Copyright © 1973, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

. INTRCDUCTION TO PROGRAMMING SCIENCE, PART II:

PROOFS OF ASSERTIONS ABOUT PROGRAMS

by

W. D. Maurer

(Memotandum No. ERL-394

21 August 1973

ELECTRONICS RESEARCH LABORATORY
College of Engineering

University of California, Berkeley
94720

PART II

CONTENTS

CHAPTER: SIX PARTIAL CORRECTNESS

6~1 The Assertion Method 201
6=2 Justification of the Method 209
6=3 Control Path Determination 217
6=+ Verification Conditions 225
6-5 Subscripted Variables in Assertlons 233
Notes 242
Exercises P
CHAPTER SEVEN FINDING ASSERTIONS

7-1 Determining Asseriions Automatically ol
7=2 Assertions in Loops 2
7:& The Language of Assertions 261
7< Debugging by Proving Correctness 269
7«5 A Larger Example 277
Notes 285
Exercises 286
CHAPTFR EIGHT TERMINATION

8=1 Loop Expressions 291
8=-2 Finding Loop Bxpressions 299
8:3 Graphical Properties of Programs 3

8<4 Loop Expression Sequences 31
8«5 General Termination Conditions 322
Notes 331
Exercises 332
CHAPTER NINE MACHINE LANGUAGE

9=]1 Pure Procedures 3&5’
9=2 Verified Purity 341
9«3 Self-Modification 349
9« Integer Arithmetic 356
9-5 Floating Point Arithmetic 364
Notes 375
mxercises 377
CHAPTER TEN SEARCHING AND SORTING

10-1 Linear Searching and Timing 359
10-2 Binary and Hash Table Search 337
10~3 Permutations and Uhsortedness E%E
10-l+ The Tree Sort

10-5 Merging and Exchanging 413
Notes 421
Exercises Y4o2
References 4o7
Index 430

The research reported here was partially supported by
National Science Foundation Grant GJ=31612,

CHAPTLR 5 IX

PARTIAL CORRECTNESS |

6~1 The Assertion Method

What dnes it mean for a program to be correct? To illus-
trate what correctness is, and how we prove it for programs writ-
ten in algorithmic languages, let us consider a program for
Buclidts algorithme

Suppose we want to find the greatest common divisor of 16
and 10e The divisors of 16 are 1, 24 4, 8, and 165 the divisors
of 10 are 1, 2, 5, and 10, The common divisors are 1 and 2, and
the crootest of these, of course, is 2, Euclid's algorithm, in its
original formy is a method of obtaining the answer (2 in this cesc)
by successive subtroction. At each stage, we subtract the smeller
of “he two numbers we have from the larger, and then cross out
the lurger number, leaving us again with two numbers. Thus, if we

stort with the two numbers

16 10

the first step gives us

¥ 10 6

leaving us with 10 and 6, so that the second step gives us

w M 6 ok

- 201 =~

and the next two steps give

A 0 g b 2
P VAN

The process stops when we have two numbers that are the same,
Why does this work? Let us look at the second stage, where
our numbers are 10 and 6. The greatest common divisor of 10 and 6
is the same as the greatest common divisor of 16 and 10. Indeed,
this illustrntes a general facts If I > 0y J > 0y and I=Jd > O
then GCD(I, J) = GCD(I-J, J)e Thus, at each stage, we have two
numbers whose greatest common divisor remains the same. At the
end, we have two numbers that are equaly say they are both equal
to I, then GCD(I, I) = I,
| First let us prove the above mathematical properties of GCD.
Iet x be a common divisor of I and J; so that I = axy J = bx. Then
I-J = (a=b)x, so that x is a ddivisor of"I«JofsconverSely, if x is
a cormon divisor of I=J and J, then I-J = cx and J = bhxy so that
I = (c+b)x, and x is a divisor of I. This shows that the get of all
common divisors of I and J is the same set ag the set of all common
divisors of I-J and J (so surely the greatest element of one set is
the greatest element of tha other). Our other fact, GCD(I, I) = I,
1s clear since I = 1+I and no integer larger than I may divide I.
How let us write a program to implement this algorithms

I=M
J=N
1 IF (I=J) 29 4y 3

J=J-=1

GO TO 1

- 202 =

3 I= I-J
GO TO 1
L CONTINUE.

At statement nmnbei:'. 1, we test which of our two current quanti-
ties, I and J, 1s the larger, If they are the same, we stop (by
transferring to 1;-.). If I is larger, we subtract J from it, and
then "bross it'out" by giving it this new value. If J is mlarger,‘- '
we do the reverseo

Oour first step in proving the correctness of this program
is to say precisely what it does. It 1s not enough to say that it-
calculates the GCD of M and Nj we also have to say where the re-
sult will be found, In this case, the result will be the final
value of I (and also of J, but we can ignore this fact if we want
to). We say thét the f£inal assertion of this program is I = GCD(M,
N). In general, an assertion 1s a condition, or relation involving
the variables of the program; this assertion is called final be=-
cause it is true when the program is fl nished. -

Next we must ask whether this program always works, or whe-
ther there are any initial conditions that must be true in order
for the program to worke In this case, there are indeed cer tain
initial conditions. We are finding the greatest common divisor of
M and N, and therefore M and N must be positive integers. (In fact,
if either M or N is ‘zeroy for example, the program goes into an end-
less loop, and.thus camnot. be correote) We say that our initial
assertion is (M >.O e_z_m_i_A N > 0)o We are now able to make a precise
matvhe?'xatic_al statement of the correctness of this programs:

If the progrom is started at the beginning, and if, at that
timey M > 0 and N > O, then it will terminate (that is, it will

not go into an endless loop)y and, when it terminates, we will have

- 203 ~-

I=0cn(M, N)o

" In general, the statement of correctness of any program
will be of this form° :Lt will involve a specific starting point
(which is not always at the beginning of the program), an initial
assertion, and a final assertion.

The next step in the proof is to construet intermediate as-
sertions. An intermediate assertion is an asgertion which must be
irue every time the program reaches a certain gstatement :in owr . .
programy called & pontrol points In this case, we chosse éne--
contro 1 point, namely statement number 1, Every time the progranm
reaches this stabement,wédlwbi¥ehave

(GOD(I, J) = GCD(My N) and I > 0 and J > 0)

(just béfore ths statement is exeouted). That g3, tRe %wo I1fitsr-
mediate quantities, I and J, will be positive, and their greatest
comnon divisor will be the same as the greé.test common divisor of
our original two quahtiti esy M and N,

Ie&rning‘hoy:f.’bb find “the proper intermediate assertions in
a mrogram is very much like leerning programming ifselfs I, "o
is necessary to deternine informally why the program works, and
then to express this in the form of conditions which must hold
every time we pass some point in the program. In thls case, we de-
termined that the GCD of our two intermediate quantities would re-
main constant. Our nathematical statement GCD(I, J) = GCD(I=J, JT),
which will be used in the proof, depends on the hypotheses I > O
and J > 0, and, anticipating this, we have included these as part
of our intermediate assertion (since it is, at any rate, clear that
they are always true whenever the program passes the given point).
Lear ning where to put intermedi~te assertions, on the other hand,

is a quite mechanical process, which we shall take up in sections
- 204 =

7-5 and 8-30
@ Wa rewrite the program with our three assertions -- the
initinl, intermediate, and final assertions -- given as comments,

and with a statement number on every statements

C M>0,N>0
5 I=M

6 J=N

C acp(I, J).= GCD(M, N)y I >0, T >0
1 IF (I-J) 2y 4y 3

2 J=J-1

Vi GO TO 1

3 I=1I-J

8 GO TO 1

C I=GCD(My N)

4 CONTINWE

Note that we may think of the initial and the final assertions,
as well «s the intermediate assertion, attached to control points,
n~mely the beginning and the end of the programe

Jext we dntermine the control M A. Q;m&ml ,na,m is a se-
quence on‘ statements windch tb Program mems as 11: goes from one
control point to the next. The initial gg_sg;_m and the final asser-
£ion of a control pa.‘hh are those assertions which have been associa-
ted with the beginning and the end of the path, respectively. The
Yerification Qondigm o:t‘ & sontrol: ma:h may be stated as follows :

If the path is sterted with its initial assertion valid, and

the pnath is actua o lowed, then, y___ 1t is finished, its

final ascay tion W.Lll be y_a_l_i_o

f .

- 205 -

Let us sce what this means for our first control paths

C M>0yN>0

5 I=M .
6 ,

o]

J=N

Is the verification condition valid? In other wordss If M > O
and N > 0y and if we then set I equal to M and J equal to N,
will GCD(I, J) be equal to GCD(M, N), and will I and J be greater
than zero? Clearly yes. In fact |

GCD(I, J) = GCD(ify N) follows from Mand J = N;
M and M > O3

= Nand N > O,

]

I>0 follows fronm

“q4 H O H
il

J>0 follows from
OQur second :¢ontrol:path is

C GCD(I, J) = GCD(My N)y I>0, T >0

1 IF (I=J) 2, 4, 3

> J=JF-1

7 G0TO1 aa
C GOD(I, J) = GCD(My N), I>0,7>0

(Recall that our intermediate assertion is supposed to hold Jjust
before statement number 1 is executed. Thus Statement ‘number 1
occurs at the beginning of this path, but notvat the end,) If the
intermediate acsertion of our program :Lsé,true at "thé: beginning-ef
this: pathy 1s it true at the end?

Clearly I > O will be true at the end, because I > O was true .
at the beginning, and we never changed the value of I, Alsoy J > O ‘3
will be true at the end, because we set J equal to the positive

- 206 -

quatity J=I, (We know that J=I is positive, because we do not
take this path unless I=J is negative == we would transfer to
statement 3 or %, rather than 2,) To verify GCD(I, J) = GCD (M, 1),

let us set up a table of varilables and their values:

Variable I J
Initial value i 3 o n
Final value i i m n

In particular, if 1 and j aré the initial-values of I and J, shen
j=i is the final value of J. We must show that if GCD(I, J) =

GCD (3, N) was true at the beginning, then it will be true at the
end, That is, we must show that

@D, 1) = GD(@, n) impliss G, I-1) = GCD(@, n)
This will clearly be true if we can show that
GCD(L, 1) = &OD(L, J-1)

and this follows, gs we have-seen, provided that i > 0y 1 > O, and

j=i > Oe The first two of these follow immediately from the inter-

mediate assertion; while the fact that ,1_-3, is posl tive has already

been shovm and used in connection with the previous patho o
What about the third path? We may write thils as

¢ GCD(I, J) = GCD(My N), I >0y J >0
1 IF (I-J) 2, 4, 3

c I = GoD @i, W) “

This is the path involving the transfer to statement number "l'o
If this path is taken, then I and J must have been equal when the
pzth started. But in that case, since GCD(I, I) = I, we must have

- 207 -

had I = GCD (i, N) at the beginning of the path. This means that
we will still have I := GCD(M, N) at the end, since none of the
variables have their volues changed,

We pass over the proof of the verification condition of the
fourth path, which is

C GCD(I, J) = GCD(My N)y I >0, J > O
1l IF (I-J) 24 4, 3

3 I=I-3J

8 GO TO 1

C GCD(I, J) = GCD(My N)y I >0y T > O

since this is exactly the same as the second path 1f we inter-
change the r8les of I and J, and also the r8les of M and No

What can we now show by induction? Suppose that the pro-
gram is started at the beginning, and suppose that its initial
assertion is valide The first time it gets to a control point,
the assertion at that point will be true, since it can only get
to a control point by following a control path, and ﬁa have shown
for every control path that its verification condition holds. In

fact, no matter how the prosram twisis and furns, every time it
passes a control noint, the associated asgertion Em be true,
This is, in particular, true of the final assertion, if we ever
get to the end of the program -- which we may note. In other words,
we have now proved that either the program is correct gr 1t goes
into an endless loop. Thus there 1s one final stage to our proof --
to prove that the program terminates -- and that will be done in
section 8=l |

A program is partially correet if it is either correct or
endless. Thus our GCD program has now been proved partially

correcte
- 208 =

6-2 Justification of the Method

The proof given above is. typlcal of the way in which we
aormally .prove the partial correctness of a programe There re-
main, however, certain questions about its validity, or the va-
1lidity of any other such proof. Some of these questions are con-v
cerned with the fact that assignment statements, such as I = M,
mern different things in different situations; others are con-
cerned with the veriety of finite=preclision results which are
obtained on various computers. This second type of objection will.
be met in sections 9-4 and 9w, after we have intrédaced the no-
tion of a restricted command; for the mementy et us.confine
ourselves to the first type of objection.

Connider the statement I = M, What does it mean? We have
ass:med that it means "“set the new value of I to be the current
valunof Me" In FORTRAN, this is all that it could mean; but,
even in FO-TEAN, there are difficulties, For example, what if
our program includes & declaration of the form REAL I, Jy My N ?
Nowhere in the proof have we required M and N to be integers. Yet
if they are not integers, the result produced will be meaningless,
Another peculiar situation arises if I and M are formal .paraméters
to a stbroutine, and the corresponding actual parameters are the
sames If we call F(K, K), where our GCD program is embedded in a
subroutine defined by writing SUBROUTINE F(I, M)y then I = M sets
X ~qual té itcelf, This would nullify our proof of partial cor-
rectnesso_:

vore obvious problems arise if the GCD program is written

in sone othnr language than FORTRANe, It should be elear-that our.

- 209 -

assertion method is not specific to any particular language,

md 1t is casy to sen how the same sort of arguments given in

our proof might be applicd to a PL/I program, sn ALGOL program,
etco But in these lnngumges, the assignment I = M, oi its ana-
logue, might have completely different meaningse In PL/I, I =M : .
might be an array operation, setting I(k) equal to M(k) fer
every value of k as determined by the declaratlons of I and Mo
In ALGOL, where we would write I s= M, 1t 1s quite possiblé for
M to be the neme of a function having no parameters, and this
function might, forvexample,:have the side effect of setting N
to =ro, which would cause the algorithm to loop endlessly under
all conditions whatsoevers |

+ is therefore clear that the validity of a proof of par-
tial correctness of any program depends in an essential way upon
the meaning of the statements in that programe The "meaning" of a
statement, however, 1s, more precisely, its semantics. As we have
seen in Part I, if we define the semantics of a language, then
every exncutable statement in that language, and eveiy assertion
which is expressible in it, has certain semantic attributes which
are state vector functions. In order to resolve difficulties of
this type, thrrefore, we must determine the relat ions between
these semantic at tributes and the varification conditions vhich

we h~ve defined.

e reamacn o e ———— <. e = 7 ¢ e = S e U,

-duriaebtpﬁogi;mi

let us consider them;kiég_ééhé;élgpath‘tn’

k)
A R S
b .- 4 - e

C M>0, N>O |
j o

6
c

e

J=1XN L
GCD (I, J) = GCD(My H)y I > 0y J > o

- 210 =

We havc seen in Ch&pter 2 that an expression such as (M > O and

N > 0) has a yalue which is a functlon of the state vector, and,

sinee this is a Boolean expression, the value is either true or
false (of any state vector). We have also seeny in Chapter 3, that
4 statement cuch as I = M has an gffech, which takes the old state
vector into the new state vector. Similarly, J = N has an effect,
while (GCD(I, J) = GCD(My N) amd I > O and J > 0) has a valuee If
these effects and values are properly defined, we may express the
verification condition for this path in terms of themo

Let P be the expression (M > 0 and N > 0), and let vy be its
value, Let Ql be the statement I = My and let e1 be its effects
let Q be the statement J = Ny and let e, be its effecto Finally,
let R ‘be the expression (GCD(I, J) = GCD(M; N) and I > O and J > 0),
and let Ve be its value. The verification condition may be infor-
mally stated as "If P is true, and Ql and Q2 ae then executed,

then R will be true,"' If P is true, then vP(S) % true, where S is
the current state vectore. The next state vector, after I = M is
executed, is ei(S); after J = N 1s executed, the state vector is
e2(el(S)). At this point R must be true, that is, we must have
vp(e,(e,(8))) = true. Thus the verification condition may be for-
mally stated as

(v (s) = __gg) Blies (v, (82(91(8))) = &zgg)

for any state vector S,

What are Vpy €q9 eé, and vp? We have made certain unstated
assumptions, in the prbof of our GCD program, about the meanings
of its'various components. Let us now state these assumptions by

making plausible formal definitions of the above functions:

- 211 -

) {.’c_w if s(M) > 0 and S(N) > O

v =

P false otherwise

el(S) = 8%, where S%(I) = s(M) .

St€z) =S(z) for z # 1
e,(8) = 5%, where S'(J) = s(N)
'S'(z) =8(z) forz #J

true if GCD(S(I), S(J)) = GCD(S(M),
VR(S) = S(N)) and S(X) > 0 and S(J) > O

false otherwise

The validity of the verification condition is now easily
proved, Suppose that vP(S) = true; that is, S(M) > 0 and S(N) > 0.
We must show VR(ez(el(S))) = true. This reduces to

GCD (8" (T)§ 8(J)) = GCD(S" (M), S*(N)) and S"(I) > O and S"(J) >0 -

vhere S" = e2(el(S))o Writing St = el(S), so that S" = e5(8'),
we have S"(J) = S¥(N) = S(N) and S"(I) = S'(I) = S(M). Therefore

the above equation reduces to
GCD(S (M), S(N)) = GCD(S(M), 8(N)) and S(M) > 0 and 8(N) >0

which reduces immediately to the original ’hvpothesise

We have shown that if vy, eyy €n9 and vy are defined as
above, then the proof of validity of the given verification con-
dition is mathematically rigérous. The definitions of these fumc-
tions, however, may be obtained in an equally rigorous menner fromv
the semantic rules of the language in which this program is written.
If there are side effects or array declarations whick give rise to
inherited attributes that cause the finctich definitions to be dif- B
ferent from those given above, the verification condition may pos=—

- 212 -

k]

sibly be invalid. In that case, we are often able to exhibit a
particular state vector.S for which the condition is invalid,.
Let us do one more example. Here is the second control

pzth of our GCD programs$

C GCD(I, J) = GCD(My N)y I >0y T > O

1 ¥ (I"J)'?s_’*a 3

2 J=J = I- |

7 GOTO1

c GCD(I; J) = a«¢p(My N)y I >0, I >0
We shnll use the def in‘ition of the vélue va of the condition R aé
in the preceding path. If Q is the statement J = J - I, then its

offect eQ will pe defined as

eQ(}':‘o) = 8%, where St(J) = 8(J) - s(I)
S'(z) = S(z) for z # J

The effect of the GO TO statement is the identity fumetion, and
thus may be ignorede

Our informal statement of the verification condition here is:
If R is true, and the given path is followed, then R will again be
true at the end of thé path, Now when is the 'given path followed?
Only if I=J < O at the beginning of the patho. The condition I=J < O
also has a value which is a function of the state vectore If we

denote this condition by C and its value by Voo then we may take

. true if 8(I) -s(J) <O
A (S) {
false otherwise

What is our formal statement of the ver ification condition? Let S
be the current state vector at the start of the pathe Our hypothe-

- 213 =

sis is that R is initially true, that is, v3(S) = true. Another
prothesis is that the given path is actually followed; and, for
this to happen, we must have v, (S) = trye also. At the end of
the path, the current state vector will be eQ(S), and R must be
true at this time, Thus the verification condition is

(v (S) = grue and vy (S) = true) implies (vR(e (8)) = true)

Again, this is easily proved. Suppose that v (S) = true and o (S)
= fzue. Then GOD(S(I), S(J)) = GCD(S(M)y S(N)), S(I) > 0, and
S(J) > 0, and also S(I) = S(J) < 0, We must show that

GCD(ST(T), S1(3)) = GCD(S* (), ST(M) and 81(I) > O and S1(3) > O

where S?' = e _(S). By the definition of eqy Ve have

Q
St(I) = s(I)
St(J) = 8(J) = s(1)
sSt(M) = 8(M)

St(N) = s(N)
so that the above egiation reduces to

GCD (S (I), S(J) - S(I)) == GCD(S (M), S(N)) and 3{I) >0
and S(J) = S(I) >0

The hypothesis directly implies S(I) > 0 and 8(J) = S(I) > Oe The
hypothesis, together with the condition

(a > 0, b> 0y b=a > 0) implies GCD(a, b) = GCD(a, b-a)

with a = 8(I) and b = S(J), imply GCD(S(I), S(J) - 8(I)) =
GCD(S (I), S(J)) = GCD(S (M), S(N)), But this last condition may
be proved for all integers a and by using the definition of the

- 214 -

GCD fuw:.ction, just as in the preceding sectiom. This:completes -
the proof of.velidity of this verification condition.

In the reainder of Part II,-ths¢prﬂgrﬁm85udmh.whichwwscn‘ 2
will be dealing are assumed to contain assignments; transfer state-
ments, conditionalsy and assertions whose semantics is obtained in
10 ighly the same manner as we have done in these examples., In par=-
tianlar, side effects wlll be assumed ébsent, and each identifier
will be presumed to refer to a single variableo Treatment of more
general cases will be taken up in Part IIl.

A different kind of question about the assertipn method
concerns itS¢universality, rather than its validity. Is it really
true that the cocrrectness. of an arbitrary program may be expressed
in terms of initial and final assertions? There 1s, -in particular,.
one trpe of program for which the expression of its correctness in
this way involves the introduction of extra varlables. Conslder,
for evample, the usual method of interchanging the values of two

algebraic-language variables X. and Y3

TEMP = X
X=Y-
" Y = TEMP

Suppose we treat this as a three- statement program. What is its
final sssertion? When the program is finished, X is equal to the
iitial value of ¥, and Y is equal to the initial value of Xo We
cennot express this, however, by writing (X = Y and ¥ = X),

_Let us denote the initial value of X by XO and the initial
v:lue of Y by YogiThen we‘méy write the finsl assertion X = YO “
aid Y - X0e The fact that X0 1is the initial value of X may be ex-
pressed by writing X = X0 as gg initial assertion -- and similérly

- 215 -

for Y0, Hence o't~ ~rogrrm, exprcsse! as a single control path with

initial »n" finrl ascsertion, is

C X = X0, ¥ = Y0

TEMP = X
X=X
Y = TEMP

C X = Y0, Y =2X0

It is ass'med here that X0 and YO are idemtifiers which do not
anpear as voriablc nanes in the program containing the above
three statements; clearly -uch identifiers may alweys be chosen.
In general, supvrose that we have a program which calculates
the new valuesof certain variables xl, Xpy eeey aS functions of
their old values. We may always give initial and final assertions
for such a program by introducip_g new varlables yl, Tor eeey and
writing Xy = yl, Xo = Yoy eoe aS initial assertions and X =
fl(Yli Tpr eeody X, = £, (795 Voo cee)y oo as final assertionse
Such programs are very commonj we could obtain one from our GCD
program, in fact, by simply omitting the first two statements.
The resulting program w uld set I equal to the GCD of the initial
values of I «nd J; we could write I = GCD(IO, JO) as the final as~
sertion and (I - I0 and J = JO and I > 0 and J > 0) as the initial

assertion. Even the one=-statement “program"
I=I+1

should be treated in this way; the initial assertion is I = IO and
the final ~ssertion is I : IO + 1. A more practical example is the

sorting of an array in place, to b treated in sect lon 10-3.

- 216 -

6=3 Control Path Determination

Given a program with control points and assertions, how do
wo determine all of its control paths? In a small program, it is
* easy to check informally that we have them all; for a larger pro=
gram, we need an alpgorithmic procedure. We shall now give such a

nrocndure, qnd °t the same time, while discuss ing it, we shall be

able to gain further insight into the problem of where control -
points should be placed in a program (see also section 7-95)e
Befope defining our algordthm formally, we shall exemine how

it operates on the following sample programs

C K <20
F=K-10
1 IF (J «GE. 0) GO TO 2
KA = 5
GO TO 99
> K=0
3 IF (N) 98, 6, I
% Kt=6
GO TO 99
4 M=N

C K= (W(wl)/2) - (M*(M+1)/2)
5 K=K+N
M=M-1
IF (M oNEe O) GO TO 5~
6 KX =1
C KX #1op K= NHNHL)/2
99 CONTINUE

- 217 -

Our ~1lgoritim storts by finting the first control point in
the progrem, which in this easce i¢ nt the beginning of the progr: m.
It will initially find 211 control paths which start at this first
control nointe It keeps, at 0ll timesy a current path containing
zero or more statements, and a staek which ke~ps track of con-
dition:l statenentse The current path is initlalizecd to contain
no statementsy and tho stack is iqitialized to be empty.

The first st~tement we encomnter is J = X - 10, This 1s an
assignment stitementy so we sinmply add it to the current pathe
Now comes II' (J o&F, 0) GO TO 2, Clemrly there nrec two classes of
paths -= those which go to 2 at this point and those which do not,
We will first treat tliose whiech go to 2. If a path goes to 2, then
clearly J > 0 at this voint in that pathe Therefore we add the con-

dition J > O to our cwrrnt pathy which now reads

J=K-~- 10
(T > 0)

Note that we hove abbrevinted onr notation for paths, We no longer
include statecuent numbers; .lso, instead of including an entire IF
statcenent in - pathy we Include only the condition which must be
rue If that poth is takeno

It is :lso necassary to record on the stack what we have
done, In this case, we put on “he stack a pninter to the condition
(T > 0) in thwe current path, together with a pointer to statement
aunber 1 in the programe

Mow we nroceed from st atement number 2, The first statement
we eaceanter is K = 03 as before, this is simply added to our cur=~

rent votl, .iow we come to IF (N) 98, 6, & o As a genercl rule, when

- 218 -

any statement has several alternative transfer points, we start by
considering the first of these. If transfer 1s made to statement
number 98, then we must have N < O at this point, and.this 1s the
condition we put in the current patho At the seme time,. we put a
pointer %o this condition on the stack, together with a pointer
to stntement number 3 in the program, Our current path and our

stack are now as followss

CU'RENT PATH ~ STACK
J=K-10 'Pointer to (J > 0) in cufrent path
(T >0) Pointer to statement number 1 in program
K=0 Pointer to (N < 0) in path
(N < 0) . Pointer to statement number 3 in program

The next statement is KX = 6, which is added to the current
pathe Now we come to the statement GO TO 99, In our abbreviated
notation for control paths, there is no reason to include GO TO

statements; so dil we do at this point is to continue processing

from statement number 99, When we & rive at that statement, however,

we discover that there 1s an assertion there. Thus the current.
path is a control path, as follows (with its initial and final
assertion)s |
C K<20
J=K-~-10
(T > 0)
K=0
(V< 0)
KX =6
C KX #1op K= Nc(H1)/2

- 219 -

Having found a control path, our next step 1s to look at
the top of the stacke In this case we have a pointer to (N < 0)

and a pointer to statement number 3, We change the condition

(N < 0) in the current path to the next alternative condition,
which is in this case (N = 0), The pointer to (N < 0) which we
had in the stack is therefore now a pointer to (N = 0), Since
we also have on the stack a polnter to statement number 3 in
our program, we can see where to go if N = 0 == in this qase,

to statement number 6. The current path and the stack are nows

CURRENT PATI STACK
J=Ka«10 Pointer to (J > 0) in current path

(J > 0) Pointer to statement number 1 in program
K=0 - Pointer to (N = 0) in current path
(N - 0) Pointer to statement number 3 in program
The next statement is KX = 1, vhich is added to the cur- -

rent path, and now, just as beforey we are at statement number 99,
which has an associated assertione Thus the sccond control path

‘has been fouxndy as followss

C K<20

J =XK-10

(J >0)

K=20

(N = 0)

KX =1 »
C KX #1or K= N*(i+1)/2

\4

Now, just as before, we look at the top of the stacke The

next alternative tronsfer point is clearly (W > 0), and we chwnge

- 220 =

(1=0) to (N> 0) in the current pathe This is the last alter-

native transfer point for statement number 3, and because of this

we remoye the pointer to (N = 0), and the pointer to s atement

number 3, from the stack entirely. Thus our current path and stack

. are nows
CUZRENT PATH STACK
J=XK«~ 10 Pointer to (J > 0) in current path
(3 >0) ' Pointer to statement number 1 in program
K=0
(N> 0)

The last alterhative transfer point of st atement number 3
is statement number %, We proceed therey put M = N on the end of
the current path, and now, since statement number 5 is associated

with an assertion, we have found the third control paths:

C K<20
J=K-10
(J > 0)
K=0
(N > 0)
M=N
C K = (Ne(W1)/2) - (M*(M+1)/2)

At this point, let us consider what might have happened if
there were no assertion at statement number 5. In that case we
would have added KX = K + Nand M = M - 1 to our current path,

. ns well as the condition M # O, This would have hrought us back

to statement 5 againe If we are nnt careful, our path-construction

routine will go into an endless loop} It should be clear, however,

- 221 -

thet this is «n error case, since it wo»ld give us an infinite
number of control viths, In fact, for every noodl tive integer n,
there woald be a control path thrt went n times aronund the loop
before ererging at statement number 6o The error is fow.d when
our current path comnes back to a stateﬁent that 1is alrendy on' it
(uwiless that statement has an associated assertion).

