceptibility, it was found convenient to use

2
the formulation which Lampe et al. used as an electron susceptibility

in their study of the beam cyclotron instability. Applying Lampe's

result to ions, for the weak condition kjp > 1, one can write the sum

over the cyclotron harmonics of the full susceptibility to give:

»^7?
di

1+f C Z(£)- Z(-C) + i cot (*5jS (4)

./z(c) + Z(-C)t
where

1 0) CO

VT" k /Tk v

Although this susceptibility was developed for waves perpendicular to the

magnetic field, we are only interested in small k where kt/k z i.

The approximation should be good under the condition that ion cyclotron

3
damping is unimportant, which is given by
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k p.« 1 , which is equivalent to
z i

K « 1

,T
kt P «\l ~ or ^^ t^nB normalized wave number

r

r r

Since we are interested in the realm K. < 1 and Ir ~ 1, this is not a

severe limitation, since it just restricts us to wavelengths longer than

the ion Debye length, a condition we might have expected in any event.

The same limit has already been used to simplify the electron mobility

term. It is-worth nothing that, in the susceptibility, all cyclotron

harmonic effects have been absorbed into the cot term.

Taken together, the dispersion relation obtained from these sus

ceptibilities is subject to the following conditions:

e

k p > 1 , and

^di*1

The susceptibilities have been tested by taking them to various

limits. It can be shown for example, that the ion susceptibility leads

to normal Landau damped plasma waves in the zero magnetic field limit,
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and the full dispersion reduces to the normal MTS approximation in the

cold limit and to the lower hybrid resonance for zero drift velocity.

III. RESULTS

Preliminary investigation of the dispersion relation has been carried

out for a variety of situations. Although it has been found useful to

t

make approximations to Z in the electron susceptibility, the complete

Z functions were used in the ion susceptibility in all cases (in fact dif

ficulties arose in earlier attempts to use an expansion of Z for the ions

due to convergence problems for large values of the argument). Because

of computer overflow problems, it was also found useful to use a trigono

metric identity for calculating the cot function,

cot(x + iy) « sin(2x) -i sinh(2y)cotu t- iy; cos&(2y) - Cos(2x)

2
T w

All studies were made with T « — » 1 and I = —§— = 1 as being
r Ti r n2

e

representative of the parameter range for the MTS behavior. With I = 1,

/m w .
one hasy — «• -^— which was chosen to be equal to 4.5 (giving a

me i
mass ratio of 20.25) in order to simplify finding roots at multiple

cyclotron harmonics.
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Two general regimes were studied. The first case made use of a
t

large argument expansion of the Z function in the electron susceptibility.

This stopped all electron damping effects and made it possible to iso

late the pure ion cyclotron modifications to the MTS instability. The

i

full Z was also used in the electron susceptibility but with more in

complete results.

CASE I. Large Argument Expansion in the Electron Susceptibility

For large argument, one has

J W/K - V \ K T
* z( £]» * r _ . (5)
2~\/2 ^/K-Vr|K T

r r

We should note that this expansion is always valid in the cold electron

limit T -*• 0 (except for those waves which have phase velocity exactly

equal to the relative drift velocity W/K = V ). For equal electron and

ion temperatures, T = 1, and the validity of the expansion depends on

the magnitudes of K and w/K relative to V . The range of parameters

where the large argument expansion can cause difficulties is shown by

the shaded diagonal area of Fig. 2, along with the limitations imposed

by the basic dispersion relation shown by the surrounding shaded areas.

The significance of its diagonal nature is that waves whose phase veloc

ity are sufficiently close to the relative drift velocity of the elec

trons can be damped by electron motion along field lines. The width of the

damping area, where the large argument expansion breaks down, is related to

the magnitude of K , as we would expect, since K is a function of the
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wavelength along the magnetic field. For small K the wavelength along

the magnetic field is long and little damping occurs, while for larger

K. the wave length is shorter and a greater range of waves can be damped.

Although we donot want to forget about these possibilities of electron

damping, it is worthwhile considering the electrons as cold for a x*hile

since much insight can be gained in how the MTS interaction evolves in

regimes where ion cyclotron effect dominate.

Figures 3 and 4 show the evolution of the MTS interaction at two

different values of K , K = 1.0 and K = 0.1 respectively. Each figure

is broken up into a series of plots of the dispersion relation for in

creasing values of relative drift velocity. Figures 3a and 4a, which

show the dispersion relation for V « 0, reveal the normal ion Bernstein

A

modes and compare quite well with the results of previous studies.