We proceed with'our routine by looking agnin ~t the top
of the stacke This tiﬁe we determine that the nexﬁ alternative
condition is (J < 0). Since this 1s the last of the (two) alter=-
native conditions for st~tement number 1, we remove two pointers
from the stack, as before -- leaving the stack empty, The condi-
tion (J < 0) is taken to be the end of the new current path, which is

J=K =10
(T < 0)

Proceeding ~s before, we find our fourth paths

C K<20
J:=X-10
(J < 0)
KK =9

C KX #1gp K= N*(N+1)/2

At this point, we try to look at the top of the stack; but the
stacl: is emptyo This means that we have finished all paths which
start at the first control point. We thus must look through the
program until we £ind th» seeond control point, at which point
we procead, exactly &5 bofore, to find all control paths which
start there, In this case there are two of themj; the first nne

that we find ics

re

C K = (N*(N+1)/2) - (M¥*(M+1)/2)

K=X+ N
M=M-1
) M £ 0)

C K= (W(W1)/2) = (M*(M+1)/2)
and the second is

C K = (N*®(N+1)/2) - (M*(M+1)/2)
K=K+ N
M=M-1
(M & 0)
K =1
C KX #19r K= N¥(N+1)/2

The algorithm now proceeds to the next control point as a starting
@m\ point. This one, hcwever, corresponds to a terminal point of the
J programy and thus there are noupathS'starting‘theré; Since this.is
the last control point in the program, the algorithm stops.

Let us now specify our algori thm more or less rigorously: In
what follows, CS denotes the current statement, and CCP denotes the
current éontrol.point (that is, the starting point for the current
path).

1. Initialize CCP to be the first control point in the pro-
gram, Initialize the stack to be empty. Initialize the current con- |
trol path to contéin no statements. Mark every statement as not
being contained in the current control path,

2¢ If the current starting point is associated with a terminal
» node, go to step 6. Otherwise, initialize CS to be the statement

associated with CCP, | | |

- 223 =

30 If CS iz GO ©0 n, set C5 to be statement number n and
skip to step Lo Otherwice, mark the current statement as being

in the current nath, If CS is an assignment (or function call, &)

(N

input-output stateiment, etco)y add it to the current path, set

CS to he the next stotement in the programgy and skip to step 4.

s

If CS is not an IF statcment, transfer to an error routine,
therwisey put the first alternntive condition of the IF state-
ment in the current path and put a pointer to this condition in
the path and to the IF statement in the program on top of the stacke
4o If the current statement has an associated assertion,
skip to step 5. Otherwise, if the current statement is already
on the cirrent path (that is, if it is merked), transfer to an
error location; otherwise, return to step 3.
5¢ The current path is a control path an? may be output or
othe wise nnalyzed. If the stack is currently empty, unmark all
statements on the current contmw 1 n~th (that is, mark them as s
not being on that path) and skip tn step 6o Otherwise, unmark only
those statoments on the current control path which follow the
condition S to which the top of the stack currently nointse By
analyzing the IF statement in the program, to which the top of
the stack points, find the next alternative transfer point and
set CS equal to it; also find the next alternrtive condition ~nd
change S to be that condition. If it is the last alternative, re-
move the two pointers currently on top of the stacke Now return

to step Yo

"

6o Move CCP forward to the next control point, if this is
possible, and return to step 2, If there are no more control

points, stopj the algorithm i~ conpletes

- 224 -

3

6 Verific.tion Conditions

Each control path in a program is speecified by giving an
initial assertion, one of more commands, and a final assertion,
We shall now construct algorifhmic methods of obtaining the veri-
fication condition of a control path from its assertions and com=-
mandsoe

The simplest case we have to consider is that in which there
is one comiande This cormand may be either an assignment or a con-~ .
ditional transfer. If it is a conditional transfer, the verifica-
tion condition is very simple. Since no variables may change thelr
values, the initial assertion and the condition, taken toget her,
must imply the final assertion. A good example of this is the
tird cont»ol path in the GCD program of section 6~l. Here the
initial acuertion is GCD(Iy J) = GCD(My N) and I > O and J > Oy
and the condition is I-J = 0. We saw in section 6~1 that these
imply the finsl acsertion, I = GCD(M, N), since GCD(Iy I) = L

If thekcommand is an assignment, we may follow the proce-
sure which we used to verify GCD(I, J) = GCD(M, N) in the second
eontrol path of the GCD routiﬁe. We.set up a table of initi-l and
final values of all variables. Since there is only one assignment,
only one voriable will have its value chengede If the assignment
is v=e, vhere v is a variable and e is an expression, the final
ossertion is thus altered in a very simple way =-- by changing all
occurrenc:s of the variable v to the expression e, Consider the

following control paths

I=I~17J
C GCD(I, J) = GCD(My N)

- 225 -

Cur table is consiructed as follows:

Varizble I J M d
Initial value 1 J i} n
Final value i-j 4 n h

The initial acsertion becomes GCD{(l, j) = GCD(my n) and the finnl
assertion becomes GCD(i-3, 1) = GCD(my n). This form of the final
cesertion coildlsd nlso have been obtained from its original form by
substituting I-J for I (~nd keeping all symbols upper-case)e
Let us now sce whot happens when there can be more than one
assignment in the path, as in the first control path of our GCD
programs |
C M>0, i>0
I=M
J=N
c Gep(Iy J) = 6ep(My M), I >0 J >0

There are now two ways of proceeding, known as forward substitution
and back substitutione

In the forward substitution method, we use a table as above.
We introduce another row in the table which corresponds to the
values which the varisbles assume after the assignment I = M, Our

table is s follows:

Variable I J N
Initial value 1 A n a
Value after I = M n i n o}
Final value m n n a

The final assertion is now altered as before; its new form is

cp(my n) = GCD(my n) and m > O and n > Oy which reduces to sinply

- 226 =

=

m >0 and n > O. This 1s the same as the initial assertion, and
thus the verification condition is valide

In the back substitution method, we proceed from the end of
the control path to the beginninge. At each stage we modify our ,
assertion by replacing the variable on the left of the equal sign
in the assignment by the exmression on the right, In this case
we start with the final assertion

Gep (I, J) = 6CD(My N)y I >0, J > O

Passing through J = N, we replace each J by an N, obtaining
Gcp(T, N) = GCD(M, N)y I >0y N> O

Now passing through I = M, we replace each I by an M, obtaining
GCD(M, N) = GCD(M, N), M > O, N‘> o]

which reduces to our initial assertiony, M > O and N > O, Thus the
two methods essentially produce the same result.

Now let us introduce both conditional transfer and assign-
meirt commands into a control path, as in the second control path

of oiir GCD programs

C GCDp(I, J) = GCD(My N)y I >0y J >0
1 IF (I-J) 2, 4, 3
2 J=J-1
G0 TO 1
GCD(I, J) = GCD(My, N)y I >0, I > O

(@]

The verification condition of such a path may be obtained by a
suitable moiification of either the forward substitution or the

bac): sulstitution methode

- 227 -

Using the forward substitution method, whenever we come
to a conditional statement, we may assume as a hypothesis that
the given conditinon is true of the current values of the vari-
ables. In our examnle, the condition is i=j < 0. Since the con-
ditional statement in our example is the first statement in the
control path, the current values of all veariables at that point
are their initial velues (although, in general, this need not
be the casc). The conditlon, with ccch varisble replaced by its
current valiie, now becomes part of the hypothesis. Thus the

hypothesis in our example is now
6D (i, 1) = cCD(my »)y L >0, 1> 0, 11 <O
and the conclusion is

aep (i, j-i) = &p(m, n)

This is obtained from the final asser tion as beforey by substi-
tubing for each variable its final symbolie values

Using the back substitution method, we work with a "current
conclusion” and a "current hypothesis." The 'current conclusion 1s
initialized to the finnl assertion; the current hypothesis is ini-
tialized to be null, or, what is the same, to be always true. Each
time we pess a conditional statement, moving backwards through the
poth, it is added to the current hypothesis. Bach time we pass an
assignment statement, both the current hypothesis and the current
conclusion are modified by replacing the variable on the left side
of the acsignment symbol by the cxpression on the right, When we
reseh the beginning of the path, the initial assertion and the cur-

rent hypothesis, tnken toget her, must imply the current conclusion.

- 228 -

\ 7]

In our example, we would start with
GCD(I’ J) = GCD(M’ N), I> O, Jd>0

Proceeding through GO TO 1, nothing happens, because a GO TO
statement does not change the values of any variables. Proceedin(

through J = J - I, we replace each J by J-I, obtaining
GCD(I’ J-I) = GCD(M, N), I> O, J-I >0

as beforee Passing through I=-J < 0, we add this condition to our
hypothesis. Since the hypothesis is currently empty, I-J < O be-
comes the hypothesise. We are now at the beginning of the path, and
the current hypothesis, tbgether with the initial condition, must
imply the current coneiusioh »- that is,

(GCD(I, J) = GCD(My N)y I > 0y T > 0y J=I > 0) =5
(Gcp(I, J=I) = GCD(M, N)y I > O, J=I > O)

The full back substitution process has not been illustrated
by this example, since, in it, the only conditional transfer oc-
curs at the very beginning. The following artificially constructed
control path will now be used as a furt her demonstration of both
forward and back substitution:

c

1 K=1

2 IF (K «EQ. M) GO TO 7
3 J = K%

L IF‘ (J «GT. N) GO TO 8
5 L=J-K

c

If forwe»d substitution is used, onr table is as followss

Var iable I J L N
Initial value i 3 k 1 n n
Value after i i
statement 1 i 4 i A 2 4
Value ofter i i 3 a
cstrt-ment 2 4 &
Value after i i* i I n n
ctetement 3
Valuc after i i+ i 1 n a
stateoment 4
Final velue 3 i i i¥i-im n

The coniition K # M, after statement 1, becomes 1 # m; the con-
dition J < N, after statement 3, becomes 1*l < n. The initial

‘assertion, of course,.bécornes i > 2; while the final assertion,
evalurted in terms of final values, becomes 1 < 1¥i-i and 1¥i-i

< n=le So our verification condition 1s.:

(L#Anand i*i <nand i1>2)=>(Q g i*i-1 and i*i-1 < n=1)

and this is clearly trueo
If back substitution is used in this example, we proceed

as follows:

Staterent Current hypothesis Current conclusion
5 None 1<L,L<N=1

"l Mone 1 < J=K, J=K £ N=1
3 J<N 1 < J=K, J-K < N-1
2 K¥K < N 1 < K¥-K, K¥K=-K < N=-1
1 K¥ < ¥, K# N 1 < K¥K-K, K¥K-K < N-1
Start I¥I < N, I #M 1 g I#I-I, I*I-I < N1

- 230 =

7]

Adding our initial hypothesis, we obtain the ver ifi cation condition

(I>2and I¥[< Nand I# M) Qg I*I-I znd I*I-I < N-1)

jurt ©s beforea

Let us now specify our forward and back substitution methods
~ bit morc formally. (See also section 6~5, where these definitions
are moAifir ' and extended,) We shall dennte the initial assertion
by Sy the fihal assertion by Af, and the other things in a control
pr.th (eact of which is either an assignment or a condition) by Cq,
eoey CQ, so that the total number of these 1s n.

The forward substitution method, as we have seen, keeps a
syabolic value for every variable, It makes use of a function
S TIPirE(S), wvhere S is any condition -or other expression; the
velie of SUBSTTTUTE(S) is the string obtained by substituting, for

esch varioble occurring in S, its current symbolic value. The method

proceeds as follows:

1, Initialize I to zero. Initialize H (the hypothesis) to
be the initial assertion Aio Initialize the symbolic value of each
veriable in the program to be the same as its namee

2, Increase I by 1l. If CI is an assignment V = E4 set the
now symbolic value of V to be SUBSTITUIE(E). If Cyis a conditi on
K, set H to be (¥ and SUBSTITUTE(K)).

3, If I = n, stopj the verification condition of the path
is (H impljes SUBSTITUTE(Ap)). Otherwise, return to step 2.

= The back substitution method makes use of a fuiction SUB(S,

V, 1), whose value is the result of substituting E for V throughout

tlie string So It nroceeds as follows:

1. Initialize I to equal n. Initialize H (the hypothesis) to
true, Initislize C (the conclusion) to be the final assertion Afo

- 231 -

2o I Cy is an csslgnment V .. 7, set C equal to SUB(C, V,

B) and set H eqwel to SUB(H, V, E). If C; is a condition K, set
H equal to (H and K)o
3, Decrease I by one, If I = O, stop; the verification
condition is ((A4 znd H) isplies C). Othorwise, retum tn step 2e
Hote that, in both the forward and the back substitution
methods, substitution may involve the insertion of extra paren-
theses, If the current value of J is I+2, then SUBSTITUIE (J*J)
is (I+2)*(I+2), not I+2%I+2 (which would be 3I+2). Similarly,
SUB(I*J, J, M+lI) is I*(M+N), not I*M+N,

- 732 =

6-5 Subseripted Variables in Assertions

A number of modifications and extensions to our methods
must be made if we wish to prove the correctness of programs
involving subscripted variables. As an example, consider the

following simple program to move an array from one place to

another:
K=0
1l K=K+1
B(K) = A(K)

IF (K N6, N) GOTO 1

The final assertion of this program is that A(I) = B(I) for
each value of I, 1 < I < No We shall write this as

(A(I) = B(I)y I oINe (1eelD))

Here (l..N) 'denotes the set of integers-l, 2, .eey Dy Where n
is the current value of N, Note the difference between this and

((1L <IandI<N) implies A(I) = B(I))

which would mean "If the current value of I is in the set (1..N),
then A(I) = B(I) for this particular (current) walue of I,” It
would not be an assertion about gll values of I in the given set,
Logically, our given final assertion 1s equivalent to a use of
the quantifier V ("for all")s

VI((1 £ Iand I < N) implies A(I) = B(I))

with the bound variable I. We shall, however, continue to use the

- 233 -

sinpler notation g'ven abhove,.

What will our initial assertion be? Clearly, N must be

greater than =z roy since owr loop is of the standard FORTRAN
type thnt is always execut~d at least once, It is also clear ,
however, that, in order for this program to work properly, N. =
nmust not be greater than the given dimension of either of the

arrays A and Be Suppose that these arrays are declared by the

statement

DEFNSION A(200), B(100)

Then oir program will not execiute properly if N> 1004 so that
I £ 100 must be pnrt of our initial assertion,
Why is this true? If N > 100, then at some time during
the ruining of the program we will execute B(K) = A(K) with
K > 100e Thir will not work because of the definition of the
array B, In generel, B(K) = A(K) cannnt be executed properly 7)
wiless K is in its proper range, that 1s, in this case, unless
1 <K and K < 100. We say that B(K) = A(K) is a restricted com-
mand with the pestriction (1 < X and X < 100), If this cormand
occurs in a contrnl path, we shall write the restriction, con-

tained in brackets, just before thc command, as follows:

¢ ASSERTION 1
(1<K Kg 1Qo]
B(X) = A(K)

C ASSERTION 2

The verification condition here is "If assertion 1 is true, then

]

we must have 1 £ K ond K £ 100, and if in addition B(K) = A(K) is

executed, then assertion 2 must e true." Note that this is quite

- 234 -

different [rom including the condition (1 < K and K < 100) in

the control pathe If we wrote

C ASSERTION 1
(1 <X, X <100)
B(K) = A(K)

C ASSERTION 2

with the condition (rather than the restriction) 1 < K and
X £ 100, the verification condition would be "If assertion 1
is true, and if 1 < X and K < 100, then if B(K) = A(K) is exe-
cuted we ﬁust have assertion 2 true,"

The presence of restrictions normally affects our cholce
of intermediate assertions, In our example program, it is clear

that, using the notation we have introduced, we may write
(A(I) = B(I), I .IN. (10.K))

as an assertion at statement number l. However, we must include
other asscrtions here in order to assure that the restriction

holds in the proper place., The further assertions we need are
D<Ky K< Ny, N 100

Jiote in particular the assertion K < N rather than K £ N. The
last time through the loop, K will be equal to N=1 at statement
number 13 it will be increased to Nj and then, since it is equal
to Ny the loop will terminate,

Let us rewrite our example program with 211 the assertions

vhich we have specified:

C N>O0, N <100
K=0
C (A(I) = B(I)y I «INe (LesK))y 0 <Ky K< Ny N <100
1 K=K+1
B(K) = A(X)
IF (K .NE, N) GO TO 1
C (A(I) = B(I)y I <IN, (1..N))

The first control path in this program is

C N>O0, N< 100
K=0
C (A(I) = B(I)y I o+INe (1e.K))y 0 < Ky K< Ny N < 100

Here (A(I) = B(I)y, I +INe (1..K)) is true "wvacuously," since K
= 0 and therefore the set (1l..K) is the null set. We have 0 <

K since X = 03 we have K < N since K = 0 and N > 03 and we have
N < 100 at the end of the path, as at the beginning, because the

value of N remains unchanged. Therefore the verification condi-
tion is valid.

The second control path 18

C (A(I) = B(I)y I «INe (1.4K)), O < Ky K <Ny N <100
K=K+1
{1 < K, K < 1001
B(K) = A(K)
(K#N
¢ (A(I) = B(I), I oIN. (1.K)), O < K, K < Ny N g 100

Let us apply the forward substitution method to this pathe The
variables in the path are K, A(K), and B(K); however, by the time

- 36 =

ve pet to B(K) = A(K), the value of K has increased by l. This
frcty together with the presence of the restriction 1 <Kand
K < 100, nccessitates a change in our forward substitution method,
First of all, we shall no longer start with an initialized
telle of symbolic values of variables. Instead, whenever we sub-
stihute the current symbolic values of variables into an expression,
we cheek to sce whether there are any variables in that expression
which are not yet in our table. If so, these variables are placed
in the tehle, and the value of each of them is initialized to be
the sanc as its namee Thus we would start by looking at K + 13
this contains the variable K, which is put in the table, so that
the table looks like thiss

Variable

Current value K

Since no substitution takes placey K + 1 becomes the new value of

K, so that the table 1s nows

Variable K

Current value K+ 1

We now come to the restriction 1 < K and K < 100, We start by
substituting the current value of K, just as we would with a
condition; the result is 1 < K+1 and K+1 < 100. However, this
must now be part of the gonclusion, rather than part of the hy-
pothesis as would have been the case with a condition.

“ow comes the statement B(XK) = A(K)o Substituting the cur-
rent symholic value of K for K, we obtain B(K+l) = A(K+l), In
addition, we have the new variables B(K+l) and A(K+l). These are

- 237 -

sppented oo T dtehle, co that it now reads

Vorinble K A(K+1) B(K+1)
Current vnlue K+1 A(X+1) 3(K+1)

dext we pororm the cssignment to B(K+1l), obtaining

Varizhla K A(K+1) B(K+1)
GCurrent value K+1 A(K+1) A(X+1)

The nnxt, ~lerent of the nath is the eondition K # Ve This in-
volves » new varinhle, 1y and this is azdded to the toable, just

as beforn, The recilt ic

Vari- ble K A(¥+1) B(K+1) N
Cwrent value K+1 A(K41) A(X+1) N

end the rosult of substituting these volues into our condition
iz K+1 # No

We cre nw st the end of our pathe. We hrve two hypotheses:
the or'gin.]l W orthesis, (A(I) = B(I)y I 1y K) and O £ K and
K < ¥ond J <17, »nd the vondition K+l # No We also have two
conclisionse Thr Tirst of these 1s the restriction, converted to
the Zorm 1 £ K+l ind K+1 < 107, The second is the result of sub-
stituting the syabolic v-+lues above into the final assertion,
nanely

(A(I) = (Af I = K+1 then A(K+1) slse B(I)), I +IN.

(LeoK+1)) 2nd O < K+1 and K+l < N and N < 100

Now, 1f I = K+1, the first condition becomes A(K+l) = A(K+l),
which 1s identically true. Hence we only need to consider I in
the set (L.oK+l) such that I # K+l — that is, we only need to

consider I in the set (le.K)e Our verification condition there-

- 238 -

%

7]

fore reads

((ACT) = B(I), I +INe (1.4K))y O < K, K < Ny
N £ 100, K+l # N) implieg (€A(I) = B(I),
I .IN. (looK)), o S K"‘ly K""l <,.N’ N S 100)

and this is straightforward,

The use of subscripted variables in tables, as we have done
here, is subject to one conditione Suppose we have two entries
in our teble which involve the same array -- say A(I) and A(J).
The question then arises: Is I equal to J? If so, we do not want
two separate entries in the table. Usually, if the forward sub-
stitution method is used, we will be able to tell whether I = Jo

Howover, if not, _hg,entire process must be split up into two

gages -~ I Jand I #J, If there are more thaﬂ two - such en=-

tries, the process must be split up even further.
let us now try back substitution. Our initial conclusion is

(A(I) = B(Z)y I .IN. (1..X))y 0K K, K< Ny, N < 100

After considering the last element of tﬁe pathy namely the con-
ditinn K # Ny this condition becomes our current hypothesis, and
our conclusion remains unchanged. Now we come to the statement
B(X) = A(K)s As in the forward substitution method, we must ask
whether X is equal to I. If so, we want to substitute A(K) for
B(I) (= B(K)); if not, no substitution should be done, In this,
method, however, we do not need to split up the entire processj;

instead, we replace B(I) by the conditional expression

if I = X then A(K) else B(I)

- 239 =

Thus the result of our substitution is

(A(I) = if I = K then A(K) else B(I)y I o+INo (1e.K))y
0<XKy, K<Ny, Ng 100

We may now notice that if I = K we get A(K) = A(K), which is
obviously always true and may be omittede. Therefore we may
assume I # K, and the range (1..K) may be shortened to (1eeK=1)o
Thus we have

(ACI) = B(I)y I oIN, (1..K-1)), O < K, K< Ny N < 100

as our current conclusione

Next we pass the restriction 1 < K amd K < 100]. This re-
striction is a conclusion of our verification condition, and must
be added to our current conclusion. Thus the current conclusion

becomes

(A(I) = B(I)y I .INs (1..Xk=1))y 0 < Ky
K<N, NL100y 1 <K, K £ 100

We now see that O < K is superfluous (since 1f 1 < K then clearly
0 < X) and may be omitted. Likewise K < 100, which we have just
added, 1s implied by K < N and N 100, so that it is also super-
fluwous. We are left with

(A(I) = B(I)y I oINe (LeeK-1))y K < Ny N <100, 1 <K

as our current conclusione
Finally we come to K = K + 1. We must replace K in both
the current hypothesis and the current conclusion by K + 1. The

current hypothesis, K # N, becomes K+l # N, and the current con-

- 240 -

clusion becomes
(A(T) = B(I), I .IN. (loox)), K+1 < Ny N £ 100 1 £ K+l
The verification condition is thus

((ACI) = B(I)y I oINe (1o0K))y O < Ky K< Ny N g 100, K+l # N)
jmplies ((A(X) = B(I), I INe (1..K)), K+1 < Ny NS 100y 1 £ K+1)

and this may be checked in a stralghtforward manner, just as before.
This may seem like a long proof of the correctness of a very

simple program. It 18 very easy, however, to construct a simpler

"proof” that appears not to depend upon the initial assertion N <

100, Such a "proof," of course, cannot be valide

- 241 -

The assertion method of section 6-1 1s the most widely

used method of proving the correctness of programse It was first
deseribed in [Floyd 671, and independently, though much less ri-
gorously, in [Naur 661; it is introduced on pages 14-20 of [Knuth
68 1; it has been computerized by J. King, a student of Floyd
[King 71], and independently by De. Good [Good 70] and many others
(for a survey of the state of the art as of August 1972, see

[London 72]). The method itself seems to have been thought of
independently by a number of peoplee. Floyd credits both Perlis

and Gorn with having ¥nown it, and Gorn with having written an
unpublished paper about 1t; Knuth traces the germ of the idea
back to von Neumann (see [Goldstine and von Neumann 471); whereas
London (see [London 721) traces it to Turing [Turing 50]°

Floyd's original method involved attaching assertions to)
the arrows in a flowchart. Our method, in which each assertion
is attached to the command which it follows, and describes the
relation among the veriables which holds Jjust before that command
is executed, is essentially the one used in computerized versions
of the method, and is given here for that reason. Floyd also ori-
ginally specified an assertion between gvery pair of adjacent
commands in a program (and the example in [Knuth 68.1, another
version of Euclid's algorithm which is more complex and more ef=-
ficient than the one given here, is of this form)j but Floyd also
introduces what is essentially the method given here of placing
intermediate assertions only where needed, and this method 1is used
by Kinge It is to be noted that King's "ecorrectness" is what we
have called partial correotness, a-term which made its f£irst ap-

pearance in [Manna 697.
- 242 -

Proofs of correctness of programs written in a given lan-
guage have been related_in various ways to the semantics of that
language. IBnfFloyd 67], it is proposed that the verification con-
ditions of a-écwmand be-themsélves the semantic definition of that
s command, This idea is expanded in [Hoare £9)y_ [Hoawe.Zldl, and [Heare

and Wirth 723, Relaficns: between.our notion of semantics and that
of Floyd are given in [Lauer .7}] and in [Maurer 721j;fdévra rela~ -
ted treatment; see [Cooper 691,

Owr treatment of control path determination and of verifica-
tion conditions is essentially that of [King 69) (also see [Good
701). The proper treatment of subseripted variables in assertions

is of considerable importance, since it is quite easy to preduce
“proofs” that are invalid if subscripted variables ere treated ine
properlye

- 243 -

LDXERCISES

1. Suppose that we wished to avoid using the FORTRAN arith-
metic IF statement in the GCD program of section 6-l. This might
be done by replacing the single statement

l IF (I"J) 2, ’+, 3
by the two statements

i IF (I Qo J) GO TO &
9 IF (I .GT. J) GO TO 3

Describe completely the changes that would have to be made in
the proof of partial correctness given in section 6-1, if this
change is made in the programe

2+ Suppose that the two statements

-1
-J

il

10 IF (I JT. 0) I
11 IF (J JIT. 0) J

are inserted in the GCD program of Chapter 6-1, immediately fol-
lowing statement number 6.

(2) What does the modified program do? Give a final asser=-
tion for ite.

(b) Are there any initialnconditions, as there are for the
unmodified program? Give an initial assertion, if one is necessary.

(¢) What changes would have to be made to the intermediate
assertion if this modification is made?

(d) What changes would have to be made in the proof of par=-

tial correctness?

- 24 -

u

3, The following control path appears in a program to
calculate exponentials by successive multiplications

@m

CN2O

5 X=1

6 I=N

C N3O0, I20,X=all

(a) Make plausible definitions of vp and Vp (as in section
6-2), where P is the initial assertion of this path and R is 1its
final assertion.

(b) Make plausible definitions of the effects e, and e,
of the two assignments in this pathe

(¢) In terms of the above definitions, prove rigorously
that the verification condition of the above path is valid.

@ﬁ\ 4. Suppose that our GCD program were modified as indicated
at the end of section 6-2. Describe completely the changes which
would be necessary in the proof of partial correctness of that

program,

5, How might the method of section 6=3, for determining
control paths, be modified if such paths are permitted to con-
tain computed GO TO statements in PORTRAN (which are of the form

GO TO (nl, ecey %) v

. and which transfer to statement number n,, 1 <1<ky if the in-
teger variable v is equal to 1)? Describe in detall.

<

6., List the control paths of the GCD program of section
6~1 in the order in which they would be found by the control path

- 245 -

determination procedure of section 6-3, and, with each path,

give the contents of the stack at the time that path 1is found,

7. Construct a table, as in section 6«4, illustrating the s
forwapd substitution method as applied to the four control paths

“

of the GCD program of section 6-l1,

8, Construct a table, as in section 6«4, illustrating the
bagk substitution method as applied to the four control paths of
the GCD program of section 6-1,

9, Prove, using forward substitution as in section 6=5,
that the verification condition of the third control pet h of the
example program given in that section is val id,

10. Prove, using back substitution as in section 6-5, that
the verification condition of the third control path of the exam=
ple program given in that section is valid.

L]

- 246 -

CHAPTER SEVEN

FINDING ASSERTIONS

7-1 Determining Assertions Automatically

- e [P

In Chapter 8, we shall learn how to complete the proof

that a program is correct. In the preéent chapter, we take up

the question of how to determine the intermediate assertions which
must be supplied in order to prove partial correctness. These in-

termediate assertions, in general, become more complex as we treat
larger and larger programs,

As a first step, we shall ask ourselves whether there are
any programs for which the intermediate assertions may be deter-
mined automatically. We shall see that any program which contains
no loops is of this form, In fact, for a program which contains no
loopsy all we have to do is to give the initial assertiong the
final assertion, along with the proof of correctness, may then be
determined by z relatively simple algorithm, (In this case, of
course, corréctness and partial correctness are the same, since
a program having no loops must always terminate,)

Iet us start by analyzing a program containing no transfer
statements whatsoever. The following program ralses the variable A
to the 23rd power:

- 247 -

AX A
AX B
Bx C
=BXB
=BXB
BxC

i

> W 6 w O W
l

We introduce three new variables, A0, BO, and CO, to stand for
the initial values of A, By and C, Thus our initial assertion is
A = A0, B = BO, and C = CO. Using these initial values, we may
apply the forward substitution algorithm of section 6=l to the

above program, considered as a paths

Variable A B c

Initial value , AO BO co
Value after first statement AO A2 €O
Value after second statement A0 AO? A03
Value after third statement A0 AP a0
Value after fourth statement A0 A0¥0 a03
Value after fifth statement = AO A0%% 403
Final value 1023 a®® a0

The final assertion is thus A = AOP3, B = A0%C, and C = 0%,
Since the initial values BO and CO are never used, we may
remove them from the initial assertion of this program, leaving
A = AO, The final assertion, similarly, may be shortened 1f we
agree that the final values of B and C are temporary results of
intermediate calculations and are thus of no further interesto.
Thus the program, with initial and final asgsertions, becomes

- 248 =

C A=A0

B=AX A
C=AXSB
B=BXC
s B=BXB
B=BXB
A=BXC
C A=Aa0%

Now suppose we change the final statement of this program to
B=BXC

The final assertion now becomes A = AO, B = A0®3, and C = A0S,
Since A is still equal to its initial wvalue AO, we may substitute
A for AO and obtain B = A23 and C = A3, The variahle A0 1s no
longer needed, and we may remove it from the initial assertion,
3eaving nothing-fémaining -- or, what is the same thing, leaving
an initial assertion which is alweys true. This means that the

proof of correctness of this program may be expressed ass

C JIRE,
B=AXA
C=AXDB
B=BxC
B=BXB
B=BXB
‘ B=BXC

¢ B=4a23,¢c=43

If we, 'as before, remove from the final assertion here the equa-

- 249 -

tion involving C (viewing C as a temporary variable) we obtain
the intuitively obvious statement of what the program does --
1t sets B equal to A3 -~ as the final assertion.

3

Let us now consider programs which contain transfer and
conditional transfer statements, but which do not contain loopse. -
A path from the beginning of such a program to the end cannot con-~
tain repeated statements, because otherwise there would be a loop
in the programj hence there can be only a finite number of such
pathsy which we shall denote by Wyy oees . Along each Ty, we
carry out the analysis above, and arrive at a £inal assertion Aio
There will, in general, also be a condition Ci which must be sa-
tisfied for the path ‘H‘i to be takene Then

(Al g_n_d_Cl) or (A2 and 02) Qr eee OF (Angnt_i_cn)

is the final assertion of the programe.

We illustrate this by considering a program to f£ind the

absolute value of a number , The program iss

Y=X

IF (Y GEs 0) GOTO 1

Y= X

1 CONT INUE

The first control path of this program is

Y=X

(¥ 2 0) | :
Introducing new variables XO and YO, as before, to stand for the R
initial values of X and Y, one obtains by forward substitutlon: -

- 250 =

Variable X Y

Initial value X0 YO

Value after first statement X0 X0
(Y > 0) becomes (X0 > 0)

< Final value _ X0 X0

Thus A4, for this program, is X = X0 and ¥ = X0, while Cl is
X0 > 0. The second control path of the program is

Y=X
(Y < 0)
Y=«

Forward substitution in this case gives uss

Variable X Y

Initial value X0 Yo

Value after first statement X0 X0
(¥ < 0) becomes (X0 < 0)

Final value X0 «X0

ThuSA?_isX=XOandY=-JCO,C2 is X0 < 0y and the final as~-

sertion is -
(X =X0 and ¥ =X0 and X0 > 0) gr (X = X0 and Y = <X0 and X0 < 0)

Since X has remained unchanged, we may substitute X for X0 in
.this assertion, and eliminate X = X0, obtaining

(Y=Xand X>0)or (¥Y=-Xand X < 0)

- that 18, Y’—'- ‘X'.

What happens in this method for a program containing a

- 251 -

- g&e =

- (N # 1)
. ' T+I=1
VX=X
2 (N # I) (N = 1)
T+I=1I T+I=1
VX=X VX=X
(N #I) (N # I) (N =1)
T+I=1I IT+I=1I T+I-=1I
VX=X VX=X V*x X=X
(N # I) (N # I) (NAI) (N=1)
0=1I =1 0=1I 0=1I
=X =X T=X =X
| soge mwexdoad sTY3 JO pPue eyy o3 Sutuurdeq eyj woIF Syjed anoJ 3SItJ ¥YL
NI INOD 4
TOL 0D
T+I=1
VX=X
20l 0D (N °*d3° I) &I T
0=1I
T=X
:Nv eqndwoo 09 weadoad SUTMOTTOF oY} IePTSUCD
oued oM YOTUM
. uf sesed Teroads age exeys ysnoyare Suogiaesse [eupy oTIuls ® 03
esoy] eonped $TeJIouesS uyp $qouurd om ¢IoASMOY ‘I{) SUOT3TPUCO pue Tv
&; SuUoT3I0sse JO eousnbes e3TuTJUT ue Juturelqo ‘eaoqw sSysATeue eyl

qno LxI80 TTT3S Aew oM °pus oy 03 wexldoad eyjz Jo Sutuufdeq &Uj
woxJ syzed JO Joqunu BFTUISUT Ue oq TTEA oIoyj osed STy3 uy gdooT

~

Forward substitution in the first path yilelds:

Variable X I N A
Initial value X0 I0 No AO
Value after first statement 1l IO NO AO
Value after second statement 1 0 NO AO

(I = N) becomes (0 = NO)

The final assertion is X = 1 together with facts about I, Ny and
A, which we shall agree to ignore., If we substitute N for NO,
much as we did in the previous example, then the condition for
this path to be followed becomes N = O,

Forward subétitution in the second path ylelds the final
assertion X = A0y or X = A after a similar substitution is made.
The condition here is N = 1o Forwerd substitution in the thizd
path ylelds X = A * A, under the condition N = 2j in the fowrth
path we get X = A * A * A, under the condition N = 3o Thus the
final asseri;ion of the entire program 1is

(N=0and X=1)or (N=1apd X=4) or (N=2 and
X=A*A)QE(N=3MX=A*A‘A)ﬂoooo

It requires very little ingenuity to see that the above infinite
disjunction may bhe written more simply as

X = AN)

This program, however, was carefully construeted in such a way
that the final step -- sometimes called the inductive inference =~-
is obvious, In most programs, it will be much less soe

- 253 -

7=-2 Agsertions in Loops

The simplest loop programs are those having only a single
loop. The exponentiation program of the preceding section is a
typical examples

X=1
I=0
1 IF (I EQ. N) GO TO2
X=X *A
I=I+1
GO TO 1

2 ‘CONT INUE

How does this program work? The variable I counts up from O to N,
and, at the same time, the partial product, X, assumes values from
1 (that is, A®?) to AN, At the kth stage, we have I = k and X = A%;
and we can write this more simply as X = AL, The assertion X = AI,
then, will be true whenever this program passes statement number 1
(and just before that statement is executed). At the end of the
program, of course, we will have the assertion X = Y,

| What is owr initial assertion? This is a bit tricky. It is
clear that if we start with ¥ £ O, our progpam:will pun.on dne~ -
deﬂnitely. Therefore we must start with N.2 O. Botmar;rfin this
program there is something else to watch out for: if we atart
withN-OandA—O,mwilllmveX:lat the emdy which
makes no sense because 00 is undefined. (Is that o}:vious enough?
0X = 0, for x # 03 but xV = 1, for x # Oo) For the moment, we shall
“assume A # 04 regardless of the value of N (for the general case,
see Exercise & at the end of this section). Thus our initial as=
sertion is N > O and A # O. Let us rewrite the program with these

assertions:

- 254 -

[

CUSTOMER'’S RECEIPT

HEARST
EUCLID

c“ool';tyh&"N';‘-.EsR DATE CLERK AMOUNT RECEIPT NO.
Hearat Ave.
849-0700
CASH
ORDER DATE CLERK AMOUNT RECEIPT NO.
COPY CENTERS of BERKELEY
COPYCENTER
D483 Hearet Ave.
B49-0700
ITEM (TREESIeERs) "Sinal [CPER " |TOTAL | SRR |TOTAL PRICE
PAGES | PaGE | CPPIES el
/10v 5 | =
[4

OFFSET MASTERS @ 30¢ EACH

b
l_;COLLATE @ %¢/SHEET
© corraTe © zrricopy &5 © LeGaL © swe Sub-total

Sales tax

TOTAL DUE

Circleone: e WhlleIWant

C N>0and A#0
X =1
I=0
x = Al
» 1 I® (I Q. N) GO TO 2
X=X%*4
I=I+1
GO TO 1
¢ X =AY
CONTINTE

There are three control paths in this program, as follows:

C N>OsndA#0 ¢ x=af c x=al
X=1 | | (I=N) (I#N)
I=0 c X =AY X=X*A
c x=al I=I+1
¢ x=al

In the first control path, we have X = AT at the end because X = 1,
I=0,and=Aa0 for A ¥ 0. (The assertion N 2 O is mt actually
needed here., This may seem pecuiiar, but remember that, if N < O,
the program does not terminate, So far, we are proving only partial
correctness =-- either the program is correct or it is endless.
This condition holds even without the initial assertion N 2 0O.)

. The second control path 1s obvious -- if I = N, then X = Al ve-
comes X = AV, In the third path, we start with X = A, then mul=

. tiply X by A (yielding AT%A, or ATL), and then increase I by L,

so that again X = AT in terms of the new value of I. Thus the above

program is partially correcte

. =255 =

What if we replace oEQ. (equal to) by «GE. (greater than
or equal to) in statement number 1? In this case the program

still works, but not with the given assertions. For example,

the second control path now becomes

C X:".AI =]
(I1>M
cC X =alN

and now we cannot deduce X = AN from X = Al ana 1 2 Ne

It is clear, in this program, that our assertion X = al
still does, in fact, hold whenever the program passes statement
number 1. It should also be clear that, if the above control path
is taken, X 1s set equal to AN, because I, in this program, never
becomes larger than N. Let us express this fact by writing I < N

as another intermediate assertion. The second control path then

becomes ™
c x=af, 1<V
(r>m
c X =al
Under fhese conditions, in order for this path to be taken, we
must have both I < N and I > H. This can only happen if I = N,
so that X = AL implies X = AN, just as before.
However, if we are going to put I N as an assertion at
statement number 1, the first and third control paths of the pro-
gram will also be affected. We may write these as s
C N>Oand A#£0 ¢ x=a% IgN
X=1 (<N
I=0 X=X %A R
c x=ah, T<nN I=1I+1
I

- 256 = C X=4A" ILKN

In the first control path, we have I < N at the end because I = O
and N > O, (This time we do need the condition N > O. Note that

if N < O, this time, the program terminates and gives the wrong
answer, namely X = 1,) In the third control path, we have the con-
dition I < N, which becomes I-1 < N in terms of the new value of I,
after we set I =1 + 1. Sincé I andAN arevassumed éo benintegers,
CI-1 < N is‘équivalent'to I grﬁ.'The 6Eher'assertions'aé the ends
of these two paths follow just as they did before, completing the
proof of partial correctness of the modified programs,

Ascertions 1ike I < N are useful in a number of other situ-
ations. As we saw in sectinn 6-5, they are needed in programs
containingAreferences to subscripted variables, where it 1is neces-
sary to prove that the subscripts are 1n ranges We shall see in
Chapter 8 that they are also useful in proving that a loecp termi-
Al

nates. Even in our original, unmodified version of the X |
program, we need to include the intérmediate assertion i £ N for
the purposes of proving terminatione | |

It should he emphasized:that an informal analysis of the
control paths of a program, as above, should be carried out be-
fore we attempt to derive the verification conditions of these
paths by forward or back substitution. This 1is because, as we saw
in the preceding example, it may be necessary for us to include
more ansertions at certain points in a program than we originally
thought were necessary. Once the informal analysis seems to work,
nowever, it'is still necessary to perform the forward or back sub=-
stitution in order to have a rigorous proof on hand, Let us do this
for the third path in the modified wversion of the program; the
others fnllow in a similar manner., Forward substitution yields the

followine tables

- 257 -

Variable X I N A

Initial value X0 IO NO AO
(I < N) becomes (IO < NO)

Value after X = X * A X0*A0 IO NO AO

Final value X0*A0 IO+1 NO AO

The final assertion thus becomes X0*A0 = A0TO*L and To+l < MO,
and this must be implied by X0 = 4010, I0 < NO, and IO < NO.
Back substitution yields the following table:

Statement Current hypothesis Current conclusion

3 None Xx=al, 1 <N

2 None X = AT, 141 g N
1 None x#p = AT, 141 g N
Start I<N x#a = AT, 141 < W

and the verification condition is (X = AL, I < N, I < N) implies
X*A = AI+1, I+1 < N). In either case, we see immediately that
the path is valid, provided that I and N are integerse

Many other loop programs having a single loop may be ana=
lyzed as above, In particular, the assertinn to be placed at the
single intermediate control point will normally involve the par-
tial result of the caleulation, together with certain restrictions
on the behavior of the loop index, We shall now analyze a number
of programs of this kind,

The following program sets S equal to the sum of the ele-

ments of the array As

- 258 -

L]

I=1

S=0
1 s =8 + A(I)
I=I+1

IF (I oIEo N) GOTO 1

The assertion at statement number 1, besides 1 < I < N, says that
S 1s equal to the sum of all the array elements A(k) for 1 < k 5 |
I-1, (For this and the other examples of this section, we shall
not complete the analysis, whish follows in a straightfa' ward manner _
as before; we are interested only in determining the assertion to
be placed within the loope)

The following program searches the array A for an element
equal to X; and transfers to statement number 2 if such an element

' is founds

I=1
1 IF (X oEQe A(I)) GO TO 2
- I=I+1

IF (I JE. N) GOTO1

The assertion at statement number 1 is that X is umequal to A(k)
for all ky 1 < k < I=l. As beforey we must also assert here that
1<ILN,

Note that in each of the preceding programs the assertion
in the loop is “offset" -- that is, it involves the range 1 g k <
I-1, rather than 1 < k < I, This is determined by the form of the
loopj in certain-warylations of the above programs, the assertion
would not be offset. For example, the second program above could

be rewritten as

- 259 -

I=0

1 IFr (I EQ. N) GO TO3
I=I+1
IF (X +NE, A(I)) GOTO 1

Here statement number 2 is assumed to follow the program immedi-
ately. The assertion here (at statement number 1) is that X # A(k)
for 1 <k < I, and also that 0 < I < No This version, .of course,
unlike the preceding version, works properly if N= 0 -- that 1s,

no tests are made., However, consider the following wversions

I1=1

1 IF (I oGTo N) GOTO 3
IF (X BQ. A(I)) GO TO 2
I=I+1
GO TO 1

Now the program works properly if N = O, but the assertion 1is

still offsetj that is, at statement number 1, we have X # A(k)
for 1 < k < N1, The condition on I in this version is 1 < I g
N+1.

- 260 =

O

7-3 Ihe Language Of Asgertions

¢ - Any Boolean (or LOGICAL, in FORTRAN) expression may be
thought .of as an assertion, So long as Vitfhas no side effectse
s In some programs, such assertions are sufficient; our exponential
program of the previous section is a good example. In other pro-
grams, however, we must formulate assertions (on arrays, for exam-
ple) which cannot, in genei'al,rbé reduced to this forme. Therefore
we must concern ourselves with other ways of expressing assertions.
Consider the first assertion of section 6=5 -- the assertion
that A(I) = B(I) for each I, 1 < I < N. We have expressed this as

(A(T) = B(I)y I oIN. (1a.N))

First, let us remark that this same assertion could also have been

expressed by the use of recursion. If we define

F(O) = JIRUE,
F(J) = F(J=1) AW, (A(J) = B(J))

then P'(N) 1s equivalenb-to the above assertion. Recursive defini=-
tions such as the above may often be used directly in the proof
of correctness of programsj for examplé, in the proof of the pro-
gram of seetion 65, we effectively ‘used the fact that

(ACT) = B(I)y I oINe (1.28)) gnd A(K+1) = B(K+1)
implles (A(I) = B(I)y I +IN. (1..K41))

Using the assertion F(J), this bscomes
F(K) and A(K+1) = B(K+l) implies F(K+l)
and this 1s an immediate consequence of the definition of F(J).

- 261 -

Our preference for assertions stated in terms of sets of
integers, rather than by recwrsion formulas, arises from the fact

that there are many programs to which the recursive definitions

do not apply directly. For example, consider the following program:

K=N
1 B(K) = A(K)
K=K-'l

IF (K NE, 0) GO TO 1

The final assertion of this program 1s the same as before, and
may be represented as F(N), using the ter minology above. However,
the definition of F(N) can no longer be used in the proof, as an
attempt to prove the correctness of this program will showe We
could define a new assertion G(N) by the formulas

G(0)
G(J)

+TRIE,
G(J=1l) AND, (A(N=J) = B(N=J))

and use this definition in the proof .of the new pProgramj however,
we must now show that G(N) and F(N) are the same, These and similar
difficulties with the recursive approach strongly motivate the con-
st ruction of a language of assertions which deals directly with
sets of subsceripts, and with finite sets in generale As we shall

see, the assertions needed in a wide class of programs may be for-

3

mulated in such a languagee.
Owr primitive sets, such as (loeN) in the example at the _
beginning of this section, shall be constructed as lists of ele- =

ments separated by commas, The elements are of the following formss
(1) I (the integer I alone)s
(2) I..J (the integers I, I+l, ecey J)3
(3) I.eJeoK (the integers I, I+J, I+2Jy eeey K)o

Thus, for example,

(1, 6, 100015, 17, 180‘039027)

stands for the set of integers 1, 6, 10, 11, 12, 13, 14, 15, 1?7,
18, 21, 2%, and 27, |
In the form Ieedy if J < I, then I..J is the null set of
integers, also denoted by () . In the form Ie.eJeeK, we assume that
K is always of the form I+nJ, for sbme intega n; if K < I, then
IeoJoeK = () o The letters I, J, and K, in all of the above, may
be replaced by any integer expression. Of course, as the cwurrent
values of our expressions vary, so the current velues of our sets
will vary as welle |
| Sets may be given names, using a set assignment statement
of the form | |
S‘ =X
where S is the name of a set arid X is some specificat ion of that
set, Here X may be one of the primitive set descriptions above}
1t may also involve the operations U, (union), «I. (intersection),
or J. (difference)., If S1 and S2 are any set specifications, .then

so are S1 ‘.U-. 32, Sl oIo 82, and S1 .D. 82.
As an example, the assignments

Sl = (1.,N)
S2 = (N"'loom)
S3 = S1 oU. S2

- 263 -

S}'l' = (IQQM)
85 = S"l' oD. Sl
S6 = Sl .I. 82

for N < N2, set S3 equal to (l..M2), S5 equal to S2, and 86
equal to the null set,

Set assignments may also be parametrized, If we write
8(11, YX K in) = X

where X involves the integer varilables 11, ecey 1#, then.S(el,
ecey Qn), if used later, denotes X with the integer expressions
€19 eeoy en substituted for 11, YY) 1n’ respectivelyo

The most basic assertion involving sets is of the form
(F(I)y I oINe S)

meaning that F(I) is true for each I in the set S. Here F(I) is
any assertion involving I, All of the assertions involving sets
which we have used up to now have been of this formo. The form may
be generalized to

(F(Il’ Y YY) In), Il oINe Si, XXX} In «INo Sn)

meaning that F(11, ceoy ;n) is tme for all possible combinations

of ;1, essy I, taken from the respective sets Sq9 ecoy Spe Here

F(L;y eeey I) is any assertion involving Ly oeey Lo
Assertions, like setsy may be given names. The assignment

A= (F(I)9 I .IN, S)

gives the name A to the assertion (F(I), I +INe. S), so that this
name may be used in combination with other assertions using the

- 264 -

standard Boolean functions «ANDe, ¢0Rey oNOTey oIMP, (implies),
and EQV. (equivalence). Such assignments, like set assignments,
. may be parametrized. Using a single parameter, we may write, for

exampley
A(J) = m(I, J), I INo S)

after which A(K) would stand for the assertion (F(I, K), I oINe S)o
Extension to multiple parameters is lmmediate.

Two other methods of obtaining sets are of interest. The
first is by means of a property of elements of an existing set,
The specificetion

(I oINo S oST. P(I))

stands for the set of all integers I in the set S such that P(I)
e 1s true. (Here oST. stands for "such that.") The second is .as the
‘ range 'of & funotiong the: specification

SBT(F(I)y I oIN, S)

refers to the set of all F(I), for I in the set S, or the range
of the function F whose domain is S, This is to be carefully dis-
tinguished from simply writing (F(I), I .IN. S), which is an as-
sertion, ‘not a set (the assertion that F(I) is true for all I in
S)o | |

The preceding two definition methods may be combined. We
pay write |

SET(F(I)y I oIN. 8 ST. P(I))

This is the set of all F(I) for all I in the set S for which P(I)
is true. The SET function may also be generalized to several varie

- 265 -

ables; thus
SET(F(II, .f.’ In), Il OIN. Sl, [XX N] In OIN. sn)

signifies the set of all F(ILyy eeey I,) for all combinations of
Ij in the respectivg sets Sj, while

SET(F(Lyy ecey 1)y I, oINo Sy seey L; oINe Sy oSTe P(Iyy ooy ;n))

signifies the set of all F(Il, ceey L)) for only those combina-
tions of Ij in S;j for which P(]’.l, eeey L)) 13 trueo
Certain functions have sets as their arguments, In general,

if any function F is commutative and associative -- that is, ir

F(I’ J) = F(J’ I)

for 211 I, J, and K == then F may be applied to finite sets. The

sum function

SUM(S)

where S is a sety is a good example. The sum of all the elements
of a finite set is independent of the order in which these ele- |
ments are combined, and this fact follows directly from the fact
that the plus-function -- that is, F(I, J) = I + J == is comuta=
tive and associative. We shall denote this sum, taken over the set
S, by SUM(S); thus, for example, SUM(SET(I*I, I +IN. (1..N)))
denotes the sum of .the squares of the numbers fmm 1 to No

In a similar way, we shall take

PROD(S)
MAX(S)
MIN(S)

- 266 =

as standing respectively for the product, the maximum, and the
minimum of the elements in the set S; as before, this may be done

because each of the functions

F(I, J)=I%*J
F(I, J) = MIN(I, J) (=£I_<nglgm3)

is cormutative and assoclative.

We shall also allow. forms like

SUM(F(I), I oIN, S)
SUM(F(I, J)y I +INe S1y J oINe S2)

and so one Thus the sum of the squares of the integers from 1 to
N would normally be written SUM(I*I, I ¢INo (1..N)). This, In
general, 1s more thah an abbreviationy SUM(F(I), I +IN. S) is
not, in general, the same as SUM(SET(F{I), I .IN, S)), because
of the possibility that two or more of the F(I) may be the same,
For example, suppose that F(I) is always either O or 1, for all I
in S. Then SET(F(I), I oINe S), unless F is identically either O
or 1, is the set (0, 1) -- the set containing only the elenents
0 and 1 =- and SUM(SET(F(I), I oINo S8)) = 0+ 1 = 1. On the other
hand, SIM(F(I), I oINe S) is meant to be the sum of all F(I), for
a1l I in 8 -- that is, in this case, the total number of I in S
for which F(I) = 1, |

The "such?ﬁat" construction (.ST.B may be appiied to

assertions as well as to sets, Thus
(P(I)y I oINe S ST Q(I))

means that P(I) is true for all I in the set S such that Q(I)
is also true. We include this form as a convenience only, since

it is clearly equivalent to - 267 =

(P(I) Ro «NOTe Q(I)y I oINe S)

Lixewise the extended form,

(P(Il, XY X} In), Il o INe 81, s00) In o«INe Sn ST Q(11’ eoco 9 In))

is included as a convenience, equivalent to

(P(Il’ ceey In) oRo oNOT, Q(119 (XXX} In)g
I, oINe 51y eeey Iy oINo Sp)

Finally, we introduce three assertions which effectively
involve the use of the logical quantifier J ("there exists")s

EXI(I, X) There exists an integer, which we shall call
I, and I is a member of the set X

EF(F, X) There exists a function, which we shall call
F, and the set X is the domain of F

EP(P, X) Phere exists a permutation of the set X,
which we shall call P

The names I, Fy and P may be used in assertions which follow the

respective uses of EI, EF,y and EP that contain them, For example,
(EI(IIF, X)’ OM. P(Itl'))

means that there exists an integer I4 in the set X for which the
property P(I4) is not truee It is equivalent to

oNOTo (P(I)y I oINe X)

-- that is, the asser tion that it is false to say that P(I) holds
for each element I of X, The GCD function discussed in section
6=-1 may be defined using MAX, MIN, and EI, as followss

GCD (I, J) = MAX(K, K oINo (LooMIN(I, J)) oST.
@IKL, (LeoI)), I = K¥KL, EI(K2, (1..9)), J = K¥K2))
- 268 -

7<% Debugging By Proving Correctness

We shall now consider a very simple example of the payoff
that 1s to be expected from proving corréctness of programs.
Namely, we shall show how our methods may be used to find bugs
in programs that not only look correct, but actually are correct
for most (but not all possible) input situations.

Let us write a program to test whether the positive integer
I is prime, We assume that we have access to the standard remain=-
der function M (I, J) whose value is the remainder when I is di-
vided by Jo Since I will be non-prime if MOD(I, J) = O for sultably

chosen values of Jy we start our programming task by writing
IF (MOD(I, J) EQo 0) GO TO 2

where at statement number 2 we will note the fact that I is not
prime. Let us do this by setting the value of a function, called
PRIME(I), to JFALSE,j thus our program reads

LOGICAL FUNCTION PRIME(I)

e o 0

IF (MOD(Iy J) oEQe. O) GO TO 2
| ¢ e 0
2 PRIME = FAISE,

RETWRN

Now what do we want to do if MOD(I, J) is unequal to 07 We want to
inerease J by 1 and loop back, We must make a test at this point,
and we may remember that if I is the product of any two integers

~ then et least one of them must be less than or equal to the square root of IL.