A comparison of Fig. 3a with 4a indicates that the effect of larger

values of K and thus k is to raise the frequencies of the Bernstein

modes at the lower cyclotron harmonics. What happens when there is an

increasing relative drift velocity is best evidenced by comparing the

series in Fig. 3 which has a little more complete data. The series shows

the first negative frequency cyclotron harmonic gradually shifting in the

positive frequency direction under the influence of the relative drift

velocity of the electrons. As it shifts far enough so that it can inter

act with the positive frequency cyclotron harmonics, coupling occurs and

growing modes arise, at first as bands in K which then merge into a

continuous region of growth for a relative drift velocity around V > 2.
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Going through the series in Fig. 4 with smaller K. and kz and thus greater

'effective' electron mass, one can see the initiation of the unstable waves

at lower relative drift velocities. The band structure shows up more

clearly than in Fig. 3 and one can see that stable MTS waves exist between

bands of unstable waves.

The lines representing those waves whose phase velocities are equal

to the relative drift velocities are shown on the figures, and indicate

the general area where electron damping effects could be important.

Since the locus of growing roots generally follows the drift velocity

lines, it is evident that damping effects can cause important modifica

tions to the results shown in the two figures. In this regard, it is

worth noting that the roots shown in Fig. 4 approach the drift velocity

line's more closel^than those of Fig—3. This would appear to be re

lated to the fact that the electrons of Fig. 4 with smaller Kr have a

greater 'effective' mass. It is expected that the full dispersion would

show damping to predominate at the lower drift velocities but that the

information on the two figures should be an aid toward gaining accurate

information on the threshold of the MTS interaction.

At larger values of drift velocity where the unstable bands have

merged, the results look quite similar to what one obtains from the

normal MTS cold dispersion relation, shown in Fig. 5. A comparison of

Fig. 5 with Fig. 3f, 3g, and 3h shows the widths of the unstable bands

to be about the same, but that the maximum growth rates are less than

those predicted by the cold dispersion with the differences being greater

at the lower drift velocities. For these larger values of the relative

drift velocity, one still sees the presence of the Bernstein modes but
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it was not possible to get roots in areas near the dominant MTS inter

action and thus impossible to tell exactly how the two regimes couple.

Studies done with the full Z in the electron susceptibility shed some

light on this however.

Case II: Complete Electron Susceptibility

Results of this part of the study are rather scanty, but some comment

can be made in reference to Figs. 6> 7 and 8 which show the growing

modes for K.» 0.01, 0.1, and 1.0, respectively, and fairly large drift ve

locities; A distinguishing feature of all three figures is that the MTS

interaction excites growing Bernstein modes. In each of the figures

the growth rates for each harmonic are shown with their baseline attached

to the harmonic for which they apply. Fig. 6 with K =» 0.01 and V = 2

shows no MTS behavior at all, only bands of excited cyclotron harmonics

whose locus generally follows the line representing waves whose phase

velocity matches the drift velocity. Fig. 7 on the other hand, with

Kra 0.1 and V «4.0, is in a regime where the MTS interaction dominates.

The phase velocities of the MTS waves are higher than those of the Bern

stein modes, resulting in low coupling and only small growth rates for

cyclotron harmonics. Fig. 8with Kr => 1.0 and V =4.0, shows a regime where

both cyclotron and MTS effects are important. Although the MTS inter

action dominates, the maximum growth of the excited cyclotron harmonics

is more than 50% of the maximum MTS growth. These results are only indica

tive of the cyclotron effects to be observed and further study is needed

to delineate the regions of importance and the instability thresholds.
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SUMMARY

A dispersion relation has been obtained that includes magnetic ion

effects on the MTS interaction. A preliminary study of its effects in

dicate that magnetic ion effects should be important in determining the

threshold of the MTS interaction and that excitation of growing cyclotron

modes add a new facet to the MTS interaction at somewhat larger values

of drift velocity.
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FIGURE CAPTIONS

Fig. 1 The MTS interaction is produced when electrons drift across

a magnetic field relative to the ions. Waves with a small

component k parallel to the magnetic field are unstable.
**z

Fig. 2 Shaded regions show areas where the dispersion relation may

be invalid. Diagonal shaded region in the center indicates
i

where the large argument expansion of Z used in Case I

breaks down.

Fig. 3 Plots of the Case I dispersion relation for K = 1.0 and

various relative drift velocities. Frequencies are normalized

to the ion cyclotron frequency and wave numbers are normalized

to the ion Debye length. The diagonal lines show where phase

velocities are equal to the relative drift velocities. Solid

lines indicate stable waves; for instability, the real part

of the frequency is represented by dashed lines and the

imaginary part by dotted lines, (a) through (h) for

V - 0, 0.25, 0.5, 0.75, 1.0, 2.0, 4.0, 8.0, respectively.