-269-

Since it is easier to take squares than square roots, we write

LOGICAL FUNCTION PRIME (I)

l IF (MOD(I, J) .EQe. 0O) GO TO 2
T=J+1)

IF (J*J JE., I) GOTO 1
2 PFM = .FAISE.
RETWRN

There are now several things remaining to be cleared upe If the
test on J fails, then I is in fact prime, and we must set FRIME
to JTRIE. . We must remember to iﬁitialize J to 24 rather than 1,
since any integer is the product of itself and l., Finally, we
must put an END statement on the programe The result iss

LOGICAL FUNCTION FRIME(I)
J=2
1 Ir (MD(I, J) £Qes 0) GO TO 2
J=J+1
IF (J*J JIE, I) GOTO 1
PRIME = (TRIE.,
RET URN
2 FRIME = (FAISE,
RETURN
END

[

We now have a program which seems to work; we may compile it, and -~

it will tell us, for example, that PRIME(17) is TRUE. vwhile

- 270 -

PRIME(28) 1is FAISE, . Let us, however, seek to verify its cor-
rectness. The final assertion, which we wish to place at both
the RETURN statements, should clearly be that PRIME = P(I),
where P(I) is trus if I is prime and false otherwise., In the
terminology of the preceding section, we may write by definition

P(I) = (I JME; K¥Ly K INo (24(I<1)y°L oINe (2.(I-1)3:

-~ that is, I is prime if I is unequal to K¥L for any K and L

in the range 2 < K < I=1y 2 < L < I=l, Let us modify this defi-
nition slightly to take into account the trick we are using in
this program having to do with the square root of I, First of all,

P(I) = (I OMQ K%, K QIN. (2001‘1),
Ia oINo (2001"1) OSTO K omo Il)

That 1s, we can restrict ourselves to the case K L in choosing
K and L from the above ranges (this is clear, since K*L = L¥K).
We can then make another transformation of P(I), as followst

P(I) = (I .NE. K*L, K 'INQ (2001"1), L OIN. (2.01"1)
oSTe (K oIB. Ly K¥K oIE, I))

As we have already mentioned, the restriction to those K for which
K*K < I is justified. by the fact that the smaller of the
two factors of the positive integer I is less than or equal to the
square root of I. Formally, if K*¥K'> I, then K%L > K*K > I, so
that I # K*L. |

The initial assertion of our program is I oGT. O (since
the program does not check for zero or negative I). What is the
intermediate assertion at statement number 1? At this point we
have checked all possible factors of I which are less than Jj

- 271 -

that is,

(I oNEo K*L, K +IN, (zooJ-l), L oINo (2001"1))

Let us check to see whether these assertions are enougho The

control path which leads around the loop may be written as =

C (I NE¢ K¥Ly K oINe (24eJ=1)y L oINe (240I=1))
(MOD(I, J) #£ 0)
J=J+1
(J*J < 1)

C (I ¥4 K%Ly K ¢INe (2.07=1)y L oINe (2401I=1))

The only difference between the assertion at the beginning of
this path and at the end is that we have increased J by one, and
thus the set (2..J-1) has been expanded by one element, namely the
initial value of J. Thus we must verify that

(I e J¥Ly L INe (2..I=1))
if this path is taken, and this follows directly from MOD(I, J)
O, Furthermore, if J & 2, then (2,.J-1) is the null set, and
therefore the assertion (I «NEo K*¥L, K ¢INe (2¢¢J=1)y L <IN,
(2e¢I=1)) is always true in this case. This shows that the ini-
tial control path is valid,
There are two further control paths, corresponding to the
two RETURN statements, The first is
C (I oNEo K¥Ly K oINe (2eeJ=1)y L oINe (240I=1)) *
(MOD (I, J) # 0)
J=J+1
(I*J > 1) R

PRII‘E = .TRIEQ
C PRIME = P(I)

We have seen, from the analysis of the preceding control path,
that (I oM. K*Ly K oIN, (2e¢J=1)y L ¢IN. (2¢4I=1)) holds at
the end of this pathy also, wo have J*J > I, We must show that
this implies the truth of P(I). As shown above, P(I) is equiva-
lent to
(I NME, K*Ly K oIN, (240I=1)y L oINe (2..I-1)
STe (K JE. Ly K¥K JIE. I))

We can assume J < I (otherwise we are done), in which ease
(2001‘1) = (20.11'"1) OU. (JooI"l)

But for K in (JeeI=1) we have K*K > I (since K > J and thus
K*K > J*J > I clearly J can be assumed pod tive) and so this
range may be disregarded, since we only need to consider those
K for which k¥ £ I, |

There remains the control path for the other RETIRN
st atement, which reads

C (I oNEe K*Ly K oINe (240J=1)y L INe (24eI=1))
(MD(Zy J) = 0)
PRIME = FAISE,

C PRIMB = P(I)

Since MOD(I, J) = Oy we have I = J¥K for some Ko From this, we
must show the falsity of P(I). It suffices to show that J # 1
and J # I, This, however, cannot be done with the given ini-
tial assertion for this path, which tells us nothing about the
behavior of Jo

Iet us look again at the program, The initial value of J

is 2, and it increases thereafter; so it 1s reasonable to assume

- 273 =

that J can never be le Furthermore, the test conditiono€J*J < I)
at the end of the loop assures us that, at this position at least,
J can be no more than half of I (since J is itself at least 2)e
Iet us proceed, then, by placing the assertions J 2 2 and
J*J < I (which will imply J < I) at statement number l, and
seeing if this helps us. We must, of cow se, now g0 back and
re-verify all the control pathse

For the control path containing FRIME = FALSE., the two
new conditions are, as we have seen, exactly what we need. For
the control path enntaining PRIME = TR1E., there is no problem,
since we have merely added some new hypotheses without any new
conclusions. For the control path around the loop, we must verify
that J > 2 and J*J £ I at the’end of the pathe The second of
these conditions follows directly from the condition J*J < Iin
the path; also, J 2 2 at the beginning of the loop, arxi J is in-
creased in the loop, so clearly J > 2 at the endo

Unfortunately, with the new conditions, the initial cone
trol path is not valide Since J = 2, we certainly have J 2 2%
but J*J < I will not hold unless I is at least l, What do we do
now? We seem to have verified the partial correctness of the
program with the initial assertion I 2 4; the first three spe-
cial casesy I = 1, 2, and 3, can be "run through" %o complete
the proof. For I = 1, for example, we have MOD(1y 2) = 1, S0 we
increase J by 1, and then J*J is certainly greater than I. For
I = 2 == Good heavens} We have uncovered a bugl

In facty for I = 2 (and for no other positive integer
value of I), the program given above is not partially correcte
Tt will return PRIME(2) = FAISE, -- that is, 2 is not a prime -=

- 27% -

[

when in fact it is. This 1s the kind of bug that gives pro=
gramming managers nightmares: a program is written, checked out,
the programmer goes on to something else, maybe moves to another
city, the program is incluied as a subroutine in a larger pro-
gram, which in turn is made into a subroutine of one still lare
ger, and then strange erroneous behavior begins to appear. Often
it takes weeks to trace the bug back to the original program in
which it appears; sometimes 1t 1s not found at all, and the lar-
ger programs are completely rewritten. In this case it is obvious
that, if we were testing numbers one at a time, it would never
occur to us to test such an obvious prime as 23 but 1f this rou-
tine is part of a larger one, the logic of the larger program
might very easily require it to test the primeness of 2

Fixing the bug, of course, is very easyj; we rewrite the

program as followss

LOGICAL FUNCTION PRIME(I)
c I>0
IF (4 ,GTe I) GO TO3
J=2
C (I JNEo K¥L, K oINe (2eeJ=1)y L oINe (240I-1)),
C J JGE, 2y J*J JIE, I
1 Ir (MoD(I, J) &EQ. 0) GO TO 2

JT=JT+1

IF (J%J JE. I) GOTO1
3 PRIME = TRUE.
C PRIME = P(I)

RETIRN

- 275 -

2 PRIME = FALSE,
C PRIME = P(I)

RET RN

EIND

Here P(I) has the same definition as before. The initial control
path (which, in the end, was the only one that gave us trouble)
has now been replaced by two paths. The first 1is

cC I>O0
% > I)
PRIME = oTRUE.
C PRIME = P(X)

This path is valid, because it cannot be taken unless I=1, 2
or 3, in which case I 1s prime and P(I) holds. (Note that 1 is
prime according to our definitionj some authors do not include
1 among the primes.) The other control path 1is

cC I>0

&< 1)

J=2
C (I NEo K*¥Ly, K oIN. (240J=1)y L oIN. (QoeI=1)),
C J JGEo 2y J*J JE, I

This is the same as our original first control pathy with the
added condition (4 < I). We have already verified all the final
assertions here except for J*J JIE., I, and, as we have noted,
this follows from the added condition. This completes the proof

of partial correctness of the revised programe

- 276 -

L%

7-5 A Larger Example

The following program contains 13 statements (including
the final CONTINIE) and three loops, two of which are nested,
It is included as an example of £inding assertions and proving
partial correctness of a program which is larger than the
one=loop programs considered up to now. We may notice that, as
our programs get longer, the treatment of each separate assertion
gets longer as well. This is to be expected, since 1t reflecfs
the increasing complexity of larger programsi a l0O-statement
program usually takes much horg than ten times as long as a
10=statement program to write and debuge

Our program finds all prime numbers from 1 to N, using
the sieve of Eratosthenes., The basic idea is that in order to
find all the prime numbers we first find all the numbers that
are not primeg then the ones left over will be prime, A number
is not prime if it is a multiple of something, and thegse mul-
tiples occur: in regular progressions: l, 6, 8, 10, 12, etc.;
9, 12, 15, 18, etc.y 25, 30, 35, 40, etc.y and so on. Once we
have found all these in a given range, if we have some way of
remembering which ones we did not find, these will be the primes.

The program uses a logical (1. e.y Boolean) array of
length 1000, so that it will work for N < 1000. At the end of
the program, the elements of this array, called Ay will be set
to TRUE, or oFAISE. depending upon whether their indices are
prime or not. That is, the final assertion will be

(A(I) = P(I), I oIN, (looN))

where P(I) is defined as in the preceding section. The initial

- 277 =

assertion is N < 1000 (so that the subscripts will always stay

within range) and N > O3 the program with its initial and final
assertions is:
C N>04 N 1000

I=1

1 A(I) = JRUE,
I=I+1
IF (I JE. N) GOTO1
I=2

2 J = I*I

IF (J «GT. N) GO TO &
3 A(J) = JFALSE.
J=J+1
IF (J JE. N) GOTO3
I=I+1
GO TO 2
C (ARX) = P(X)y X oIN, (1e.N))
L4 CONTINUE

We have used the variable X, rather than I, in the final asser=-

tion in order to avoid confusion with the variahble I in the
programe

How many intermediate assertions do we need, and where
should we put them? In section 6=3, we saw that our procedure
for finding all control paths in a program can find an infinite
number of such paths 1f there is a closed loop in the program
which does not contain any control point, We theréfore choose
owr control points in such a way that this does not happenj that
1s, every closed loop in the program must contain at least ope
gontrol point. This important condition is known as the closed

- 278 -

t

loop conditions it is proved in section 8«3 that this condition
is necessary and sufficient for the control paths of any "reason=-
able" program to be finite in number,

How can we make sure that the closed loop condition is
satisfied? There are various waysj; we shall choose one simple way,.
namely, to make each statement to whieh a backward transfer is
made into a control point, Clearly every closed loop in any pro-
gram must contain at least one backward transfer. In owr sieve
program, there’ are backward transfers to statements 1, 2, and 3,
and these become owr intermediate control points,

At the beginning of our program, we initialize all the veri-
ables A(1) threugk A(N) to FREB. ; The loop which performs this
initialization is mush like the loops in section 7«2, and the
intermediate assertion at statement number 1 is chosen in the
same way as was done there, It is the assertion that A(X) has been
set 50 oTRUE, for all indices X which are less than the current

" value of I, or,y in our notation of section 7-34
(A(X) = JTRBoy X +INe (1.01I=1))

To determine the other two intermediate assertions, we have to
look a bit more closely at how the program workse. As soon &s we
find a non-prime J, we set A(J) to JFAILSE, (at statement number
3)e The first few non=primes we find are 4, 6, 8, 10, etc.; each
of these is found by adding 2 to the previous one (at the state-
ment J = J + I note that I = 2 the first time through the loop).
We stop this process when we have found all multiples of 2 that
are less than or equal to N, Now we have to find all such mul-
tiples of 3. We can start with 9 = 3%8, since 3*2 is a multiple
of 2 and has already been found; Similarly, when finding the mul-

- 279 -

tiples of 7 (say), we do not have to worry about 7%*2 through
7%6, because these are all multiples of numbers less than 7.

This accounts for the initializing statement J = I*I, If there

are no multiples of I less than N, other:than $hose which we

have found already, wé a¥e doneo .
At statement number 2, then, we have found 2ll multiples

of all numbers less than I that we want to find. Let us form

these numbers into a set S1(I); then A(X) = FALSE, if X is in

51(I)y and A(X) = TRUE, otherwise. This can be written as

(A(X) = JFAISE., X oINe S1(I)), (A(X) = JTRUE.,
X omo ((100N) .D'O Sl(I)))

We recall that De. means "difference"; (leeN) Do S1(I) is the
set of all integars in (1..N) that are not in S1(I). The set
S81(I) may then be defined as followss

Sl(I) = SET(M’ Y oIN. (2001"1)’ Z .IN. (20.“"1)
oSTe (Y JEBe 2, Y*Z JIE, N))

w= that is, the set of all Y*Z2 for 2 S Y S I=l and 2 S 2 S N=1
which are such that ¥ < Z and Y*Z < N. We note that the con-
dition ¥ <IEe Z could have been omitted, and the same set would
have been obtained.

At statement number 3, we have found all elements of
the set S1(I), and a few more besides == namely, the multiples
of I that are less than J. Let us make all these into a new set
S2(I, J)s The assertion here is the same as before, but with
S2(1, J) substituted for S1(I) -- that is, it is

te

s

(A(X) = JFAISEey X oIN, 52(I, 7))y (A(X) = ”“)
JTRUEoy X oINe ((1o.N) D: 82(Iy J)))

- 280 -

where 82(I, J) is defined by

82(1,- J) = 31(1) ol M(I"‘Z, Z.IN. (200“'1) ,
ST (I bmo 3, Iz IT. J))

-~ that is, S1(I) together with all those multiples of I that
are less than J (re-call .Ue stands fd: Yunion'; also, as be-
fore, I +IEs Z could _havé lﬁeeh' omifteﬁ). | |

The behavior of the integers I, J, and N must also be
part of the assertionse At statement number 1, we have 1 I
and I < N. At statement number 2, we have I 2 23 we are jJust
about to test I*I for being not greater than N, and we therefore
know this to be true of the preyjioug value of I -- that is,
(I-1)#(I-1) < N. At statement number 3, we have tested the cur-
rent value of I, and we know also that J is between I*I énd 'N;
that is, I > 2, T¢I < J, and J < No We also know that J 1s a
multiple of Ij ‘this may be expressed. by asserting that MOD(J, I)
= 0, where the MOD function is as in the preceding sectlone. Fi-
nally, N> 0 and N < 1000 hold throughout the program if they
hold at the beginning‘; these facts are needed in connection wi th
the restricted commands (see section 6=5) which make reference to
the subseripted variable Ae Of these, only N < 1000 needs to be
stated explicitly, since N> O 1s implied by each-of the other - -
jntermediate assertionse The program with all assertions is thuss

C N> 0, N< 1000
I=1
C 1<I,I<N, Ng1000, (ACX) = JTRUEey X oINs (LeoI-1))
1 A(I) = JIRIE, o
| I=1+1
IF (I JE. N) GOTO1

- 281 -

w a Q

c
N

I=2
I>2, (I-1)*(I-1) < Ny N < 1000, (A(X) = oFALSEey X
oINe S1(I)), (A(X) = JTREoy X oINe ((LeoN) oDe 81(1)))
= I*I
IF (J .GT. N) GO TO &

I>2, I*I < J, J £ N, M(D(I, J')=O, NS].OOO,

(A(X) = JFAISE.y X oIN. 82(I, J)),

(A(X) = JTRWEBoy X oINo ((LeoN) Do S2(Iy J)))
A(J) = JJFAISE, '
J=J+1I
IF (J oIE. N) GO TO 3
I=I+1
GO TO 2

(AX) = P(X)y X oINe (Leol))

CONTINE

where S1(I), S2(I, J), and P(X) are defined as beforeo

There are seven control paths in this program, as follows:

Pathl C N> 0, N < 1000

I=1

c 1 Y I’ b 8 < N’ NS 1000, (A(X) = OTRIEO’ X oINe (looI.l))

Path2 C 1< I, I<N, N<1000y (A(X) = oTRIE ey X oINe (LoeI-1))

¢ 1<I,I<Ny,NZ1000, (A(X)

{1 <I, I<1lo00]

A(I) = JIRIE,.

I=I+1

(1N .

oTRUEey X oINe (leoI-1))

- 287 -

13

Bath 3 C

1<I, I<N, 551000, (AKX) = JTRE.y X oINe (LeeI=1))
(1 < I, I 1000 |
A(I) = JRE.
I=I+1
(I>N)

I=2

I>2, (I-1)*(I-1) < Ny N < 1000, (A(X) = JFALSE.y X

C . oINe S1(I)), (A(X) = oTRUBey X oINe ((LeeN) oD, S1(1)))

Path 2 €

I 2, (I-1)%(I-1) < N, N < 2000, (A(X) = oFAISE., X
JIN, S1(D))y (A(X) = oIRIBey X oINe ((LeeN) Do 51(I)))
3= 101
F>m S
AX) .= P(X)y X oINs (LeaN))

I>2, (I-1)%(I-1) < Ny N < 1000, (A(X) = GFALSE.y X

 oINe S1(I)), (A(X) = ¢TRUEey X oINe ((1eoN) Do SL(I)))

J = I*1
(TSN

C I>2 I3 J, <N, MOD(I, J)-=.°’ N £ 1000,
C- (A(X)"‘- .FABE.’ X. oINe Sa(I,J))Q .
C (ACK) = JTRIEq, X oINe ((LeeN) D S2(I, 3)))

- 283 =

Path 6 C I> 2, I*I < J, J < Ny MOD(I, J) = O, N < 1000,
(A(X) = oFAISE.y X <IN, S2(I, J)), |
(A(X) = JTRUEey X oINo ((L.eN) Do 82(I, J3)))
[1 < Jy, J< 10001
A(J) = oFALSE,
J=J+1
(T<N)
cC I>2,I*I<J, <N, MD(I, J) = Oy N 1000,
(A(X) = JALSEey X oINe 52(I, J)),
C (A(X) = JIRIBey X oINe ((LeeN) Do 82(I, J)))

Path 72 C I>2, I*T < Jy J < Ny, MOD(Iy J) = Oy N < 1000,
C (A(X) = JFAISEo, X oINe S2(I, J)),
C (A(X) = JREey X oINe ((LeoN) Do S52(Iy J)))
{1 < Jy J £1000]
A(J) = JFALSE,

J=J+1
(T >N)
I=I+1

C I>2, (I-1)%¥(I-1) < Ny N 5 1000, (A(X) = JFAISE.y X
C oIN. Sl(I))’ (A(x) = oTRmo"’ X oINo v((lo'oN). o Sl(I)))

The verification conditions of these paths may be obtained by the
forward or back substitution method as extended in section 6=54

The details of this are left as exercises.

"

Experimentation with the assertion method has been vi-
gorously pursued since its populariszation in [Knuth 68]. An
account of much of this experimentation, together with a number
of comments about the language of assertions, about forward and
back substitution, and about Semputer-aided methods of verifi-
cation is given in [London 711, A further summary, including a
1list of programs that have been proved correct and a list of
computer=aided methods in progress of being constructed, is given
in [London 72]).

There is more to the "23rd-power algorithm" of section
7=1 than there appears to be, This algorithm has been cited by
Knuth as an example of the fact that the standard algorithm for
raising A to a fixed power (squaring and multiplying by A in some
order dependent on the power) does not éiways take the smallest

number of steps.

- 285 -

EXERC ISES

1. (a) Determine a final assertion for the following
programs
IF (I EQ. 0) GO TO 2
IF (I GT. 0) GOTO1
J = =1
GO TO 3
1l J=1
GO TO 3
2 J=0
3 CONTINUE

Express the final assertion using if, then, and else. (This
program calculates one of the standard functions of AI.GOL.)
 (b) Verify each of the paths from the beginning of
this program to the end by back substitution.
2o (a) Determine a final assertion for the following
program, in terms of the initial value IO of I

I=1I+J

IF (J JT. 0) GO TO 2

IF (I JIEs N) GOTO 1

GO TO 3

IF (I «GEs N) GO TO 1
3 CONTINIE

{This program represents oné¢ method &f ending a loop in which
it is not known whether the step size J 18 positive or negative,
Tt is assumed that statement number 1 is the beg inning of the
loope)

- 286 -

(b) Verify each of the paths from the beginning of
this program to the end by back subétitution.
3. In each of the 'f_ollowi‘ng programs, give assertions at
the end and at statement ntinber 1o |
: (2) " I=1
1 A(@) =0
I=I+1
IF (I JIE. N) G0 TO1

) I=0
- J=0

1 I=I+1

T =T3+1

IF (I JE. N) GOTO 1

(e) I=1
. XK=.0
1 TP (A(D) oM. B(I)) GO TO 2
. I=I+1 |
IF (I oIE. 100) GO T0 1
GO TO 3
2 K=1
3 CONTINUB

%, Suppose: that we wish to prove the correétness of ‘the
prog'am-dt the beginning of section 7-2, under the more general
assunption that initially N> O and (N # O or A # 0)e

(a) With the intermediate assertion X = AL, show that the

verification condition of the first control path is pot neces-
o .. sarily valid,
' - 287 =

(b) Suppose we. define EXP(U, V) to be Uv, except that
EXP(0, 0), instead of being undefined, is equal to L. Place the
nssertion X = EXP(A, I), rather than X = A, at statement number
1, Notice that, in the proof in section 7-2, we needed the
general fact VetV = VW, Show that the corresponding equa=
tion for BAP, namely EXP(U, V)eEXP(U, W) = EXP(U, V+W), does
not holde ,

(c) With the assertion X = EXP(A, I) at statement number

1, show that the prosram is nevertheless partially correcte
(Hints Show thet BEXP(Uy V)oU = EXP(U, V+1) always holds if U
and V arc integers and V 2 O.)

(@) Place the assertion X = EXP(A, N) at the end, and the

assertion 4 > O (omitting all reference to the value of A) at

the beginning. Is the program now partially correct? Prove or

disrrovee

5, After the following set assignments are made, specify
which pairs of sets (chosen from S1, S2, and so on up to §10)
are the same, Assume that NL < N2 < I3

s1 = (ML, N2, N3)
| (NL,.N2, N3)
(ML, N2eeM3)
st = S1 .U, 52
85 = S1 oI. S3
7 86 = 82 LU, S3
87 = (M-1, N3+1)
88 = (N1=l..N3+1)
S9 = 88 D, S7
S10 = ()

0
N
i

Ll

7]

W
u

6o Simplify each of the following set expressionss
(a) SET(I+1, I IN. (1..10))
(b) SET(6*I, I +INs (1..10))
(c) SET{(K*K, K +IN. (1, 10y 100))
(@) (DlooKeoI2) oUe (I2+eKeeI3) (assume Il < I2 < I3)

- 7+ A nuhber which 1is _not prime must be divisible, either
by 2, or by some odd prime, m; suggests a method of speeding
up the program of section 7-l+s after we test whether I is di=-
visible by 2, we initialize J to 3 and then increase it by 2
each time, rather than by l. Write such a program and verify
informally that it workse

8., Prove the partial correctness of the program of prob-
lem 7,

9, Complete the proof of partial -correctness of the pro-

gram of section 7¢5. .. .,

- 289 =

10, In discovering all noneprimes in a given range (in
the program of section 7-5), it is sufficient to consider all
multiples of primes. Because of the order in which multiples
are found, it turns out that any non-prime value of I (the
quantity whose multiples we are discovering) will already have
been found as a multiple of something else by the time we get

around to consider multiples of 1t. Hence the two statements

I=1+1
GO TO 2

in the algorithm may be replaced by

5 I=I+1
Ir (A(X)) GO TO 2
GO TO §

(recall that, in FORTRAN, "IF (A(I))" -- where A(I) is a LOGICAL
quantity =- means "If A(I) = oTRUE."). Prove the partial correct-
ness of the modified prbgram. (It is sufficient to consider only
those control paths and assertions which are different from those
of the unmodified programe) .

- 290 -

"

=

CHAPTER EIGHT

TERMINATION

8-1 Looﬁ Exgreégions

We shall now finish what we started in Chapter 6, and
show how to prove that a program terminates., If we have already
proved the partial correctness of the program, it will follow
that the program is correct. We shall always assume that par=
tial correctness has already been provedj in faet, for
most programs, some of the facts we needed in arder to prove)
partial correctness will also be used to prove termination.

Every time a program is run, it ei ther eventually stops,
or it does not. In the first case, we say that the progranm t
minates (or "terminates in a finite number of steps"). If the
program does not terminate, it rung on indefinitely (or "goes
into an endless loop")e If a program has no loops, it always
terminatesj and so our termination proof methods will concern
themselves with the behavior of loops. Specifiedlly, we will
be concerned with the loop indiceg, and with other expressions
that act like loop indices,

As an example of how to prove that a program terminates,
l;t us consider the following program to calculate AN, modified

so as to have a decreasing rather than an increasing index Is

- 291 -

X=1
I=nN
1 IF (I EQe 0) GO TO 2
X=X *A
I=I-1
GO TO 1
2 CONTINUE

Let us first prove that this program is partially correcte. The
index I counts from N down to zero, while the partial product is
built up from from A% to AV, Hence the intermediate assertion

} at statement mumber 1 is not X = AT, but X = AN, The final
assertion is X = AN, as beforej and the initial assertion is
N > 0, since it is clear that the program is not correct (and
.does not even terminate) if N < O, In addition, as before, we
shall require A # O.

The three control paths are:

C N>0,A#0 c x= a1 ¢ x= NI
-1 (T = 0) (I#0)
I-N c X =AY X = X %A

C X =A™l I=1-1

C X = aAN-1

At the ond of the first path, we have i = AV because I = 7
and so £ : A” =1 (assuming A # 0). In the second path, 1f

I .- 0y then clearly X = AT ane g = AV are equivalent, Back
substitution in the third path gives X*a = AN-(I=1) \mich 1s
equivalent to the eondition X = A™I at the bveginning of the
pathe So the pnrogram is partially correct.

We now obscrve that, in order to prove that this pro-

- 292 -

gram is correct, we need to prove only that it terminates when

started with its initial assertion yalid. It is not necessary
to prove that it always terminates. In fact, this program does

not always terminate; it runs on indefinitely if it is started
with N < 0. This, in fact, is characteristic of all ouwr termina-
tion proofs; they are, in a sense, proofs of "partial" termi-
natione

Intuitively speaking, why does this program terminate?
Consider the behavior of the loop index I, Every time we go
around the loop, it decreases. How do we lmow that it does not
keep on decreasing indefinitely? Because of the test at state-
ment number l. But the existence of such a test does not, in
itself, guarantee that a loop like this will terminate. We
could, for example, have written I = I = 2 instead of I =1 = 13
in that case, if N is odd (3, for example), the ﬁrogram runs on
indefinitely. | 4

Suppose, however, that we can prove that I > O, In this
case it should be clear that the loop must terminate =- an ine
teger variable which is always positive cannot continue to de-
crease indefinitely. How can we prove that I > 07 In exactly the
same way that we proved partial gorrectness. We place the as-
sertion I > O at statement number 1, along with all our other
assertions at that point; then we recalculate the verification
conditions. The three control paths are nows

c N>0,A#0 ¢ x=a¥I, 150 ¢c x=a%I 150
X=1 (I=0) (I £ 0)
I=N c x=al X=X *A

c x=a", 10 I=I-1

c x=a¥I 150

At the end of the first pathy we have I > O because I = N and
N > O (This program is partially correct for N < O, since it
does not terminate, and thus only in the proof of termination
do we use the initial assertion N > Oo) At the beginning of
the third path, we have I > O but I # O, and therefore I > O
(that isy I > 1)e Thus at the end of this path, after I has
been decreased by 1, we have I > O, The rest of the assertions
at the ends of paths have already been proved; the second path
is valid because no new conclusions have been added. Thus the
program is still partially correct, and, in addition, we have
shown that I > O at statement nunher L,

We want to say that the program terminates because I is
an integer variable which decreases every time we go around
the loop, and is bounded from below at statement number lo
For more general loops; however, we will need to find an ex-
pression, rather than a single variable, which has these pro-
perties, Such an expression will be called a Joop expression.

For a simple example of a loop expression which is not
a simple variable, consider the exponentiation program in un-

modified form (as given at the start of section 7=2)3

X=1
I=0
1 IF (I EQo N) GO TO 2
X=X *A
I=I+1
GO TO 1
2 CONT INUE.

Here the variable I increases every time we go around the loop,

- 294 <

e

and is bounded from above. We could, of course, construct dual
theories of :I.néreasin‘g and decreasing loop expressions, but.
there is a much simpler method available., If I increases and
1s bounded from ai)owfe,'then ~I decreases and is bounded from
belowe

Actually, -I is not quite the expression we want here.
The reason is that =I is bounded from below by =N (we have
= > =N, since I < N) and =N is not a constant, This is an im~
portant point, because & loop might not terminate if 1ts ex- - -
pression is bounded by a varisble. Consider the following loop:

J=1
K=10
1 J=Jdel
K=Ke1
GO TO 1

Here K deereases every time we go around the loop, and K > &
at all times, but the loop does not terminate. Again, we could
make a special case of a variable, such as N in our exp cnential
program, which is not changed by any instruction within the loop.
There is, however, no need to make such a special cases If we,
have a bound which is a variable, we simply add it to our loop
expressione Thus in this case the loop éxpression is NeI; it
is bounded from below by zero, and decreases every time we go -
around fixe loép.' |

Another example of a loop expression is furnished by our .
GCD program from section 6=1, Here there are two integer variables,
I and Jy which are continually getting smaller. At the same time,

- 295 -

they remain positive throughout the running of the programe
This time, we do not have to introduce anything extra into
the proof of partial correctness; the assertions I > 0 and
J > 0 at statement number 1 in this program had to be intro-
duced anyway, in order to derive the necessary facts about
the behavior of GCDs.

However, the variable I does not always decrease as
we pass from statement mumber 1 around a loop and back to
statement number 1l again, In particular, if we perform state~
ment number 2, then I does not decrease. Likewise, J does not
always decrease as we go around the loope The quantity that
always decreases is the gsum of I end Jj and this 1s our loop
expressione

In formal terms:

A loop expression for a given loop ¢éntaining a given

control point is

(1) an integer=yalued expression

(2) that decreases every time we go zround the loop
(from the given control point, assuming that the assertion
given thore is valild, around the loop and back to itself)

(3) and that is bounded from below, by a constant, at
the given control point. (as implicd by the assertion given there).
| Any program having only one loop always terminates, when
started with its initial assertion valid, if that loop has a
100D expression. Any 'program having several loopa always termi-
hates, wheg started with its initial assartion valid, if {hdre
is an éxpression which is a 100p expression for all of thamo
The proof of these racts is quite easye. Suppose, on the con~
trary, that such a program did not terminatej then there must
‘be one loop which is traversed an infinite number of times in

- 296 -

e

9

some particular casee Let vy, Vo, v3, eeey be. the successive
values of the given expression in this case (evaluated each
time the program passes the given control point)o By definition
of a loop expression, we have vy >y > V3 > eeny which is im-
possible, because, again by definition of a loop expression,
all the vy are integers and each vy (since it is evaluated at
the control point) is not less than some constant lower bound.
- As an application of the above facts, let us prove the
correctness of some of the other examples given in the two pre-
ceding chapterss

(1) The ar ray=moving program of section 6=5 has loop
expression N=K, This program resembles the exponentiation pro-
gram of section 7=2 in this regard. Here K is the loop index,
but it increases, rather than decreasing, and so we must con-
sider =K; and to this we must add N, the bound, since this is
variable.

(2) Each of the four programs at the end of section 7=2
has loop expression N=I, The loop expression is not affected by
the offset, as this term is used in that section. In fact, a
loop expression never needs a constant termg it is easy to see
that 1f ¢ is any loop expression and k any positive or negative
integer, then g+k 1s also a loop expressione

(3) The function PRIME(I), given in its correct form hear
the end of section 7-%, has loop expression I=J*J, This one is a
bit harder to determine, It is clear that J increases and there-
fore =J decreases as we go around the loop. It 1s also true fhat
J never becomes larger than I (and, indeed, we could also have
used I-J as our loop expression). However, the fact that J*J
never becomes larger than I is already known, by the assertion

- 297 =

J*J < I at statement number .1. Thus, by using I=-J*J, W& obtain
& simpler proof of terminatione

The sieve program of section 7«5 has several loops, and
the proof of its termination will be deferred to section 8«5,

L]

- 298 =

8-2 Finding Loop Expregsions

Loops terminate, in practice, for quite a variety of
reasons. Each of these corresponds to a type of loop expression.
In this section, we shall take up a number of these, and show
how the loop expressions are found in each case,

We may remark, first of all, that all three of our con-
ditions on a loop expression (as given at the end of the pre-
ceding section) are necessaryo Consider condition (1). If we
have a peal expression that satisfies conditions (2) and (3),
our loop might not terminate, as in the following programs

A =10
5 A= A/Z.O
GO TO 5

Here A decreases every time we go around the loop, and remains
strictly positive at all times, (Of course, in an actual com-
puter, the finite representation of A would ultimately stop
decreasing, but that is irrelevant to the mathematical argument,)
What do we do if we have a program in which the loop index

-~ or whatever corresponds to the loop index =-- is a real number?
Unless this real number 1is converging to some valusy as in the
preceding example, it will have a minimum increment or a minimuym
decrement. That is, each time around the loop, the expression --

. let us call it ¢ -~ is increased, or decreased, by no less than

some real number x each time around the loop. By taking negatives

if necessary, we can assume that @ 1s decreased by at least x,

in which case ¢/X is decreased by at least l. The integer part

of ¢/X -~ that 1s, the greatest :mteger in ¢/x -- 1is then also

- 299 -

decreased by at least lo. The following program illustrates this:

FUNCTION SIMPS (F, A, B, H)
EXTERNAL F
X=A
S = F(X) + 4, 0% (X+H)
1 X =X + 2,08
IF (X .GE, B) GO TO 2
S = 8 + 2,0 (X) + ke0¥ (X+H)
GO TO 1
2 S = (s + F(X))/(3.,0%H)
IF (X Qe B) GO TO 3
S = 8 = (F(B) + 4,0%F((B+X)/240) + F(X))/(3.0%(X=B)/2.0)
3 SIMPS = S |
RETWRN
END

(The purpose of this program is to use Simpson?!s rule, with step
size H, to calculate the integral from A to B of the function F.)
Let us assume that' A < B and H > O are included in the initial
assertion, The variable X increases by 2H each time around the
loop, so that -X/H decreases by 2 each timej the greatest integer
in «X/H is thus a loop expression for the loop in this programe
Let us now turn to condition (2)e The loop expression must
decrease every time we go around the loope. The operative words

here are "every time," For example, consider the following loops

I=10
J=0.

1 IF (I +IE. 1) GOTO2
I=I-1

- 300 -

2 J=J+1
GO TO 1

The intéger viriableé I remhins positivetat:all times, There 1is
an instruction in the loopy I = I = 1, which dacreasés the value
of I3 but this instruction is not executed gvery time through
the loope In fact, of course, the loop does not terminate,
Forward substitution can tell us when an expression de-
creases. A¥ ‘the end of the loop, we evaluate our expression,
using the table we have built up, and subtract:this mew symbdlic
value fréh the initial one. Xf the result is always positive,.
the "expression decreases. The fact that the resuit is positive
is sometimes quite obvious, as, for example, when a variable
which 1s a loop expression is decreased by l. However, sometimes
1t 1s necessary to use the assertions at the control point in the
loop in order to show that the given expression decreases. In our
GCD program, the loop expression I ¢ J is decreased either by I
or by J each timej thus we need the assertions I>0and >0
at the control point,iinothe course of showing that I + J is a
loop expression.
If we find an expression which increases, then, as we
have already seen, its negative will decrease. What if we have
an expression which alternately incrsases and decreases? First,
we must determine intuitively what general direction the expres=-
sion is headed in (whether upward or downward); then we may ana-
lyze the .speciﬁn method by which the index 1s changed in order
to obtain an expression which always decreases. The initial as=-
gertion of the .following program is N(1) = 2, N(2) = -1, N(3)
=23

- 301 -

I=1

J=1

1 CALL SUB(I)
I=1+N(J)
J=J+1

IF (J Bo ¥) I =1
IF (I .IE, 100) GO TO 1

This program calls SUB(I) where I = 1y 34 2y 4%y 64 5y 7y 9 8,
and so on in that order. Without worrying about what S8 does
(so long as 1t does not change the value of I), lest~us éonsider
whether this program terminates. The variable I alternatively
increases and decreases, but its general direction is upward.
We can obtain an increasing expression by subtracting 1 from 1
1f it is divisible by 3 and adding 1 to I if MOD(I, 3) = 2. A
1ittle experimentation will convinse us that 2*I + N(J) is also
increasing; it successively takes the values 4, 5, 6, 10,y 1l,
12, 16, 17, 18, and so one. We can then get a loop expression
by taking the negative of eilther of these.

A related, but simpler, problem occurs when a varlable
always increases and decreases every time through a loopy as in

the following loop:

I=1
1l I=I-1
CALL F(I)
I=1I+2
CALL G(I)
IF (I ,LE, 100) GO TO 1

Assuming, as before, that the value of I cannot be changed as a

-302..

result of the subroutine calls, =I is a decreasing expression
(and in fact a loop expression) in this loop. This example
points out the generality of considering the behavior of an
expression as an entire loop l1s trayerged, rather than requiring,
for-example;: that the ;value df a loop expression cannot be in-
creased by any individual statement in the loope

Now consider condition (3) -- the last of the three con-
ditions on a loop expression. We have seen that, in order to
insure termination, it is not enough to have a test in the loop
which exits if the given expression is zero (or any other final
value).v We have likewlse seen that it is not enough for our ex- .
pression to be bounded by a variable quantity, because,-as the

expression decreased, th:l.s variable quantity might be deoreasing -

along with ite Sometmes t.ho bound will change but the program
will still terminate, as in the following loop:

=1
| J=N
1 CAIL GET(X)
Ir (F(X) NE, 0) GO TO 2
A(Y) =X
I=I+1
GO.TO 3
2 A(J) =X
J=J =1
3 IF (I:vNB, J) GOTO 1

The loop expression here is J=X, In this case the bound is be=-
coming smaller as the loep dndex :!.s beconing Mger. It is even
possible, however, for bbth the index and the bound to become

- 303 =~

larger at the same time, as in the following (admittedly con-

trived) examples

I=1
=N

1 CALL F(I)
I=I+2
J=J+1

IF (I JN€e J) GO TO 1

Again the loop expression is J=I; it is easy to see that the
value of this expression decreases by 1l every time around the
loope These two examples serve further to ﬂlustrate the advane
tage of owr method of loop expréssions over any: methéd:which ale
lews the.bound to be varidbld.and then requires that it not be
changed within the loop, or that it be changed only in one di-
rection,

One other necessary condition on loop expressions is
that they be bounded from below at the same point at which the
decrease 1s measurede It is not enough for an expression to be
decreasing as we go around a loop, when measured from one point,
and to be bounded at a different point in that same loope To see
this, consider the following loops

1l

1

o
=J +1
-J

2 GOTOJ.

- & H SN H
nn

At statement number 3, I 1s certainly bounded. If we go around

the loop from statement 2 back to itself, I decreasesj yet the
- 30% -

}

loop never terminates, Of coursey I is not decreasing if mea-

sured from statement 3 around the loop and back to statement 3.

Many programs terminate for special reasonse Among these
are the followings:

(1) A program which calculates the elements of a con-
vergent sequence, and which stops whenever two adjacent elements
of the sequence are within a certain tolerance of each other,
can be shown to terminate by meking use of Cauchy's criterion
for convergence, The following program calculates the square
i'oot of the positive real number X, to within a strictly posis
tive tolerance TOL; by Newton'!s methods:

Y = 2,0
1 Z=Y
Y = 0.5%(Y + (X/Y))
IF (ABS(Z-Y) .GT. TOL) GO TO 1

The sequence calculated here is defined by ¥y = 29 Y441 =

(y1 + X/yi)lz. We know that this sequence converges, and thus,
by Cauchy's criterion, there exists, for every positive € (and,
in particular, for € = TOL), a positive integer N such that
lya-ybl < € for all a, b > No The loop expression for this loop
is then N=I, where N is defined as above and I is such that y;
(in the sequence defined above) is the current value of Y.

The loop expression in this case is nonconstrustiye. It ,

. involves variables which do not appear in the program, and which,
although they are clearly functions of the current state of the
- computation (in this case, of the current values of X and TOL),
e have not been given explicit functional definitions, In section

= o where the validity of the loop expression method 1s proved,

it will be seen that a loop expression can be any integer func=-
tion of the current state. (It is also true that, unless TOL is
sufficiently large, this algorithm may, in fact, not terminate
on some actual computers because of the finite precisioh of the
quantities involved. This subject will be discussed further in
Chapter 16e The partial correctness of the above progream is
also of interest, since it involves an unususl kind of asser=
tion; this is also discussed in Chapter 164)

(2) A sorting program, which puts an array in ordér, may
be shown to terminate by considering the total number of pairs
of elements in the array (not necessarily adjacent elements)
which are out of order., This number is bounded from below by
zero, and it may be shown to decrease whenever two out-of-order
elements are interchanged or whenever a partial merge process
is performed, This subject is considered further in section 10«3,

(3) A program which reads a new card every time around
a loop, and which contains a test that exits from the loop when
there are no more cards left in the hopper, can be shown to ter=-
minate by considering, as a loop expression, the number of cards
which remain to be read, This number is bounded below by zero
and decreases each time a card is read. For further discussion
of this subject, see Chapter 18,

(4) A program which operates upon the elements of a list,
moving from one to the next and stopping when the pointer field
in the current 1list item indicates that there are no more items,
can be shown to terminate by considering, as a loop expression, .
the number of items remaining in the liste. Such programs require
initial assertions that insure that they are not, in fact, wor-
king on circular 1ists. This subject is taken up in Chapter 17.

- 306 -

8-3 Graphiesl Proverties of Programs

The statement of the termination theorems wé will use de=~
pends on the "closed loop condition," one of several graphical
- properties of programs which are necessary to an understan’ing of
partial correcctness and termination. We shall now define these
proper ties and prove certain important facts abouf theme

First let us consider programs which "obvibusly" 11wry s

terminate, Among these are the straight-line mrograms, or pro-

grams which have no transfer statements, Whenever we execute nn
n-statement straight-line program, we do the first statemrment first,
then the second statrment, and so on through the last statement,

so that the program always terminates, There is, hovever, a more
general class of programs which always terminate: those in which

all transfers are in the forward direction.

DEFINITION 8-ls A program containing n e<ecutable statements
Cl’ eoey Cn 1s a branch-forward program if,: whenever statement Ci
transfers to Cj, we have i < Jo
It is obvious that an nestatement branch=forward program
always terminates in a finite number (< n) of steps. We shall now
show that there is a sense in which branch-forward programs are
the only programs which "obviaisly" always terminate,
DEFINITION 8-2, A cycle (or "closed loop") in a program is
a path from some stateme;t in that program to itself. An acyelic
. program is one which does not contain any cycles,
It is clear that, if a program does not terminate, it will
. eventually execute a statement which it has already executel,

Thus a cycle will exist, and hence the program cannot be acyclice.

This shows that acyclic programs always terminate,

- 307 -

All branch-forward programs are acyelic; but the converse
is not generally true. For example, the following program o cal-
culate the sum of thg absolute values of X and Y 1s acyclic, but
it is not a branch-forward program because of the statements GO T0

5 and GO TO 93

FUNCT ION SUMABS (X, Y)

1 A =X

2 | IFf (A) 3, 5, 5
5 B=Y

6 Ir (B) 7, 99 9
9 SUMABS =A +3B
10 RETURN

3 A= <A

4 GO TO 5

7 B == =B

8 GO TO 9

EMD

We have purposely included a statement number on every statement
in this program to show that 1t'is in fact a branch-forward pro-
gram if we interpret "forward" to mean "in increasing a der of
stotement numberso® In fact, as we will now show, any acycllc
program may have its statements ordered in sudq a way that it
becomes a branch-forward program in this sense.

TTI0REM 8-1. .The following three properties of prograns
cre eqguivalents

() The statements of the program may be mumbered in such

a way that all transfers-ave in the forwawd direction.

- 308 =

(b) The program contains no cycles.

(¢) Every subset of the statements of the progran contains
an initial statement of the subset (that is, a statcment to which
no other statement of the subset makes exit).

PROOF: (a) =% (b) -- Obvious.

(b) - (¢) ~- Suppose, on the contrary, that there was a
subset containing no initial statement., Choose any element of this
subset; call it Coo Since Cqy 1s not initial, there is another
statement -- call 1t CI —= which makes exit to it. There is then
still another statement, 02, which makes exit to Cl‘ Continue this
process until a statement CJ is reachei whiéh is the same =s stete-
ment Ci’ 1 < Jo This will always happen because the total number of
statements in the program is finite, But then Cj -> Cj_l-) cee > Ci
(= CJ) is a cycle of the program.

(c) =» (a) -- Let C, be any initial statement of the progranm.

1l
Since C1 is initial, there are no transfers to it. Remove C1 from
the program and consider an initial statement of the subset that

remains; call this C,, Clearly there can be no transfers to 02 ex-

cept possibly from C,. Now remve C, and repeat the process. Con-

tinuing in this way,lit is clear that, at each stage, the current
statement Ci can have no transfers to it except from statements Ci
with 1 < Jo Since this is true of every statement in the program,
it becomes a branch=forward program relative to the constructed
ordering of its statements, This comnletes the pronof,

Next we consider another important property th~t every pro-
gram which alwayc terminates may he nssumad to havee

DEFINITION 8~3¢ A program is programe-recuced if cvery one of
its executable statements lies on snme path from nn initial state-

ment to a terminal statemente

o =309 -

Other names for progtam-reduced programs are programs vith
eligible flowecnarts or with wel l-formed flowcharts.

Given any programe we may define its program reduction as
the program obtained by deleting all statements which are not on
come noth from an initial node to o terminal nodeo Clenrly the
program rrduction is itself program reduced, The process by which
the program reduction 1s obtained consists of a finite number of
stepsy &s follows: ,

1. Construct the set Xo of all initial nodes of the program,

2o At ench stage, construct the set Xi of all nodes to which

O’ oeo9 J{i-lo
will be null (since the total num-

the nodes of Ki-l make exit,y and which are not in X

3¢ At some stage, some Xi
ber of statements in a program is finite). At that point, all
astatements not in one of the Xi cannot be reached from an initial
node, and may be deleted from the program. (Clearly such a state-
ment in a program will never be executed, if the progranm is alwsys
star ted from some initial node.)

4. Construct the set Yb of all terminal nodes of the programe
(We are now dolng the previous three steps in reverses)

5. At each stage, construct the set Yi of all nodes which make
exit to noies of Yi-l’ and which are not in Yb, coey Yy 9

6. At some ztage, just as before, some Y; will be null. At
that point, all statements not in one of the Yi do not lead to any
termiral node, and may be deleted, (Such a statement will never be
executed in a finite computation, although it might be executed as
part of an endless 1oope)

In what folluws, we shall assume, vhenever it is necessary,

that every program which we consider is program reducede

We shall now define the closed loop condition of a program

- 310 =~

relative to an arbitrary subset of its statements. Our defini-
tion coincides with that given informally in section 7=5, if
the subset is taken to be the set of all control points of the
programe

DEFINITION 8.4, A program is said to satisfy the closed
loop condition, relative to a subset of its executable state-
ments, if every cycle of the program must contain at least one
statement in that subsete.

Likewise, we need a definition of "control path” in a
more general context.

DEFINITION 8450 A control path of a program, relative to
a subset of its executable statements, 1s a path from one state-
ment in that subset to another one (possibly the same one)
which does not contain any other statements of that subsct.

This definition agrees with that givenAinformally in sec~
tion 6-1, 1f we take for our subset the set of all control
points. We are now in a position to prove the statement made
about the closed loop condition in. section 7-5, together with
a partial converse.,

THEOREM 8«2, Let there be given a subset of the executable
statements of a program which contains all of its initial and
terminal statements. Then, relative to that subset, the total
number of control paths of the program is finite if it satisfies
the closed loop conditionj and the converse holds if the program
is program=reduced.

PROOF, Suppose the closed loop condition is satisfied. Then
any control path is completely determined by its first statement,
its last statement, and the get of statements between the twoj
none of the elements of this set may be repeated (that is, a con-

- 311 -

e ——— e e

trol nath cannot coﬁtain the same intermédiaté-stateﬁént more
than once) because otherwise we would be able to get a cycle from
such a statement to itself, not containing any of the statements
in the subset. Since the~tota1 number of statements and the to-
tal number of subsets of statements in a program are bhoth finite,
the total number of control paths is finite, Conversely,

suppose thrt the clnsed loop condition is not satisfied. Let

Cl’ vvoy Ck-l’ Ck S Cl be a cycle ontaining no elements of the
riven subset, Since the program may he assuned reduced, Cl is on
some path from some initial node to some terminal node. On this

path, let the two statements within the subset that are closest

to C; be decnote i by Ci and C;, so that Ci, Cé, coey C} = Cl’
C;+l’ sy C; is a control pathe. Clearly Ci and C& must exist,

because the initisl and terminal statements are all in the subset;
also, by definition, Cl is not in the subset, so that x # 1 and

X # Yo But we can now obtain an infinite number of control poths,
one for each positive integral value of n, by going from Ci to Cl,
then n times around the cycle, eading at Cj, anc finally to 059
This complates the proof,

The imnortance of this thoeorem should be obviolnse Our as-
sertim method does not work unless we have a finite number of
control paths and thus a finite number of verificetion conditinns,
IT our set of eontrol points (including initial and terminal points)
satisfies the closed loop condition, there will alwaeys be a finite
number of control paths; and, 1f the program is reduced (certninly
a ressnnahle enough restriction), the closed loop condition must
be srtisfied for there to be a finite number of control pointse
Hence we mny always assume, when we are glven a proof of partial

corractness involving control points and assertions, that the

- 312 -

(24

»

control points have been chosen in such a way that the closed
loop condition is satisfied, |

There are a number of mechanical ways in which this may
be done. We have already mentioned that, 1f we choose for our
intermediate control points every point to which a backward
transfer 1s made, the closed loop condition will always be.
satisfied, Further methods of guaranteeing this will be de-
ferred to Exercise 5 at the end of ﬁhis section.

- 313 -

8-Y Loop Expression Sequences

Now we are ready to begin to formulate conditions for
the termination of programs with arbitrary numbers o;‘ loopse
As a first example, let us consider a program which multiplies

two matrices:

SUBROUTINE MATMUL(A, By Cy N)
DIMENS ION A(N, N), B(N, N), C(Ny N)

I=1
J=1
K=1
SUM=0
3 SUM = SUM + A(I, K)*B(K, J)
K=K+1

IF (K JIE. N) GO TO 3
c(I, J) = SUM
J=J+1

IF (I JIE. N) GO TO 2
I=I+1

IF (I JIEe N) GO TO 1
RETWRN

END

The final assertion of this program is that C(I, J) is equal

to the sum of all A(I, K)*B(K, J)y L. £ K < N, for each I and J
in the range 1 < I < Ny 1 < J < No We shall choose a single in-
termediate control point, namely statement number 33 clearly
every closed loop in this program passes through this statemento
At this point, the assertion is thats

- 314 -

~

(1) For all i less than I, the i~-th row of the array
C fthat is, C(i, J) for 1 < 1 < N) has been calculated.

(2) For all] less than J’,' the j=th element of the
I-th row of C (that is, C(I, 1) has been calculated.

(3) SUM 1s equal to the partial sum, taken over all
X less than K, for the element C(I, J) of Co '

(4+) The indices I, J, and K are in range (that; is, be=
tween 1 and N inclusive).

Iet us rewrite the program with these assertions, us:lng
our notation, omitting the SUEROUT INE, DIMENSION, RETWRN, and
END statements, and with the initial assertion N> Os

C N>0
I=1
J=1

2 K=1
StM=0

c 11, IsN,lsJ, IS N 15K,K5N,
¢ (c(11, JJ) = SUM(A(II, KK)*B(KK, JJ), <IN,
¢ (1..N)), II .IN. (LooI=1)y JT oINo (LoeM),
c (C(I, JT) = SUM(A(I, KK)*B(KK, JJ), KK +INe
C (LeeM), IT oIN. (1ee3-1))y |
C SUM = SUM(A(I, KK)*B(KK, J)y KK «IN. (14.K-1))
3 SUM = SUM + A(I, K)*B(K, J)

K=K+1

IF (K JIE. N) GO TO 3

C(I, J) = S

JI=J+1

IF (3 JLE. N) GO TO 2

- 315 -

I=1I+1

IF (I ,IE, N) GOTO 1
C (c(II, JT) = SUM(SET(A(II, KK)*B(KK, JJ), KK oIN.
C (LeeN)))y II oINo (LoeN)y JJ oINe (1..N))

Let us first prove that thils program is partially correct.
It has five control pathse

The first path starts at the beginning of the program
and goes to statement number 3. At the end of this path, 1 < I,
l1<Jyand 1 <K follow from I = 1y J = 1, and K = 15 also
I<NyJ<LNyand K< Nfollow from I =1y J =1y K=1y ard
N > O, The other three parts of the intermédiate assertion in=-
volve either the set (leeI=l)y the set (leeJd=l), or the set
(1o.K=1)s A1l these sets are null in this case, which means
that there 1s nothing to prove (that is, the assertion may be
assumed to be true)d,

The next three paths start and end at the intermediate
assertione The second path leads from statement number 3 through
the next two statements and back to statement number 3., This
path changes the values of only two variables, SUM and K. The
only parts of the intermedlate assertion that involve these
variables are 1 < Ky K < Ny and SUM = SUM(A(I, KX)*B(KK, J),
KK oINe (les.K-1)). The other parts of the intermediate asser-
tiony therefore, remain true at the end of the path if they were
true at the beginning, We still have 1 < K at the end of the
path, because K has been increased, and we have K < N because
of the IF statement (this branch is not taken unless K g Mo
The set (lo.K) is the disjoint union of the sets (lLe..K=1) and
(K)y and the sum of all F(KK)‘for all KK in the disjoint union

- 316 -

- ——— - . - -

of two sets 1s the sum of the two sumsj that 1is,

SUM(F(KK), K «INo (51 .U, 82)) =
SUM(F(KK), K oINe S1) + SUM(F(KK), K <IN, S2)

if S1 oI 82 = ()o (Note that this last condition -- that S1 and
S2 are disjoint -- is necesgsary. If S1 = 52, for examplé, then
S1 .U., S2 = S1, and the above relz;ltion clearly does not hold un=
less SUM(F(KK), K oIN, S1) = O,) This implics that when A(I, K)*B(K, J)
is added to SUM at statement number 3, we obtain SUM = SUM(A(I, KK)*
B(KK, J)y KK oIN. (1¢¢K)); then K is increased by 1, leaving us
again with STM = STM(A(I, KK)¥B(KK, J)y KK oINe (L..K-1)),
We now skip to the fourth path, since the third path

will then be more easily understood. The fourth path leads

from statement number 3 thro ugh the next seven statements, then
back to stet ement mumber 1, and finally forward to statement
number 3 again. At the end of this path, we have 1JyJLKN
1 <K, and K < N for the same reasons as in the first path.
Also, when this path started, we must have had J = N and K = No
This is because J < N and K < N by the intermediate assertionm,
together with the fact that, ~after j.;}c_xf?_gsing both J and K by 1,
we had J > N and K > N, By substituting N for K in the inter-
mediate assertion, we .ebtain that we-had 8TM = SUM(SET (A(I,
KK)*B(KK, J)y KK oINe (LeeN=1))) at that time, and thus, Byran
argument:similar to:thatcugedcfor the sedond pathy we see that
SUM = SUM(A(I, KK)*B(KK, J), KK .IN. (1..N)) just before |

the statement C(I, J) = SUM, Just after this statement, there-
fore, we have C(I, J) = SUM(A(T, KK)*B(KK, J), KK oIN.