Fig. 4 Same general diagram as Fig. 3 except that here Kr = 0.1, with

(a) through (h) for V - 0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0 4.0.

Fig. 5 Real and imaginary parts of the roots of the cold MTS disper

sion relation for K =1.0 and V =2, 4, and 8. Roots are
r r

drawn to same scale as in Fig. 3.
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Fig. 6 Roots to full dispersion with K - 0.01, and Vr - 2.0.

Growing roots of cyclotron harmonics are shown with baselines

attached to the harmonics for which they apply.

Fig. 7 Roots to full dispersion with K - 0.1 and Vr • 4.0.

Fig. 8 Roots to full dispersion with Kr = 1.0 and Vr = 4.0.

-15-



Ion orbit

Fig. 1

Electron
orbit

Electrons have
net drift in
the perpendicular
direction

1 * vd

Motion of electrons
along magnetic field
lines due to small

wave



Fig. 2



w

5-

ttpi

4H

3

2H

-2

(a) Kr=I.O Vr =0.0

~i "—i—i—|—i—i—i—i—|—i—i

0.0 0.5 1.0 K

Fig. 3a



(b) Kr =1.0 Vr =0.25

W

-rr = 0.25

Pig. 3b



oe-sj&

Q'0=JA0*1=JM(3)



(d) Kr=I.O Vr=0.75

7-

W

6-

5-

Fig. 3d



(e> Kr =1.0 Vr =1.0

7-

W

6- , /4-'-o
5- ^——• /'
4- -//

- / /
3-

—/ /
2^ _ / /

/ / ,
1- / /

o-

-1-

/ S *—^-~*-

i

-2- 1 1

0.0 0.5 1.0 K

Fig. 3e



7-

W

6-

5-

4-

2-

0

(f) Kr =I.O Vr =2.0

/¥ =I.O ;:K*

/

I
*

/
I

t

I
*

I
*

I

I
0

I
I •
1/

0.0
"T"

0.5

Fig. 3f

.0



7-

W

6-

4-

3-

2-

/
/

4
0.0

(g) Kr= 1.0 Vr=4.0

*=40 /

/
' /
/

/ .
/ /

/ •-

/
/

\
\

\
\

\

0.5

Fig. 3g

.0 K



7"

W

6"

5-

4-

3-

(h) Kr =1.0 Vr=8.0

W
K

80i

Fig. 3h



7-

W

6-

5-

Wpi

tt\
4-

3-

2-

I-

0

0.0

(a) Kr =0.1 Vr=0.0

t J 1 1 r
0.5

Fig. 4a

.0 K



(b) Kr =0.1 Vr=0.25

7-

W

6-

4-

3-

2-

* =0.25

Fig. 4b



(c) Kr =0.1 Vr =0.5

W

6-

Fig. 4c



(d) Kr =0.1 Vr=0.75

7

W

5-

4-

K
/ ^=0.75

Fig. 4d



(e) Kr =0.1 Vr =1.0

W

Fig. 4e



7-

W

6-

4-

3-

2-

0

0.0

(f) Kr =0.1 Vr =1.5

/
/

•

/

/'

/

/
t r

'/ ,

'(/,

//

— ^/ V

i T"

0.5

'^—\«--'

Fig. 4f

1—r
i.o

^ =15

t r

K



w

(g) Kr =0.1 Vr =2.0

/
f.2.0

/

6-

4-

3-

0
/

t r •f^T

0.0 0.5 1.0 K

Fig. 4g



7-

W

6-

5-

4-

3-

2-

/
0

0.0

(h) Kr=0.l

/
/

/

W

K

Vr =4.0

=4.0

t r

0.5

Fig. 4h

1 1 "
1.0 K



II

lf>

\

\

T
«3-

$"...-

\
\

\
\

\

\
N ..V

y

^
ro CM

ID

d
m

to
•H
Pn



W,

I
*

L
o.o

Kr =0.01 Vr =2.0

/J"**
J^Z
9

I

I
1^1
9

I

A.
\ growing cyclotron harmonics

0.5 1.0 K

Fig. 6



7-
Kr=O.I Vr =4.0

if =4.0

/

/
/

• .

/
/A
ft-

v

y
TT
i v

/ ^^ growing cyclotron harmonics
\ V^-MTS growth

1
0.50.0 1.0

Fig. 7

K



Wi

/
*

/
0.0

Kr =1.0 Vr =4.0

/ f *•"

t
I li— i

/
7

growing cyclotron harmonics

\ ^MTS growth

0.5 1.0 K

Fig. 8


	Copyright notice 1973
	ERL-402