(1..M)). Wow, by substituting N for J in the intermediate as-

- 31?7 -

sertion and in the preceding sentence, we have

(C(I, JJ) = SUM(A(TI, KK)*B(KK, JJ)y KK oINe. (1e.N)),
JJ oINo (100N"1)) .3-_@_
C(I, N) = SUM(A(T, KK)*B(KK, N), KK oINs (LeoN))

These two assertions, taken together, are equivalent to

(C(I, JT) = SUM(A(I, KK)*B(KK, JJT)y KK ¢INo (leo.N)),
JT «INe (LoeN))

as may be shown formally by using the fact that (1..N) is the
disjoint union of (leeN=1) and (N), together with the fact that

SUM(F(X), X +INe (S1 .U, S2)) =
SUM(F(X)y X oINo, S1) + SUM(F(X), X +IN, 52)

~and that

(P(X)y X o+INe (31 oUs S2)) =
(P(X)y X oIN, 51) and (P(X), X .IN, S2)

for any two disjoint sets S1 and S2, function F, and predicate

P, In turn, the assertion just determined, together with

(C(II, JT) = SUM(A(II, KK)*B(KK, JI), KK oIN. (L..N)),
IT oINe (LeoI=1)y JJ oINe (1..N))

is equivalent to

(C(I11, JJ) = SUM(A(II, KK)*B(KK, JJ), KK +IN. (1..N)),
II JINe (LeeI)y JT oINe (LeoN))

7]

for the same reasons, Thls is then true just before the state=~
ment I = I + 1, after wvhich we recover the original intermedi-

ate assertion, (The remainder of this assertion is now immediatej

- 318 -

we have 1 < I because I has increased; we have I g N because of
the final IF statement, and the rest of the intermedlate as-
sertion involves (leoJ=1) and (Le.K=1)y both of which, as be=
fore, are null,)

The third path in this program is, in a sense, & Cross
between the second path and the fourtho It leads from statement
number 3 through the next five statements, then back to state-
ment number 2, and forward to statement number 3 againe The
handling of the final assertions 1 < I, I < Ny and (c (11,

37) = SUMCA(II, KK)¥B(KK, JJ); KK oINe (l.eN)), II oIN.
(LeeI=1), JT oINo (1ooN)) of this path resembles their handling
in the second pathy while the handling of the final assertions
1<K, K< Ny, and STM = SUM(A(I, KK)*B(KK, J), KK .IN,
(1..K~1)) ' of this path resembles their handling in the fourth
pathe The remaining assertions, involving J, are handled some=-
what as the analogous ones involving I were handled in the
fourth pathe

The £ifth and last path leads from statement number 3 to |
the end of the program. As in the fourth path, we must have had
J = N and XK = N when this path started; and also I = No Thus
the final assertion of this path holds, since it is obtained
by substituting N for I in one of the intermedliate assertions
which was proved to hold at the end of the fourth pathe This
completes the proof of partial correctness, (The assertions
1<I,I<N 1<J <N 1<K, and K < N at-abatement
number 3 assure us that each subsoripted veriable is always
referenced with both subscripts in ranges)

How can we prove that the program terminates? There are
three loops, with loop expressions NeI, N=J; and N-K respeec=

- 319 -

tively., All of these are integer expressions, bounded below by
zero at statement number 3, and each one decreases as we go
around its respective loop. However, these facts are not suf-

ficient to prove termination. Consider the following programs:

1l IF (K EQe 0) GO TO 2

K=20
I=I+1
J=J-1
GO TO 1

2 K=1
I=1=1
J=J+1
GO TO 1

Here there are two loops; as we go around one of them, I de=-
creases, and around the other one J decreases, Also, by the
logic of the program, I and J keep "bouncing” up and down by
one, and hence are bounded, Yet the loops never terminatee

To show what further conditions we should Ilmpose on
loop expressions in the presence of multiple loops, let us
examine the behavior of all three loop expressions In owr ma=-

trix program, as we go around the three loopss

Expression N=I Expression NeJ Fxpression N=K
Inner loop Remains the same Remalns the same Bacreases
Middle loop TRemains the same Dacreases Reset

Outer loop Dacreases Reset Reset

This behavior 1s exactly the same as the behavior of the digits
in a three-digit integer when that integer 1s deacreased, There

- 320 -

will always be ome digit which is decreased; the digits, if any,
to the left of that diglt will remain the same, and those to

the right of it are rései;, (to 9, for décixﬁal integers)e. In gene-
ral, if.-the elements of any set may be placed in order, the
n=tuples of elements of that set may be placed in Jexicographical
order. The n=tuple (a;s seoy a,) precedes the n-tuple (byy «eoy
b,) if a, < bl’ or if a_ = b, and a, < b,y OTy in general, if

1 1 1
= b forl_sisk—landa.k«(bk, for some ky 1L S k Z o

a

) 1Lex1cographica1 ordering is normally applied to either
the digits in an integer or the letters in a worde We may, how-
ever, apply it to n-tuples of integers, If we consider the
n=tuple of cwrrent values of N=I, NeJ, and NeK,; then, as we go
around any of our three loops, this netuple is decreased -- 1f
by “decreased" we mean that the new n-tuple, after-we have gone
around the loop, is less than it in lexicographical order. We
are thus led to the concept of a loop expregsion sequengs =- a
sequence of integer expressions vhich are bounded from below by
constants at a given control point in a loopy and such that the
sequence decreases, in the above sense, every time we go around
the loop from that control point to itself, assuming that the
‘assertion given at that point is valid, As before, if a pro-
gran has a single intermediate control point, it always termi-
nates when started with its initial assertion valid if there 1s
a sequence of integer expressions which 1s a loop expression
sequence for all loops in the program, In particular, our matrix
multiplication program has been shown to terminate,

- 32] =

8~5 General Termination Conditiong

So far, we have restricted our discussion of termination
to programs having only a single intermediate control point. In
such a program, each loop corresponds to a single control path
from that point to itself, In general, there will be several
intermediate control points, and a control :path may extend either
from one of these points to itself, or to another such point,

In this case, the method of loop expression sequences, as pre-
sented in the preceding chapter, generalizes in the following
wayo There will be a sequence of éxpressions associated with
each control point, and we must consider the behavior of these
expressions ags we go along an arbitrary control path, rather than
around an arbitrary loop. Such a control path is now associated
with two sequences -- one at the beginning and one at the endo
Owr conditions are now thats

(1) The sequence associated with the control point at the
end of a control path must be less, in lexicographical order,
than the sequence associated with the control point at the be-
ginning, whenever that control path is actually taken.

(2) Each expression in each sequence must be bounded below,
by a constant, at its associated control pointe

It 1s not necessary that all sequences have the same
lengthe Lexicographical ordering may be applied to two sequen=-
ces of different lengths (as, for example, two words in a die-~
tionary)e The sequence (ayy ecey a,) is less than the sequence
(bl’ oeocy bm) if there exists ky k < n and k < my with a, < b
and ag = b, for 1 < i L kely or if n<mand a; = bi for 1 <1

i
< no (This last rule is what, for erample, makes the word HIGH

- 322 =

precede the word HIGHWAY in the dictionary.)

Before showing how one would construct such sequences

in practical cases, let us prove that, 1f the above conditions
are satisfied, the given program must always terminate when

. started with its initial assertion wvelid. Suppose the con=-
trary, and pick some initial condition under which the program
doeg not terminate. The execution of the program follows the
control pathsj at each control point, we may evaluate the ex-
pressions in the sequence g;h'ren at that pointy and in this
way we obtain an infinite sequence of sequences which is de-
ereasing in lexicographical order. This, however, cannot happen
if the expressions in the sequences are bounded from belowo
(The mathematical reason for this is that the set of all such
sequences 1s a well=ordered set ﬁnder lexicographical order,)

We will now give a general method for constructing these

sequences which is applicable to programs containing more or
less "conventional" loops -- those, for eminple, which are equie
valent to FORTRAN DO loops. We shall assume that each loop has
a loop expression, and that the given program is arranged in
such a way that there are no backward transfers, except for those
assoclated in the matural way with the ends of loops. The metind is as followse
1. For every innermost loop, do the followings
ae Associate the loop expression of the loop with
every control point in the loop (as one element of the
. sequence).
be As the next element of the sequence, assoclate
a small integer, as follows. Start at the oonbrol point -
dn ‘the loop which is-nearestobo, but preceding, the point
at which the loop expression is decreased. If there are

- 323 -

no such control points, start at the last control point
in the loope. Associate with this point the integer 1.
Continue backwards through the loop and around it, and
associate with the other control points in the loop the
integers 2, 3, 4, etcoy in the order in which these con-
trol points are encountered, Note that there must be at
least one control point in every loop; if there is only
one, this step may be skipped for that particular loope
2, Find a loop containing only loops which have already
been treated (if there are none such, skip to step 3),
and, for this loop, do the followings:

a. Associate the loop expression of the loop with
every control point in the loop, including those in
inner loops (these already have sequences, which will be
appended later).

be As the next element of the sequence, associate
a small integer, as follows. Start as in step 1lb and as~
sociate with the point thus determined the integer l.

If this point is within an inner loop, append the Roep
oxpression (from the previous step) and the integer 1
onto the beginning of the sequence already determined
for that inner loop. Now proceed backwards around the
loop, again as in step 1be If the next control point
encountered is in the same inner loop, associate with
it the same integer; otherwise, the next higher integero
In either case, if that control point is within any inner
loop, append the loop expression and this integer onto
the beginning of the sequence already determined, Con-
tinue in this fashion all the way around the loope

- 324 -

¢, Find another loop containing only loops which
have already been treated, and return Yo step 2ae
3, Finally, start at the physical end of the pro=-

gram, assigning to the control point there the integer 1,
and proceeding backwards through the program as in step
2b, assigning a small integer to each control point and
putting this small integer on the front of the sequence
already found at that point. This process ends when we
,reach the beginning :.of the programe

This process will now be illustrated for the sieve pro-
gram of section 7=5., In order to provide a better 11lustration,
we will assume initially -that .every gtatement in this:program is
a~éahtrol point, and determina’sequences at each of these points.
Later, we will show how to determine sequences at only the con~

trol points given in section 7-5,
There are two inner loops in this programe The first reads

1 A(I) = QTRIE.
I=I+1
IF (I JE. N) GOTO 1

The loop expression of this loop is N=I, so we associate this
with every control point. Let us agree to associate the sequence

of expressions o(l, voey &, with a control point by writing
N C SEQ@yy eeey %)

Just before that control point. Our imner loop thus reads

C SEQ(N-I)
1 A(I) = JTRE,

- 325 =

C SEQ(N-I)
I=I+1
C SEQ(N-I)
IF (I JE., N) GOTO1

The loop expression is decreased at the statement I = I + 1.
Therefore, just before that statement, we place the integer 1
as part of ouwr sequence, Working backwards and around the loop,
we place the next higher integer, namely 2, at the beginning of
the loop, and 3 at the end, as follows:

C SEQ(N=I, 2)
1 A(I) = IRIE,
C SEQ(N-I, 1)
I=1I+1
C SEQ(N~I, 3)
IF (I o[Eo N) GO TO 1

Iet us see why this works. When we execute A(I) = JTRUEey the
sequence is decreasing =- that is, the value of (N=I, 1), the
sequence after this statement, is less, in lexicographical order,
than the value of (NI, 2), the sequence before this statement.
This is because N and I do not change, so the value of N-I re-
mains the same, but 1 is less than 2, When we execute I = I+1,
the sequence is decreasing, because the value of N=I after this
statement is less than its value beforehand. (It should be clear
that the fact that 3 is greater than 1 does not matter, because
of the definition of lexicographical order.) Finally, when we
execute the IF statanent, if we go back to the beginning of the
loop, the sequence is decreasing, since 2 is less than 3 and

neither N nor I is changed when the IF statement is executedo

- 326 =~

Hence, for this loop, the sequence 1s decreasing in all cases.
Treating the :other inner loop in exactly the same way,
@ one obtains:
C SEQ(N=J, 2)
A(J) = FAISE,
C SEQ(N=J, 1)
IJ=J +1
C SEQ(N=Jy 3)

IF (T JE. N) GO TO3

[l
(¥

This time, in order to show that the sequence is decreasing
when J = J + I 1s executed, we need the assar tion that I > 0
at that‘pointQ This assertion, of course, is proved as part of
the proof of partial correotness.
We now have to find a loop that contains only loops that
- have already been treated, if there is one. In this program,
there is only one more loop, namely the loop which starts at
statement number 2. (In the: matetx midbiplicatign program of the
preceding sect ion, we would be obliged, by this rule, to treat
the loops in the order “inner, middle, outer.") What is the loop
expression of this loop? In fact, either NeI or N-I*I will doj
the latter seems to be slightly easier to verify, so let us use
it, Leaving out, for.the moment, the sequences we have already
determined for the inner loop, our outer loop looks like thiss

. C SEQ(N~I*I)
2 J = I*I
C SBQ(N=I*I)
IF (J GTe N) GO TO %
C SEQ(N-I*I)

3 A(J) = JFAISE,
- 327 -

C SEQ(N=-I*I)
J=J +1
C SEQ(N=-I*I)
IF (J JIE, N) GO TO 3
C SEQ(N=-I*I)
I=I+1
C SEQ(N=I*I)
GO TO 2

Now, as before, we start just above the statement (in this
case it 1s I = I + 1) that decreases the value of the loop
expressione At this point we assign the integer le. At the
next point (just before the IF statement) we assign the in-
teger 2, and we append the two quantities thus found at this
point -~ namely N=-I*I and 2 -- onto the beginning of the se-
quence already determined at that point in the preceding step,
which was (N=J, 3). The result is (N-I*I, 2, N=J, 3)o We do
the same thing in the other statements of the inner loopy Tre-
membering not to increase the integer 2 until we get out of
the inner loope The result is that this integer 2 1s assigned
to the next tiwo points, then the integers 3 and Y, and finally,
as we go around the loop (Just before GO-TO 2), the integer 5.
The result 1iss
C SEQ(N=I*I, %)
J = I*X
C SEQ(N=-I*I, 3)
IF (J «GTs N) GO TO &
SEQ(N=I*I, 2, N=Jy 2)
A(J) = oFALSE.

SEQ(N-I*I, 2, N=J,y 1)

=J+1I

n

Q

aQ w

- 328 =~

C SEQ(N-I*I, 2, N=J, 3)
IF (7 oIE. N) GO TO 3
C SEQ(N-I*I, 1)
I=I+1
C SEQ(N-I*I, 5)
G0 TO 2

This works for the same reason as beforej; when a statement is
executed, the sequence always decreases. The controlled expres-
sion of the inner loop is not affected within the outer loop.
(We can see why we held the integer 2 constant over the inner
loop if we consider what hapre ns wheh we execute the IF state-
ment in the inner loop amd transfer to statement number 3,)

Final]&, we start at the end of the program, assigning
the integer 13 then the integer 2 to all the statements of the
loop we Jjust analyzed; the integer 3 to the state‘ment I=23
the integer 4 to all the statements of the other inner loop;
and finally the integer 5 to the beginning of the programe. As
before, we append these integers onto the front of the already
existing sequences, The "fiml:-résult ist |

C SEQ(%)
I=1
SEQ(+, N-I, 2)
1 A(I) = JRIE,
C SEQ(M, N-I, 1)
I=1I+1
C SEQ(+, N=I, 3)
IF (I JE. N) GO TO 1
C SEQQ@)
I=2
~ 329 =

C SEQ(2, NeI*I, %)
J = I*I
SEQ(2, N-I*I, 3))
IF (T 6T N) GOTO &
SEQ(2, N=I*I, 2, N=J, 2) :
3 A(J) = JFAISE,
C SEQ(2y N=I*I, 2, N=J, 1)
J=J+1
C SEQ(2, N=I*I, 2, N=J, 3)
IF (J JE. N) GO TO 3
C SEQ(2y NeI*I, 1)
I=I+1
C SEQ(2, N-I*I, 3)
GO TO 2

C SEQ(1) | -
b CONTI NUE

Suppose now that we wish to have control points only at the
beginning and at the numbered statements, We would start with
the inner loops as before, and would assign the sequences (N~I)
and (N=J)3 step 1b may be skipped in both cases, Now we would
do the outer loop, and assign the integer 1 at statement number
3 and the integer 2 at statement mumber 2, in addition to the
loop expression of thai; loopo Finally, we would assign the in-
teger 1 at the end of the programy 2 at statements 2 and 3, 3
at statement 1, and 4 at the beginning, The sequences would be:

At the'begimminge= ()

At statement number 1 —~ (3, N-I)

At statement number 2 == (2, N=I*I, 2)

At statement number 3 -~ (2, N=I*I, 1, N=J)

At statement number 4 — (1)
- 330 -

NOTES

The fact that termination of programs must be shown
separately, if one is using Floyd'!s basic method of proving
partial correctness, appears in [Floyd 67]. He .ve:’:y +brtefly
indtoates a methedief: proving termination which is essentially
the one given here, and illustrates it for a2 one=loop program.

A mueh more thorough study of termination of al gorithms
vas carried out by Manna in his thesis [Manna 6813 the basic
results are given in [MannajOil. Three examples are given in
this papers in one of these, there is only a single intermedi-
ate control pointy while the other two éach 1nvolve three nes-~
ted loops, as in owr matrix multiplication programe The methods
which Manna illustrates are essentially our me_thods of loop ex-
pressions and loop expression sequensese The method of section
8=5, for more general loops, was conveyed to the author In a .
-private ¢ommunication by Manna.

In another series of papers (see [Mamna 69] and [(Manna
and Pnueli 70], for example), both the general problem of par-
tial correctness and the general problem of termination are
shown equivalent to cer tain problems in second-crder logic.
The term "partial correctness" first occurs in [Manna 693,
| The term "eligible flowchart® in section 8«3 (referring
to a flowchart with no unreachable statements, ete.) appears in
(Rarp 60]; the term wyell-formed flowchart," for somewhat the
same thing, appears in {Bjorner 70). The closed loop condition
is briefly suggested in [Floyd 67] and used in King's program
verifier [King 693 '

- 331 -

EXERCISES

1. Prove the correctness (partial correctness and ter-
mination) of the following program (slightly modified fom one
given in section 6=5)3

K=1
1 B(K) = A(X)
K=K+1

IF (K JEes N) GO TO 1

Be sure to include a proof that the subseripts are in range every
time a subscripted variable 1s referencede

2, Prove the correctness of the following program (slight=
1y modified from one given in section 7=2)3

I=0
1 I=I+1
™ (X £EQe A(I)) GO TO 3
IF (I JNEe N) GOTO 1

Assume that the assertion afler tho~1ast statement of thecprggram
1s0(X JE. A(I)y I oINe (1eoN)), vhile the assertion at state-
ment number 3 is X = A(X)o

3, Prove the correctnsss of the following program (sl ight-
1y modified from one given in section 7=2)3

I=1
s = AQ1)

1 I=1I+1
8 =8 + A(I)

IF (I JIT. N) GOTO 1
- 332 =

[

Be sure you choose the initial assertion properlye

4e The following progz‘am, given with assertions, is a
modification of that given in problem 1 aboves | '

K=0
1 K=K+2
B(K-1) = &(E-1)
B(K) = A(K)
IF (K oNEo N) GO TO 1

The point of the modification, of course, 1s that it takes the |

computer just as long'to doK=K+1asK=K+2, and we neced

todo K=K + 2 only half as many times als we. would need to do

K = K + 1, There is, however, a bug in the above programe |
(a) Try to prove the correctness of this program and show

exactly where a proof breaks downe o
(b) Fix the bug, while retaihing the statément K = K +'2

and the property of it mentioned above.o |
(c) Prove the correctness of the resulting programe

5o Show informally, using the arguments of sectibn 8«3,
that the total number of control paths '1n a program will be
finite if we take as owr control points the initial and ter=-
minal statements of the program, together with |

(a) all labeled gtatements of the programg

(b) all IF gsiatements and other o ndjtional statements
of the program;

(¢) all backward transfer (comiitional and unconditional)
st atements in the prograem., (Note: Exercises 5a, 5b, and 56 are
three separate exercises, It 1s not meant that all statements
of all three types should be considered simultaneousiy.)

- 333 -

6. Give an example to show that a program with a finite
total number of control paths need not have a control po:l.nt in
each closed loop unless it is program-reduced. ‘

2. In the matrix multiplication routine of section 8«4,
we used the variable 8UNMsas a partlal symy tather: than C{Iy)J),
for the sake of efficiency. Suppose, however, that we do not do
thisj that is, we eliminate the statement C(I, J) = SUM, and re-
place SUM by C(I, J) everywhere else in the program, How does
this change affect the proof of partial correctness?

8o In the matrix multiplication routine of section 8k,
we used I as the outer 1oop index and J as the middle loop indeXe
A good FORTRAN pu'ogramer might notice that, if we used J as the
outer loop index and I as the middle loop index, an optimizing
'FORTRAN compiler might produce faster coﬂe, sinse passing from
¢(I, J) to C(I+l, J) (rather than to C(I, J+1)) involves incre-
menting an index register by 1 (or by 4 én the IBM 360 and 370),
due to the way in which FORTRAN arrays are storedo How would
this change affect the proof of part:lai correctness?

9, Determine sequences of expressions, using the method
of section 8=5, for the matrix multiplication program of section
8¢, assizming that every gtatement in this program is a control
point.

10, Consider the sequences of expressions de termined at
the epd of section 8=5 for the Inttlal statdient and the labeled
statements in the sieve pro gram. Complete the proof of termi-
nation of the sieve program by showing that, for each ecort rol
peth of this program, the sequence 1s decreesing (in the sense
used in this section).

- 334 -

CHAPTZIEZR NINEDE

MACHINE LANGUAGZS

9=1 Pure Ezgsgéyzsg

In order to make use of our program correctness tech-
niques in practicql situations, we shall have to be able to
prove the correctness of machine language programs. In par-
ticular, we shall have to be able to prove that the machine
language object code of a compiler is equivélent to the cor-
responding source code, Clearly, unless this 1s true, a "cor=-
rect" program written in an algebraic or other higher level
language may still give wrong answers when'compiled and executed,

In studying machine-language program correctness, we must
deal with seli-mddification and integer and floating point
ag;thmetig.,&g;we shall seey the cpncept of a restricted com=.

;’h,mgnd, as introduced in sect ion 6-5, provides us with a powerful

gereral method of treating all of the above phenomenae Of thesey
self-modification is the most fu Aamentale lany machine-langu,ge
prograns perform no arithmetic orper=tions, ond zre thus not-sub-
jeet to roundoff, fruncalisn, or overflow considerations; on the
other hand, even when a machine l-nguage program does not nodify
itself .- that is, when it is.a pure Erocedg;e ~= that fact must
be pfbved.. . o ' ’

The bacic principle behind proving that a procedure is nure
Is quite simples Suppose thét a progren P does in fact modif:
itself; then it must be mollfled by onc of its own instructions.

- 335 -

(iven a pure procedure, of course, might be modified by some other
procedure; this possibility is discussed in section 20=..) If we
wish to prove that P does not modify itself, therefore, we look
at each instruction of P and prove that that instruction cannot
modify P, Moreover, we may assume, by induction, that the given
instruction has not itself been modified yete Let us now cast this
intuitive argument in formal terms. |

Let a be an instruction word in some computers (That is,
a denotes the space taken up by one instruction. This will be
the same as a data vord on the UNIVAC 1108 or the EDP-10° it
will be two, four, or six bytes on the IBM 3703 elther one half
or one fourth of a word on the CDC 6600, and so on.) We may re-
gard a as a variable, whose value u;i° presumﬂbly the code for
some instruction I, Since g is a variable, we may regard a=w
as an assertione The instruetion I will be performed only if the
assertion a=w holds just before it is to be performed.iThus every
instruction in machine lsnguage may be yiewed as a restricted com-
mand . To say that the inétruction I has been modified is preciselyv
to say that the assertion a=y falls to hold.

Now let the set of all instruction wards in the program P

be a ceey Bp and let the corresponding values be Wys coey L%

l,
and the corresponding ins tructions Il’ soey ;n The assertion

____..—-r--

(&K K’ K .IN. (100.11))

says that "so far, the progran has not been modified"; or, in other

words, every instruction word in the program has the same contents
as it had when the program started. et us now include this as an

assertion at every control point in the programe The verification

- 336 -

conlition of ench contrnl path must now incluide a verification

of this arcertion &' the end of each path, under the hypothesis

that it is satisfied at the beginning of that pathe

In meny machine language programs, the above verification
- may be performed by reference to the individual instructions of
the program. Most of the inst ructions in the repertoire of a ty-
pieal computer do not change the contents of wnrds in memory.
These include loading, shifting, most erithnetic and logical in=-
structions, and conditional transfers. ’ven those vhich do
alter menory, such as store instructions and "odd to memory" or
"increment memory" instructions, very often alter only certain
fixed cells in memory (if, in particular, they sre not indezed).
If all of the instructions in a program are of the above typcs,
then the program cannot modify itself, no matter how it works or
what it does. We shall refer to such a program as an absolutely
pure procedure.

We shall now give an example of the proof of correctness

of an absolutely pure procedure. We shall use the machine ol
section 3=5, and .the GCD program of section 6=l as it might be

compiled for that machine. our program, with assertions, is as

follows:
Address Contents Mnemonics and assertions
(hexadecimal) (hexadecimal)
100 ——— I RE 1
) 101 — J RE 1
i 102 ——— M RE 1
103 ——— N RE 1

- 337 -

*M>0, N>0

10k 1102 ID M
105 7100 ST I
106 1103 ID N
107 7101 ST J

* GCD(I’J) = GCD(M, N),
¥*I>0yJd>0

108 1100 U I I
109 5101 sU J
104 c110 ™ V
10B 6001 SUI 1
10C | C11k ™ W
10D 4001 ADI 1
10E 7100 sT I
10F | A108 TR U
110 1101 v ID J
111 5100 SU I
112 7101 ST J
113 A108 : TR U
* I = GCD(M, W)
114 e W

This program uses the instructions ID, ST, SU, TM, SUI, ADI, and
™. Of these, only ST {store) alters the contents of any word in
memorye The four ST instructions in this program alter only the

contents of I an’ J, which aré declared by means of the pseudo-

operation RE (RE n reserves n words of memory)e Thus the above

program is an absolittely pure procedure, and the proof of its

correctness proceeds along standard lines. Let us consider in de-

- 338 -

"

tail one of the control paths, namely the one that nroceeds from

nddress 108 to address 10F, and back to address 1083

* (ICA), GCD(I, J) = GCD(M, N)y I > 0y T > O

D I ac =1

SU J ac =ac -~ J
{ac 3 0)

SUI 1 ac = ac - 1
(ae 2 0) |
“ADI 1 ac =ac + 1
ST I I=asac

* (ICA), GCD(I, J) = GCD(My N), 2 >0, T >0

We have explicitly introduced here an instruction constancy ags-
sertion (ICA). This is the asser tion, mentioned earlier, which
states that the instruction words of the program == in this case,
the sixteen cells with hexadecimal addresses 10% through 113 ==
have the same contents they had at the beginning of the program,
which in this case are given by the table in hexadecimal. We must
first show that ICA is preserved by'the pathe, Now ICA 1mplies, in
particular, that éell 108 contains the instruction code for LD I.
This instruction changes only the acéumulator.(denoted, as before,
by ac), and thus ICA remains true after it is executede In turn,
since ICA implies that cell 109 contains the instruction code for
SU J 4 this instruction is executed properly, and so on through
the end of the path. The last instruction, ST I, alters cell 100,
which is not one of the cells (10% thirough 113) in the definition
of ICA, and thus, againy ICA is preserved. B

We haove given each instruction.in the path with 1ts algebraic

- 339 -

language equivalent, as in section 3-5. Note that we have em=
ployed a programming "trick" to circumvent the fact that our
computer has no test for zero -—- we test for minns, then sub=-
tract one and test for minus again. If the first test fails and
the second succeeds, the accunulator must have been zero before
subtracting 1l In this case, hoWever,.I - J was strictly posi-
tive, and we added the 1 back on agaln to get the original re-~
sult (I - J) to storé in I, Forward substitution prdduces the
following tables - |

Variable I J ac

Initial value I J a

Velie after ID I I ‘J R

Value after SU J I 7 I
(ac > 0) becomes (I-J>0) | | |

Velue after SUL 1 | I 7 I-d-L
(ac > 0) becomes (I-J-1_>_O) :

Value after ADI 1 I J I-J

Final value Jb J I-J
The final assertion becomes
(ICA), GCD(I~J, J) = GCD(My N), I=J > 0, J > O

and this must be implied by the initial assertion and the two

intermediate conditions as modified above by substitution, that is,

(ICA), GCD(I, J) = GCD(My N)y I > 0y J > 0y I-T 2 0y I-J=1 2 O

Of course, sincé‘i anﬁ J are assuﬁédvto-bé-iﬁt;gers, I;&-imzno isf-
equivalent to I=J > O, or I > Jes The proof now proceeds much as in
section 6-1;

| - 340 -

lo

9-2 Verificd Purlty

Absolutely pure procedures may not contain eny instructlons
which are capable of altering arbitrary cells in menorye. Aong
these are the indexed store instructions, necessary for implemen-
ting assignments to subseripted variablese. However, there =@rc
other classes of pure procedures in which such Instructions moy
appear. Consider, for example, the class of prograns produce:l as
object code by a cnompiler with a subscript range chocking fecture.
(Most ALGOL compilers have this feature; most FORTRAN comnilors
do not. With PL/I, we would consider only those object progroms
corresponding to PL/I source programs in vhich the S UBSCT IPTAANGE
condition is valid over the entire programe) Glven such & program,
even if we do not know how,it works or what it does, we nay as-
sumey provided the conpiler is correct, that the program does not
mod ify itself, In particular, every assignment to a subseripted
variable is always within the range of that voriable, or else the
object program stops at a run~time error exit,

The method by which it is proved that no member of such a
class of programs can mndify itsclf will be called a local yerifi-
cation algorithm. There are many local verification algorithms,
each one corresponding to some class of lg ly yerifiable pure

procedures. A typical such algorithm proceeds as follows. Let us
first assume that all (conditional and unconditionsl) transfer ir-
structions in a program transfer to fixed addresses in the progran
-- that is, there are no indexed transfer instructions, such as
comnuted GO TO or subroutine return instructions. In this case we

nay identify all locations in the program to which trrisfer may b

- 341 -

made., Now suppose that the instruction words of the program are al,

eevy @y and that a, 1s an indexed store instruction. We assume

J
that no instruction in the program can transfbr‘toﬂaj“Letg& .
be the largest integer with i < j such that transfer may be made

to aye Then all of the instructions a nmust al-

i’ ai+1, XXX a.d_l

ways be executed just before ajo Suppose that, if these instruc-

tions are executed in the given order, a, cannot modify any in-

struction word of the program, If we canjprove this for each in-
struction like ay in the programy we have proﬁed that the program
is a pure procedure,

As an example offsuch a programy let us consider the exam-
ple of section 6=5 as it might be compiled for an 18-bit machine
whose instruction words have 2-bit index reglister fields, and
which are otherwise like those of the 16~bit machine of section
3=5¢ We shall assume that the fields of the instruction word are
in the following order: index register, 2 bits; operation code,

% bitsy address, 12 bitse. All operation codes are the same as be-
forey an indexed address is followed by a comma and then the index
register number, from 1 to 3, whoreas zero in the index register
field, as usual, specifies no index modifications The index re-
gisters 1 to 3 are addressable and occupy cells 1 to 3 respective-

ly. The program is as followss

Address (octal) Contents (octal) Miemonics and assertions

1000 memm== A RE 100
1144 S B RE 100
1310 — N RE 1

* N> 0, N< 100
1311 020000 IDI O
1312 070001 sT 1

- 342 -

x (A(K)=B(K), X +INe (Lo.X1-1)),
*0 X1, X1 <Ny N<100

@ 1313 150001 U IN 1

1314 010001 D 1
< 1315 060001 SUI 1
1316 141327 ™ E
1317 | 060144 SUI 100
1320 | 131327 TP F
1321 - o177 ID Awl,l
1322 | 271143 ST B-1,1
1323 010001 ID 1
1324 051310 SU N
1325 141313 ™ U |
* (A(K) = B(K), K oINe (Lo.N))

1326 ——
1327 | E

This routine has two exits -=- the normal exit, at address 1326,
and the erro:t? exit, at address 1327. In fact, ﬁhe error exit is
anver taken; but we do not have to know this in order to prove

that this is a pure procedure, The points to which transfer may
be made are U (address 1313) and E (address 1327)., The only in-
dexed store instruction in the program 1is at address 1322, and

thus all instruetions from 1313 through 1321 must be executed
Just before this store instruetion. let us write these instruc-

tinns as if -théy were :a control path with no initial assertions

InN 1 A =X1+1
- D 1 ag = X1

- 343 -

SUI 1 ' ac = ac -1
(ac > 0)

SUI 100 . ac = ac = 100
lac < 0) '

ID A-1,1 ac = A(Q)

ST B-l,1

Here and in the assertiofs of :the program,’Xl, of coursej refers

to index register 1. Forward substitution gpplied to this path

yields the following tables

B4X1) = ac

Variable ac X1 A(X1+1) B(X1+l)

Initial value ae X1 A(X1#1) B(X1+l)

Value after IN 1 ac XI+1 AQQLH) B(X1+l)

Val‘ue after ID 1 . X141 X141 A(X1+1) B(Xl'!-l)

Value af ter SUL 1 X1 X1+41 A(X1+1) B(X1+l)
(ac > 0) becomes (X1 > 0)

Value of ter SUI 100 X1-100 X1+l A(X1+1) B(X1+1)
(ac < 0) becomes (X1~100 < 0)

Value after ID A-1,1 A{X1+l) X1+1 A(X1+1) B(X1+l)

Value after ST B-l,i E(X1+1) X1+1 A(X1+1) A(X1+1)

The indexed store instruction, ST B=l,l

s alters address

1143 modified by the contents of register Xl. The symbol X1

above, of course, refers to the orig;nalnqontent§Vofit@;g‘gge

gister; its current contents are Xl1+l., The two conditilons,

X1 > 0 and X1-100 < O, are equivalent to 1 < X1+1 £ 100;-that
is, at the time ST B-l,1 is executed, the index will be
between 1 and 100, inclusive. This, of course, 1s the point of
the instructions U+l through U+5 -- to verify that the subw

seript is in this range before making reference to the subscrip-

- 34 -

O

ted variables, In particular, the address of the rctore instruction
is always outside the progré.m's instruction word area, and the
program 1is therefo:e a pure proceduree.

We may sumarize our local verification algorithm as followss:

(1) Determine all points in the program to which trancfer
may be madeo

(2) For each indexed store instruction in the program,
~write a control path directly to it from the nearest of these points.

(3) Verify that, if this path is followed, the index.d store
instruction will never modify any of the program'!s instruction
words. Do this for each indexed store instruction in the pro grame.

Wote that we have given assertions for owr program, and may
proceed with an analysis of its contfol pat hsy just as in the pre-
ceding section. However, such an analysis 1s not necessary in order
to prove that the program is a pure proceduree

What if there are indexed transfers in a program? In this
case, we must have some other way of determining all roints in the
program to which transfer may be madee (Otherwise we might, for
example, transfer directly to an indexed store instruction without
knowing anything about the contents of the index register.) This
leads us to further local verification élgorithms, depending upon
the particular type of indexed transfer we have in mind. Suppose,
for example, that we wish to admit an implementation of the con-
puted GO TO in FORTRAN (or the use of a switech in ALGOL)e This is
a construction which may transfer to one of n locations, dependent
upon whether the value of a certain integer variable (let ur call
it k) is 1,,2, .o;, no Let us implement such a construction by
testing to make sure that 1 < k < n before the indexed trancfer

is made. If this test is always carried out in a fixed way, we mey

- 345 -

scan the code immediately precedlng the indexed nransfer in order
to determine the value of n, which in turn allows us to obtain
exactly n points to which indexed transfer may be made. Another
slightly more e~fficient ldcal verificationvalgorithm assumes that
every one of these n points, except perhaps the last one, will
itself be a transfer (this is normally the case). Hence these »
points may bc omitted in our consideratiqh of all points to which
transfer may be made, except that ény point immediately_following
an unconditlonal transfer 1s then counted as such a point.‘»

Local verification algorithms for subroutine return in-
structions depend in an essential way upon the subroutine call
and return conventions. This subjéct will be taken up in section

- o |

It is, of course, possible to write a pure procedure vhose
purity cannot-be shown'by:local algorithms. For example, et us
remove from the preceding example the instructions‘UWI through :
U+5, obtaining the followlng programs

Address (octal) Contents (octal) Mnemonics and assertions

1000 A RE 100
114 —————— B RE 100
1310 | N RE 1

| | * N> 0, N< 100
1311 020000 IDI O
1312 070001 ST 1

¢ (A(E) = BO), K oINa (LouX1-1))
* DSXJ., X1 < N, N < 100

1313 150001 U oI o1

1314 210777 | ID A-1,1

- 346 -

w

1315 271143 ST B-l,l

1316 010001 D 1
1317 051310 SU W
1320 141313 ™ U
. * (A(K) = B(K)y K oIN, (1..1))
1321 e |

Let us consider a typical control path of this program, namely
the one which extends from address 1313 to address 1320 and back
to address 1313:

* (ICA), (A(K) = B(K)y K oIN. (L.sX1-1)), O £ X1, X1 < N, N <100

IN 1 1=X1+1
ID A-l,l ac = A(X1)
ST B-l,1 B(X1) = a¢
ID 1 ac = X1

SU N ac = ge - I
(ac < 0)

* (ICA), (A(K) = B(K), K +INe (LeeX1=1))y 0 < X1, X1 < Ny N < 100

As before, we have explicitly included (ICA), the instruction con-
stancy assertion, which in this case strtes that the eight in-
struction words with addresses 1311 through 1320 have the contents
given in the table. This time, however, the yalidity of (ICA) 2t
the end of the path depends upon the yalidity of certain other
assertions at the beginning of the path -- in this case 0 < X1
and X1 < 100 (which follows from X1 < N and N £ 109), After in-
creasing X1 by 1y we will have 1 < X1 £ 100, and it is this fact

which keeps the array references in the third instruction in the

path (and the second one as well, fbr that matter) within their
presceribed bounds,

- 347 -

We shall refer to .the above program as a globally veri-
fied pure procedure. This is the most general form of pure pro-

cedure with which we shall be concerned, A globally verified
pure procedure may contain arbitrary indexed store and indexed

‘transfer instructions, and these are kept within limits by the

)

assertions given with the procedure, The idea of proving that

a program does not modify itself by using the control paths in
that program, when the fact that the program does not modify
itself must be used in setting up these very same control paths,
may seem like a circular argument; but it is not, Remember that
both the instruction constancy assertion and the other assertions
at the beginning of a path may be assumed to hold in proving the
validity of both the instruction constancy assertion and the
other assertions at the end of that path,

- 348 =

9-3 Self-Modification

Even when a machine language program does modify itself, an
extension of the methods of the preceding section may be used
to prove its correctness. Such methods are necessary, for cxam-~
ple, when working with a computer having neither index registers
nor indirect addressing; all array references in any program
written for such a computer must be made by modifying instruction
words, Also, when the subroutine call instruction of a comnuter
stores a subroutine return instruction in memory -- as, for exam-
ple, on the CDC 6600 -- this must be considered as a form of in-
struction modification. .

Suppose that 849 ecoy 8y are the instruction words of some
programe, If this program modifies itself, there may, in general,
be several codes Wy;ys Wyos seey LOT instructions Iip0 Lo cooo
which may, in the course of the program, occupy the single in-
struction word aye Since the total number of instruction codes is
finite, there will, in general, be a finite number ki of these
for each ay. Ir ki = 1, then ay is never modified. In order to
prove the correctness of a self-modifying program, we first
determine the} values of each ki and all the wij; that is, we
determine, for each instruction word, how:many different innstruc-
tion codes may be stored there, and what these codes are. Relative

to this information, we msy formulate an instruction behavior as-

sertion (IBA) for the program; this is the assertion that the
current value of each ajy 1 <15, is g_g&wij, i R I lci.
The instruction behavior assertion is the natural gencrall-

zation of the instructinn constaney assertion (ICA) of the pre-

- 349 -

ceding secticny it reduces to that assertion if each ki = lo
Like the constancy assertion, the instruction behavior assertion
must be shown to be preserved along each control path of the pro-
gram, In order to show this,lof coﬁrse, we wlll need other as-:
sertions that constrict the behavior of modified instructions
nore precisely, |

How do we set up our control paths when some of our in-
structions may be modified? Suppose that some instruction word
ay can contain ki‘different dnstruction codes. Then we must treat
a; as a kieggx conditioha; instruction. If the codes are Wy, veey
wiki’ and the corresponding instructions are Iil’,"" Iiki,'then
the meaning of ay within this program is "If a,; = wij’ then per-
form the instruction Iij°" The instruction behavior assertion,
which we are assuming to hold at each point, tells us, of course,

that the contents of a, must always be some Wygo If each Ii j is

1
a transfer instruction, then a, becomes a kidway conditional trans-
fer instruction, and there are ky different direetions for a con=
trol path to goe On the other hand, it may happen that none of the
T13 |
that easc, all control paths through the given instruction word

(for this particular value of 1) is a transfer instruetion; in

proceed forward in the normal mannere
We illustrate these notions by writing the program of the
preceding chapter for our original 16=bit computer of section 3=5,

as follows:

Address Contents Mnemonics and assertions
(hexadecimal) (hexadecimdl) | '

100 ————— A BSs. 100
16k ——— B BSS 100

- 350 -

(7]

1c8 —— N BSS 1
1C9 ——— J BSS 1
ICA 1100 W ID A
1CB 7164 X ST B
*N>0, N< 100
1cc 11c8 s I N
1Cp | 6001 SUI 1
" ACE 71C9 ST J
1CF 11CA D W
100 ‘ 71D3 ST Y
1 | 11CB ID X
1p2 | 710k ST 2
* (A(K) = B(K), K oIN. (1ooN=J-=1))
*0<J, J<N, N< 100,
* Y = (ID A(N=J))y 2 = (ST B(3=J))
13 1100 Y ID A |
1Dk 7164 Z ST B
15 DID3 IN Y
1pé DID% IN 2
107 E1C9 I J
1n8 11¢9 Ip J
1D9 B1D3 P Y
| % (AGK) = B(K), K «INe (L.oW))
1DA ——

There are two instructions in this program which may be modified,
namely Y and Ze The instruction at Y may contain any. of the 10X |
instruction codes for "load A(1)," 1 <1 K 101; the instruction
at 2 may contain any of the instruction codes for "store B(1),"

- 351 -

1 <i< 101, (The case i = 101 happens only the last time through
the loop, as a result of inerementation, and therefore ¥ and Z are
never actually executed under these conditions,) The instruction
behavior assertion here, then, states that each of the sixteen in-
structions with addresses 1CA through 1D9 has contents as glven
by the above table, except for Y and Z (addresses 1D3 and 1D4),
for which we have 1100 < ¥ < 1164 and 1164 < 2 < 11C8 (hexadecimal).
We now give a complete proof of the partial correctness of
this program, (Termination will follow immedlately from consider-
ing the controlled expression Jo. Note that, since the original
index I is no longer needed, due to the address modiﬁcation, we
have chosen to employ a decreasing index J for e ficiency reasonse)
The first control path is

* (IBA), N > 0y N < 100

ID N ac =N
SUI 1 ac =g -1
sT J - J = ac
ID W ac = W
ST ¥ Y = ac
Ip X ac = X
ST 2 Z = ac

% (IBA), (ACK) = B(K), K oIN. (LeeN-J-1)), 0 < J, J <N,
* N < 100, ¥ = (ID A(N=J))y 2 = (ST B(N=J))

We must, of course, explicitly introduce (IBA) at the beginning
and the end of every path such as this, just as we did before with
(ICA). | |

There are three store instructions in this pathe The first

stores J, which is not an instruction, and therefore this does not

- 352 -

1)

of feet IBA. The other two store instructions initialize Y and 2
to the initial contents of W and X respectively, and these are
given by IBA as (ID A) and (ST B) respectivelye From this we may
conclude that IBA continues to hold at the end of the path. The
assertion about A(K) and B(K) is vacuously true, since J is sel
equal to N=-1 in the path and thus ll=J=1 = 0o The other assertions
at the end of the path are verified as followss O < Jy since N >0
and J = N=1; J < N, since J = N=13 N < 100y since N 1is unchangeds
Y = (ID A) = (ID A(L)) = (ID A(N-J)), since J = N=1; 2 = (ST B) =
(ST B(1)) = (ST B(N-~J)), also since J = N=lo

The second control path is

+ (IBA), (AK) = B(K), K JIN. (LeoN=J=1)), 0 < Jy J < N,
* N <100, ¥ = (ID A(N=J))y 2 = (ST B(N=J))

Perform Y ac = A(N=J) .
Per form 2 B(N=J) = ac
IN Y : Y=Y+1
IN 2 2=2+1
DE J =J=1
Ip J a =J

(a¢. 2 0)

* (IBA), (A(K) = B(X), K .INJ. (i..N-J-l)), 0<Jy TN,
* 1 < 100, ¥ = (ID A(N=J))y Z = (ST B(N=J))

There are two instructions here which modify other instructions,
namely (IN ¥Y) and (IN 2)e. (The instructions Y and & themgelyes,
by IBA, cannot modify other instructigns.) Since 0 < J < N at the
beginning of the path, we have (ID A(1)) < ¥ < (ID A(N)) at that
time, and similarly for Z, so that (IBA) holds even after modifi-
catione The first thing this control path does is to set B(V=J) =

- 353 -

A(¥-J); we may infer this from that part of the initial assertion
wbich deals with the contents of Y and Z. This, combined with (A(K)

= B(K), K .IN, (1..N-J-1>), ‘gives (A(K) = B(K), K .IN. (1..N-0));
1;{{51.',“—;' is decreased by 1, giving (A(K) = B(K), K .IN, (Lo oNeuT=1))
agalne Similarly, (¥ = (ID A(N=J))) becomes (Y = (ID K(N=J+1)))
vhen Y is incremented, and (Y = (ID A(N=T))) agaln vhen J is

decremented; and similarly for Z, The other assertions at the
end of the path follow much as before: 0 < J (from ac = J and

ac > 0 near the end of the path); J < N (from J < N at the start,
since J is decreased and N is unchanged); and N < 100 (since XN is
unchanged).

Finally, the third and last control path is

* (IBA), (A(K) = B(K), voINo (10.N-J-1)), 0L J, J < N,
* N <100, ¥ = (ID A(N=J))y Z = (ST B(N~J))

Perform Y ac = A(N=J)
Perform 2 B(N=J) =
IN Y Y=Y+1
IN 2 Z2=2+1
DE J J=J+1
I J ac =4J

(ac < 0)

* (IBA), (A(K) = B(K), K IN, (1..N))

We note first that we had 0 < J at the beginning of the path,
and then J was decreased by one and the result was negativee

Therefore we must have had J = 0 at the beginning of the path,

and hence (A(K) = B(K), X JIN. (1..N-l)), Y = (LD A(N)), and Z =
(ST B(N)). The preservation of (IBA) now follows just as it did
in the second path, although, as we have already moted, the final

- 354 -

u

values of ¥ and Z must be specified with care when (IBA) is
constructed, Also, just as before, by setting B() == A(T) when
(A(K) = B(K)y K oIN. (LoeN=1)) is tfw, we obtain the final as=-
sertion (A(K) = B(K)y K ¢INs (1eeN))es This completes the proof.

We may note that our program has been globally verified,
in the terminology of the preceding chapter. Is there an analogue,
for self=modifying programs, of the absolutely pure procedure --
a sort of "absolutely not-quite-pure procedure"? More specificelly,
if we specify an instruction behavior assertion with particular
chnices of the instruction codes "ij and corresponding instruc-~
tions Iid’ 1f we note that none of these are index:d store in-
structions and that no store instruction can change the contents
of a cell which is not to be modifiled, can we infer that the given
instruction behavior assertion is always preserved? In general,
the snswer is noe¢ The trouble is that we have no way of lnowing
what might be stored in the modified instructinns., In particuler,
we might store something there that would proceed to modify some
other instruction in an uncontrolled manner the next time it w=as
ex:cuted, Even 1f a store instruction is always Irmediately pre-
ceded by a load instruction, so that we presumably know what is
in the accumulator or other such register at the given timey we
have no general way of knowing that some other instruction cannot
transfer around that load instructione If instrnction modifi eations
are of certain specified types, a local verification algorithm mny
be set ups this is, in particular, true when considering suoroutine
call instructions which store a subroutine return instruction in

menorye This subject will be taken up again in section 20- o

- 355 =~

9<+ Integer Arithmetie

The speclal prohlems of integer arithmetic on computers
include size specifications, overflow (including negative over-
flow and overflow as a result of shifting), division by zero,
and the use of special properties of arithmetic instructions
(such as integer subtraction of floating-point numbers as a test
for equality)e Properties of programs which involve any- of these
phenoména may be provéd by-further application of our notion of a
restricted cormande

Every computer has some smallest negative value and some
largest positive value for the one-word intggers which it can
store. We shall refer to these bounds, in the remainder of this
section, as min and max respectively, with the understanding that
they will be different on different computers, If negative numbers
are represented in two's complement, we normally have min = -2b‘1,
where b is the number of bits per word. If negative numbers. are
represented in one's comglement or by signed magnitude, we have
min = -2P~141; £inally, in all cases, we have max = ob-1_3,

When any final result or intermediate quantity in a calcu-
lation is an integer which is larger than max, we say that ove flow
has occurred; for an integer which is smaller than min, we say that
negative overfloy (or "underflow") has occurred. In most prograis,
we shall be interested in proving that overflow never occurs, pro-=
vided that the data which the program processes is within cer tain
limits. O: the other hand, there are some programs == such as
Aouble precision addition and subtraction routines =-- which make

use of the specific results calculated by the add and subtract in-

structions of a computer when overflow does OCCIe

- 356 -

Before taking up the question of overiiow, honwever, ve
must consider the even more basic question of size specificatinns
on the constants and data of a program that are determined by min
and max. These aftect all programs which process integer dnta,
even 1f overflow never occurs. As we shall see, our GCD progran
of section 6-1 never produces overflow or underflow in any situa-
tionj but this does not mean that this program will correctly cal-
culate the GCD of any two positive integers, The problem is that
an integer larger than max or smaller than min can never be stored
in M or N in the first place, In general, if I is any integer vari-
able in a program, the assertions max > I and I > min must hold at
all points within the program, They must, in particular, be -implied
by the initial assertions of the programe In the GCD program, we
have the initial assertions M > O and N > Oy which imply M > min
and N > ming but max > M and max > N must be explicitly or implicit-
ly specified as initilal assertions also,

'Sometimes, in the presence of finite-precision arithmetic,
stronger assertions than the above must be given. Thus in the
routine of section 7=1 to calculate the 23rd power of a number A,
if this number is taken as an integer, we must init:lally
have AL > A and A > A2, where A123 = pmax and A2%3 = min. In the
GCD program, hoﬁever, because the variables I and J continue to
decrease, the program will actually run for all M and N which are
between 1 and VM, inclusive,

Let us now see what we can prove about overflow, The addi-
tion, subtraction, and multiplication operations on actual com=
puters are not defined so as always to coincide with ﬁhe mathema-
tical operations of integer addition, subtraction, and multiplica-
tione Thus when we write N = I + J in an algebraic language, or

- 357 -

when we write its equivalent in'machine language instructions,

we are not actually -~ always -- adding I and J; we are performing
an operation which sometimes 1s identical to ordinary addition,

but sometimes (when overflow or underflow occurs) is not. What
result s actually calculated depends upon the camputer being used,
The same is true 1f the plus sign were replaced by a subtraction
or multiplication sign. (Integer division, with a single-precision
dividend, cannot give rise to overflow or underflow,)

The above facts may seem to imply that, when we want to
prove the correctness of a program on an actual machihey we must
replace each addition operation by the use of a function giving
the result of machine addition on that machine (and the same for
subtraction and multiplication) and prove the correctness of the
resulting programe. Thus, for example, every use of the statement
N=1I+Jwuld have to be replaced by N = ADD(I, J'), where ADD(I,
J) is defined as I + J 1f max > I + J and I + J 2 min, and as some-
thing else (dependent upon the particular machine) otherwise., Such
a requirement would significantly increase the cumbersomeness of
proofs of most programs as run on actual machines. Owr first appli-
cation of restricted commands serves to meke such a requirement
unnecessary for the vast majority of programs, in which it 1is to
be assumed (and proved) that overflow will never occure Any addi-
tion operation is viewed as a restricted command, which works pro-
perly only if both of its operands gpd the resullt are in the range
defined by min and max, and the same is true for subtraction and
multiplication. Thus N = I + J, for example, is a restricted com-
mand with the restrictions max > Iy I > min, max > J, J 2 gin,
pax > Ny and N > min. As long as I, J, and N are in these ranges,
the actual addition function of the given machine will coincide-

- 358 - : ' .

f

with ordinary addition, and thus we may assume that the restrice
ted command N = I + J always performs ordinary addition.

When an integer expression'is evaluated by means of such

restricted commands, the assertion before the start of evaluation
must imply that all intermediate results, as well as the final
result, are within the bounds determined by mip and max. The fol-
lowing program, written in the assembly languasge of section 3=5,
executes the FORTRAN assigmment Z = A + B = C3 :

2]
N Q W >

As a control path (with initial and final assertions unspecified

for the moment), this reads:

C INITIAL AS§ERTION
(max > Ay A 2 minl
ac = A
[max > By B > min, max > agy ac > min, max > ge+B8, ac+B 2 min)
&:&4’3
(max > Cy C > min, max > asy ac 2 min, max > ge-Cy ac-C > min)
ac =ac ~-C
(max > %, Z 2 ninl
Z = ac

. C FINAL ASSERTION

where the restrictions, as before, are contained in brackets, and

vhere ac denotes the accumulator, We may now see that the initial

assertion

- 359 -

max > Ay A > min, max > By B > min,
C

max > Cy C > min, max > A+B=Cy A+B~C > min

-- that is, the assertion that &ll variables in the given expres-
sion, as well as the expression itself, are within range -- is not
sufficient to make this control path valide (Consider A > O and
B = C = max, for example,) We must also require that the interme-
diate result A+B is within range. When the statement Z = A + B = C
is executed in an algebraic language, where Z, Ay By and C are in-
tegers, and the execution is presumed to take place on an actual
computer (rather than an abstract machine whose cells can hold
numbers of arbitrary size), similar restrictions must be given.
(It is conceivable that a language might be defined in which these
restrictions are relaxed —- by specifying, for example, that all
intermediate computations take place in double precision, with the
final result being re-converted to single precisions)

Now suppose we have a progran in which use 1s made of the
properties of the computer's addition and subtraction functions
in the presence of overflowe In such a case restricted commands
cannot be used; we must use the functions defining the actual
arithmetic operations of the given machlinee The following
double=precision addition routine illustrates what may be
done in such a case, It is assumed that the do uble=precision
quantity A is stored as an array of size 2, with the higheorder
part in A(l) and the low-order part in A(2), and d milarly for B
and Co The routine treats A and B as unsigned.integers, -anmd simi=-
larly A(1), A(2), B(1) and B(2) as unsigned quantities (nonnegative
and less than 2b), so that we may regard A as 2P*A(1)+A(2), and
similarly B as 2°*B(1)+B(2) and C as 2P*C(1)4C(2)s The routine
sets C equal to A+B3 .

- 360 -

(]

* 0 < A(L), A1) < 2P, 0 < A(2), A(2) < 2P,
* 0 < B(1), B(1) < 2P, 0 < B(2), B(2) < 2°,

« 2PeA(1)+A(2)) + (2P¥B(1)+B(2)) < 27D
ID A(2)
AD B(2)
TC ALPHA
ST Cc(2)
IDI O
TR BETA

ALPHA ST c(2)
I 1

BETA AD AQQ)
AD B(Q1)
ST C(1)

* 0 < C(L), C(1) < 2P, 0<c(2), C(2) < 2P,
* (2PHC (1) (2)) = (2P¥A(L)+A(2)) + (2P*B(1)+B(2))

The initial assertions are that A(1), A(2), B(1), and B(2)
are in rangey and that the resulting value of C will fit into a
double worde The instruction IC Z transfers control to 2 if
carry is 1; carry is set by the AD instruction, and specifically
AD Y sets garry = Af ac + Y < 2P then O else 1, followed by
gg=_;£,a_c+¥<2b}me_ggg+YQMac +Y-2b. This program
has two control pathsy we consider only the first (the one which
passes through the statement labeled ALPHA)s |

* 0 < A(1), AQ1) < 2P, 0 < A(2), A(2) < 2P,
* 0 < B(1), B(1) < 2P, 0 < B(2), B(2) < 2P,
* 2P*A(1)+A(2)) + (2P*B(1)+B(2)) < 2°P

ac = A(2) |

- 361 =

carry = if ac + B(2) < 2P then 0 else 1
ac = i1f ac + B(2) < 2b then

ac + B(2) else ac + B(2) - 2b:

(carry = 1)
c(2) = ac

[}

ac =1
w=,:_l,_§gg+b.(l)<2b_t_}_12r_x,0§;§gl
- if ac + A(L) < 2P then
ac + A(l) else ac + A(1) - 2P
carry = if ac + B(1) < 2P then O else 1
ac = if ac +B(1)<2bﬂ}__

ac + B(1) else ac + B(1) - 2"
C(1l) = ac

«0 <c(1), c@ < 2% 0<c(), c@) <2P
« (2Pac(1)+C(2)) = (@PRA(L)+A(2)) + (2P*B(1)+B(2))

lﬁ’

The condition carry = 1 in the path implies that we must
have had A(2)+B(2) > 2° at the start of this pathj gcarry is inia
tially set to 1 and ac to ac + B(2) - 2P, Furthermore, the initial
nssertion (2P¥A(1)+A(2)) + (2P#B(1)+B(2)) < 22 implies, as a fow
calculations will show, that each of the other two instructions
sets carry to Oe Thus the above path reduces to
%0 < AL, AQ) < 2P, 0 <A@), A(2) < 2P,
* 0 < B(1), B(1) < 2P, 0 < B(2), B(2) < 2P,
« (2Psa(D)+A(2)) + (2P¥B()+B(2)) < 22, ’
* A(2)+B(2) > 2P
= A(2)
carry = 1 | =

g_g_:g_g_+B(2)-2b

- 362 -

(carry = 1)

c(2) = ac
ac = 1
garry = 0

- ac = ac + A(1)
garry = 0
ac = a¢ + B(1)
C(1) = a¢c

* 0 < C(1), C(1) < 2P, 0 g C(2), C(2) < 2P,
+ (2P« (1)4C(2)) = (2Pwa(1)+a(2)) + (2P*B(1)+B(2))

At the end of this path, we have C(1) = 1+A(1)+B(1) and
C(2) = A(2)+B(2)=2P, implying that the last of the final asser=-
tions 1s validj also, C(1) 1s iawrange because of what we have
sald about garry in the last two additions, while C(2) is in
range because A(2)+B(2) > 2P implies C(2) > 0 and A(2) < 2P and
B(2) < 2P imply €(2) < 2P, Thus the given path is valid.

Other integer arithmetic instructions may also be viewed

as restricted commands in this way. For a divide instruction,

the restriction says that the divisor is unequal to zero. If

our program uses the .special result (normally zero) to which the
given register is set when the divisor is actually zero, then
"divide by Y" must be interpreted as ac¢ = if Y=0 then O else ac/Y,.
Similarly, for a shift instruction which is being used as a mul=-
tiplication or division by a power of 24 the restriction says that
overflow cannot occur in this process,y and also, guite often, that
the initial contents of the given register' were nonnegative, If
possibly negative quantities are being shifted, the arithmetic in-

terpretation of the shift instruction must be given with care; it
will depend on whether one's complement or two's complement is

being used, and whether the zhift is ¢frcilar, sign-extending, etce
- 363 -

9-5 Floating Point Arithmetic

From the viewpoint of correctness, floating point arith-
metic differs from integer arithmetic in two fundamental respects.
The first is that real numbers are, in general, represented only
approximately by floating point numbers, whereas integers are
represented exactly. The second is that, even if two real numbers
are represented exactly, theilr sumy difference, product, or quo=
tient might not bej and if they are represented inaccurately, it
is possible for such arithmetic results to be represented even
more inaccuratelye. Worse than thisy these two types of error can
be arbitrarily largej cases may be constructed, on typical digital
computers, for which they are as large as 21°°o

Given these dismal facts, are we completely at a loss to
prove anything about floating point calculations? Perhaps sur-
prisingly, the answer is no. Many programs which perform floating
point arithmetic may be proved correct almost as easily as those
which do note Several specialized techniques, however, are neces-<
sary in proving correctness in this casej and there are a great
number of simple floating point calculations which, although they
are correct, are quite difficult to prove correct ¢

The first thing we have to realize about floating point
addition, subtraction, multiplication, and division is that it is
only subtraction which causes unbounded Increase in floating point
inaccuracye (Strictly speaking, it is only addition of quantities
of opposite signsy and subtraction nf quantities of the same signo)
So long as we restrict ourselves to addition of positive numbers,
and arbitrary multiplication and division, the total error in a

calculation is roughly proportional to the number of operations

- 364 -

(v

per formed. This number may be determined by our standard asser-
tion method in many cases. Let us now make the above statements
precise,

In the remainder of this section, we shall assume that a
floating point number consists of a l=bit sign, an g-bit exponent,
and a f=bit fraction. Thus the total length of the word is l+g+t.
The bias, which shall be called ?, is an exponent field quantity
consisting of 1 followed by all O's, or, in other words, 21,

We shall denote by PFW(E, F) the positive floating point word |
with exponent field E and fraction field Fj its value is I
Here E is assumed to be an integer and F a fraction with binary
point at the left; It is assumed that 2% SF<1; ir 1/2 < F <1,
then PFW(E, F) is said to be normalized. The floating point sum,
product, difference, and quotient of U and V will be denoted by
F1A(U, V), FIS(U, V), FLM(U, V), and FID(U, V) respectively; if

U = FFW(E, F) and V's PFW(E!, F!) are both normalized and U 2> V
(that 1s, Fe2F=P > R1.2%'~F) then

FIACU, V) = FIA(V,-U) = AC:W(E) >°1 shen PFW(E+l, W(t-1)) else
PFW(E, W(t)), whore W(A) = [(F + FI/EE)2k + 1/21/5"

FIS(U, V) = ~FIS(V, U) = 4£.2°0"% < W < 27 then PRUE-G,
We2%), 0 < G <ty where W= [(F - F'/QE-E'%Z* + 1/21/2%

while (regardless of whether U2 V or U < V) we have

FIM(U, V) = Af W(t+l) < 1 then PFW(E<E'=p=1l, W(t+1l)) else
PFW(E+E'=B, W(E)), where W(A) = [FeFte2h + 1/21/2°

FID(U, V) = if W(t) 2 1 then FFW(E-E*+p+1l, W(k-1)) else
PFW (B '+8, W(E)), where W(A) = [2AF/F! + 1/21/2°

and FLA(U, V), FIS(U, V), FLM(U, V), and FID(U, V) e all nor-
malized, (Here [K] is the greateat integer :ln‘ot; ®=1.< (] < o)

- 365 -

We must note at this point that these conventions are by
no means universal for typical digital computers. On the CDC
6000 series, for example, for which (using the notation above)
s =11 and t = 43, the "fraction" is not a fraction at all, but
an integer, and the exponent 1is adjusted accordinglye. In this
case PFW(E, F) is called normalized if 2%~1 < F < 2%, amd 1t is
always assumed that 1 < F < o% (for a positive floating point
word)e. Thus 1, for example, is represented in normalized form
by PFW(p=47, 2 l"7), whereaé, using our conventions, 1t would be
PFW(?+1, 1/2)e On the IBM 360 and 370, where g8 is 7 and %t is
either 2% ("short," single precision) or 56 ("long," double pre-
cision), the exponent is a power of 16, rather than of 2, and
the value of PFW(E, F) is Fel6®=P, It is to be understood, how-
ever, that, although the details of the statements an proofs
of the theorems given below will be different for different com-
puters, the basic ideas remain the same.

Every floating point number may be represented with a re-
Jative inaccuracy of at most 2'*; that 1s, if R is a real num-
ber and FPAR) 1s its best floating point approximation, we have

R@ -2"%) < FPAR) <R(1 + 2=¥)

provided that R is positive and in the :floating point range, that

isy provided that
FFW(0, 1/2) < ‘R < PRW(2f-1, 1-27%)

or, in terms of values, o=f-1 < R L 2?'10(1-2-*‘). (We shnll

refer to 2~¢1 as fmin and 281 (1-27%) as fmax, so that fmin <
R < fmax. A few wnnormalized floating point numbers less than
fmin exist' these will be ignored.,]'.f-*R'"'d.s'negai:ive, R(1-2"%) 2

FPAR) > R(1+2-%).) In fact, let ¥ = [log, R1,. so that 29 <R <
- 366 -

L]

23+1 | Then -g-1 < ¥ < =1, and 1/2 £ 5-2'7“1 < lo Iet N =Re
2=1-1 and let N' = [Ne2® + 1/2], so that ot-1 o Nt < 2%, Then
oot - 1/2 < Nt < Ne2b + 172, and 1/2 < W/2% < 1. Ve set FPAR)
= 1r M/2% = 1 then PFW(p+k+2, 1/2) glse PFW(f+t+l, n1/2%), Note
that both 1/2 and N'/2% are in the prbper form to be the fraction
part of a normalized floating point number. Also, 0L §+¥+1 < 2p,
and we cannot have B+¥+2 = 2¢ and Nt/2¥ = 1 (because thenR =
qe2®-1 yould be greater than fmax), showing that the exponent of
FPA(R) is in its proper range. Finally, since N 2> 1/24 we have
Ne2b(L = 27%) = o2t = N g Ne2b - 12 < 0 g Ne2® 4 12 g We2® 4 W
= Ne2t@ + 27Y), so that N(L - 2°%) < W/2% < N@ + 27%) and

RQ - 2% = N2 - 2% < FA®) g Ne2¥*l@ + 27%) = RQL 4
2=%). since the value of FPAR) is in all cases P HL=P e ot
2¥*1 Nt/2%, This completes the proof of the above statement, |

The floating point sum of two numbers, provided that it is
properly normalized and rounded (as it is in the definition of
FLA(U, V) above), should be the best floating point approximation
of the actual sum, provided that the actual sum is in range. Thus
we ‘should expecty from the equation above, that |

U+ V@A - 2°%) < FLa(m, v) < (U +v)Q + 27%)

Iet us prove this formula for U= FFW(E, F), V = FFW(E"', F!),

and Emin < TV < fmax. We may assume U > V; the value of U+V is
EPir + Flobupe o Bl o (BB < P 4 prEE,
For convenience, we set G = F + F1/258', so that 25~Puc 1s the
value of U+V, and W(A) (in the definition of FLA(U, V)) is [Ge2R
+ 1/21/2%, Assume first that W(¢) 2 1; then we must have G 21 -
2't'1, since otherwise G-?t + 1/2 < 2% and hence W(g) < 1. Since,

in general, k=1 < [a) < s we have Ge2¥~L « 1/2 < [Ge2t=1 + 1/21

- 367 -

< o2t 1 172, so that G/2 = 2781 < W(g~1) 5 G/2 + 27¥=1, There
are now two subcasese If 1 = o=t-1 £G <1y then ob=1 + 1 <
Ge2t=1 + 1/2 < 28-1 + 1/2; since o%=1 i5 an integer, we have
[Ge2t=1 4+ 1723 = 2%=1 5o that W(E-1) = 1/2 and G/2(1 - 2°%) <
1/2(1 = 278) < W(g-1) < 1/2(1 + 281 o 221y L 3o - 27 F D)@ -
>=%y < ¢/2(1 + 2-%¥), If, on the other hand, G > 1, then G/2(1 - o=t
- 6/2 - Ge2=t"l < 0/2 = 2WL LWL g 6/2 + 21 < a/2 + ge2™O
= G/2(1 + 2-t). In either case, 2=~PoGe(1 - 2°8) < 2E*1~BW(t-1) <
oB=B.G.(1 + 2=F), that is, (U + V)@ - 2=%¥) < FLA(U, V) < (U +
V)@ + o~E). Now suppose that W(E) < 1. Again from o=1 < (] <oly
ve have Ge2¥ = 1/2 < [ae2% + 1/2] < Go2¥ + 1/2, so that G - 241
<W(E) < G + 2~8~1, Since F » 1/2 and F* 2 1/2, we have G 2 1/2}
thus Ge(L = 2%) = G = Ge2¥ <G =2t cw@) s + 2Kl g+
g2t = go(1 + 27%), so that E-fege(- 27¥) < E-fw(y) <
E=f.ge(1 + 27%), that is, just as before, (U + V)(1 - 2%¥) <
FLA(U, V) < (U + V) + 2=%), This completes the proofe

Let us now prove similar formulas for multiplication and
division, If U = PFW(E, F) and U' = PFW(E', F!) are normalized,
then

UsVe(l = 2=5) < FLM(U, V) < UVo(L + 27%)

if fmin < UV < fmax, and similarly
(UN)o(1 - 2=%) < FID(T, V) < (UA)@ + 2%)

if fmin < UV < fmaxo. As before, these formulas merely reaffirm
that floating point multiplication and division provide the best
possible ap;broximation to actual multiplication and division.
For multiplication, suppose first that W(t+1l) < 1o Since
-1 < [X] < Ky we have FeFt.2%41 o 1/2 < (FeF1e254L + 1/21 <

- 368 -

Forto2t*l & 172, so that 2.F.Ft = 2°%=1 < W(E+1l) g 2+F-F' + o=t-l,
Since F » 1/2 and F! > 1/2, we have 2¢FeF¢.(1 = 2<%y 2 2.F.F! -
DWFeFte2"t < 20FeF! = o=b-1 < W(E+L) < 20FF! + o=b-1 S 2eFeFt +
o PPt 2=t = 2.FFI(L + 278), so that E-PereE'Perro1 - 27%) <
EAE=B=lupy(g+1) < 2B=PFE "Pipro(1 + 2°8), that 1s, UV -
2=%) < FLM(U, V) < UsVe(1 + 2°%), Now suppose that W(E+l) > 1; ve
must then have FoF?¢ > 1/2 = 2“‘?"2, since otherwise Forteottl 4 372
< 2¥ and thus WE+1) < 1. There are now two subcasese If 1/2 =
o=t=2 ¢ PeFt < 1/2, then 2t% + 1M g FoFte2¥ + 1/2 g 2%1 + 1725
sinoe 2t=l is an integer, we have [FeFi-2% + 1/21 = 2%°1, so that
WE) = 1/2 and FeF (L = 2%) 51720 = 27%) <w(®) < 1/2 + 2772 -
0=2%-2 _ (1/2 « 2=b=2)(1 + 2~%) < FeF?(1 + 2-), If, on the other
hand, FeFt > 1/7, then FeFt (1L = 2°¥) = FeFt ~ FeFte2™ < FoF? -
2=¥=1 (y(g) < FoFt + 2781 < PoFe + FePte2™t = FoF1. (1 + 270),
In either case, 2E=PeF.2E'~BF1.(1 - 27¥) < 2B P-Pay(z) <
Bofepo =Prte(1 + 2°H), that 1s, UVe(1 - 2°F) < FLM(U, V) <
UeVo (1l + 2"-1;), just as before.

For division, note that W() (as defined in connection with
FID(U, V)) > 1 if and only if F/F% > 1 (that is, F > F'). For
clearly W(t) > F/F'; whereas if F/F? < 1, then (e¥.F)/2bF1) <
1, and, since z”or«- and 2%eF% are both integersy they must differ
by at least 1y that is, 2boF + 1 S 2% eFi or 2%‘/1‘" + 1/F% < 2“,
so that W(g) = [25.F/F8 + 1/21/2°% < 1, First suppose, then, that
F > Ft; since o=1 < [X] g oy we have oM=l.p/Ft - 1/2 < (2%-L.r/pt
+ 1/21 < 25=1.F/Ft + 1/2, so that 1/2 « F/FY = 2781 <w(g-1) <
1/2 o F/FY + 2=¥=1_ Since F > F¥, we have 1/2 s F/Fte(1 - 27%) =
1/2 o F/FY = 1/2 o F/FY 0 2¥ <170 o BV = 2767k cWg-1) <
1/2 « F/8V +27¥"L < 1/ « B/FY + 1/2 « F/PY o 27% = 1/2 o F/F ¢
(1 + 27%), so that ((B=PF)/(E =Pr1)). 1 - 2°¥) < EEMPHE,
W(t-1) < ((E=PeF)/(B=FF1))e + 27¥), that 1s, (UN)e@ - 2°%)

- 369 -

< FID(Uy V) g (U/V)-(1 + 2=%), Now suppose that F < F'; again
from &=l < [A] < X, we have 25.F/F1 = 1/2 < [2%F/Ft + 1/2] ¢
ot F /Pt + 1/2, so that F/FY = 2781 < w(g) g F/FY + 27071, since
1/2 < F, F! < 1, we have 2F > Ft; thus F/F! o (1 -2"t) = /Pt -
F/FY o 278 < p/pt < 27E cy(g) <Pt + 2781 CF/PY 4 B/
2=t - F/pt o (1 + 2°9), so that ((EFr)/(E'Prn)e - 27
< EEP yr) g (E-Ber)/(E'FeF1))e(1 + 27F), that is,
(UA)e(1 -~ 27%) < FID(U, V) < (UA)e(1 + 2™¥) as before. Thus
both of the above statements are proved; |

We are now ready for the fundamental definition of this sec=
tione

DEFINITION 9=1, Let N > O, The assertion

1£ R > 0 then Re(1 - 2=5)¥ <Rt <R - 279)7N
else Re(1 - 2°t)=N < R* < Re(1 - o=t)N

will be denoted by FEQ(R, R'y N) (read "R floating-equals R' with
tolerance N units")e.

Tt should be ¢lear that, if R > O and N is not too large
(7 < 2572, say) tmat FEQ(R, RY, N) implies Re(l = (W1):2"%) <R!
< Re(1 + (N+1)o2"t'); if the tolerance is N units, the relative
inaceuracy 1s at most (N+1) -2"t». Other properties of FEQ(R, R?,
N) ares

(1) If FEQ(R, R', N), then FEQ(R'y Ry N)o

(2) 1f FEQ(R, R, N), then R and R® are either both posi-
tive, both zero, or both negative. '

(3) If FEQ(R, R', N), then FEQ(-R, =R%y N)o

(4) If FEQ(R, R*, N), then FEQ(1/R, 1R', N)o

(5) If FEQ(X, Y, N) and FEQ(Y, Z, M), then FEQ(R, Z, N+M)o
In facty Xy ¥y and Z are either all positive, all zero, or all

- 370 -

negative; if they are all positivey we have X+(1 - o=t)M o

Xo(1 - 2-6)Naxe (@ - 2®M g ¥ - M gz ¥ - 27N g
Xe(1 - 2°F yNexea - 2=tyM - xa(y - 2~ y=(M) | (The proof in

the other two cases is similar,)
- (6) If U and V are both positive or both negative, then
FEQ(T+V, FLA(U, V), 1)s In fact, 1 + 27t < (1 = 27%)"1 (since
(1 +2=t)@ -2"%) =1 - 2=2% < 1), so that, by what we have
already proved, (U+V)(1 - 27%) < FLA(U, V) < ()@ + 2~¥) <
(V)1 - o=t)=l, If U and V are both negative, the proof is
similare |

(7) FEQ(U-V, FLM(U, V), 1). (Same argument as above.)

(8) FEQ(UNV, FID(U, V), 1). (Same argument as above.)

(9) If FEQ(U, U', N) and FEQ(V, V¢, M), and U and V are
either both‘positive or both negative, thén FEQ (U+V, U'+V?t,
max(N, M)). In fact, if Uand V (and thus U* and V!) are both
positive, and 1f Us(1 = 2~V < 10 g v@@ = 2=%)°N, ve(a - 2F)M
SV < Vo(l = 2=Y)"M, then, letting P = max(M, N), we have
(BV)@ = 2P = Uo(@ = 27E)P & vo(@ = 278)P < ve(a - 278)V &
Ve(d = 2=8)M < Uty < Ue(@ = 2°8) N v ve@ - 275y M c v -
2=%)~P + yo(1 - 2°t)"P = (Uw)(@ - 2°¥)~F, If U and V are both

negative, the proof 1s similare
(10) If FEQ(U, U*t, N) and FEQ(V, V', M), then FEQ(U.V,
U'eVt, NeM)o In fact, if U and V are both positive and Us(1 - 270)N
< U <UL = 275N, ye(@ - 2B c vt cve@ - 28)™™, then
. UVo(1 = 2°B)MM - go@q o 2-t)Neyoa - 2=B)M < mravr < UL -
o=ty~Neye(1 - 2=¥)¥ 5 yev.(a - 2=%)=(1+M) | Tpere are three other
cases == U and V both negative, U positive and V negat 1v¢, and U

negative and V positive -- and the proofs are all similare

- 371 -

(11) If FEQ(U, U', N) and FEQ(V, V!, M), then FEQ(UNV,
Ut/V, N+M), (This follows directly from (4) and (10) above.)

(12) If U and V are both positive or both negst ive, and if
FEQ(U, U', N) and FEQ(V, V¥, M), then FEQ(U+V, FLA(U', V'),
max(Ny M) + 1). (This follows directly from (9), (6), and (5)
above,)

(13) If FEQ(U, U', 2N-1) and FEQ(V, V%, 2M-1), then
FEQ (UsV, FIM(U', V'), 2(N+M)=1l). (This follows directly from (10),
(7), and (5).) |

(14+) If FEQ (U, UY, 2N-1) and FEQ(V, V!, 2M-1), then
FEQ(UN, FID(U', V?), 2(N+M)-1), (This follows directly from (11),
(8), and (5).) |

It is understood, of course, that all given quantities must
be in range for each of these properties to hold; that is, fmin
<M < fmax for each quantity & mentioned in connection with each
propertye

Roughly speaking, the result of an operation which requires
N multiplications and divisions will be equal to what 1t 1is sup=-
posed to be, with tolerance 2N-1 units, by properties (13) and
(1%4) aboveo The same (actually a little more) is true 1f additions
of quantities of like sign, or subtractions of quantities of op-
posite sign, are allowed, by property (12) above, We shall now
{llustrate property (13) by investigating the partial correctness
of an assembly=-language program which performs exponentiation,
using the algorithm which was programmed in FORTRAN at the begin=-
ning of section 7=2, In addition to FEQ, we use the assertion
IMRA(Y) (that is, & is in range), meaning that fmin <[< fmax,
and the assertion NORM()), meaning that X is in normélized forme

The program 1s as follows:

- 372 -

(2

* N> 0, (N#Oor A#0), NRM(QA), IRAGY)

1D
ST

IDI

ST

ONE

X

o
I

* FEQ(X, Al, 21-1), NORM(X), NORM(A), INRA(AN), T < N

LOOP 1D

SU
TZ
LD
M
ST
IN
TR

I
N
DONE
X
A
X
I
LOOP

* FEQ(X, AN, 2N=-1)

DONE

The cell ONB is presumed to contain the floating point

number 1,03 the instruction mnemonie FM means "floating multiply."

Note that, whereas in section 7-2 we had the intermediate asser-
tion X = AL, here it is only FEQ(X, A%, 2I-1); that is, X is
only approximately equal to A, The term 2I-1 1s suggested by
the term 2N-1 in property (13) above. In fact, whenever we pass

the beginning of the loop, the value of I will be equal to the

number of multiplications thus far performed, and property (13)
then tells us that 2I-1 is the tolerance,

Iet us look at the control path in this program which goes

around the loopt

- 373 -

* FEQ(X, AL, 2I+1), NORM(X), NORM(A), IMRA(AN), I < N
ac = 1
ae = ac - N
(ac # 0)
ac = X
ac = FIM(ge, X)
X =ae
I=I+1
* PEQ(X, AL, 2I+1), NRM(X), NRM(A), INRAAN), I < N

Since multiplication is in floating point, we write ag = FLM(ag,
X), rather than ac = ac * X. The verification condition of this
path is

(FEQ(X, AL, 2I+1), NORM(X), NORM(A), INRA(AN), I < N,
I-N # 0) implies (FEQ(FLM(X, A), AT*l, 2(I+1)+1),
NCRM(FLM(X, A)), NORM(A), INRA(AN), I+1 < N)

Since I < N but I-N # Oy we must have had I < N at the beginning
of the path, implying I+l < No As we have defined FLM(X, A), if
X and A are normalized, so is FLM(X, A)s The assertion FEQ (FLM(X,
A), AI"'l, 2(I+1)+l) follows from property (13) given alove, and
also property (1), under the hypotheses of this path, provided
that we can show INRAAI*L), It is assumed that fmin < 1 and
fmax > 13 1f JAl> 1, then cértainly fmin <[aT*Y, wnile AT Y <V
< fmax since I+l < N, IfjA|= 1, then fmin <A™ = 1 < fmex;
vhile iflal < 1, then fmin <A <[AT*Y, since I+l < N, and cer-
tainly AT*Y < fmax. Thus the verification condition of thls path
is valid. |

- 37 -

]

NOTES

The first detailed treatment of machine language program
correctness seems to be that of [Painter 67]. Painter is con-
cerned with proving the correctness of a compiler whose source
language is algebraic, and whose destination langusge 1s an as-
sembly=like language. The machine for which this assembly lane-
guage is designed, however, is assumed to be free from the dif-
ficulties discussed in this chapter, such as finite precision,
overflow, and the possibility of self-modification.

The concept of a pure procedure is well known in the
field of operating systems. A program which is to be used very
often in a time-sharing or other multiprocessing environment
should, if possible, be coded as a pure procedure, because then
a single copy of the instruction words of this program may be
used by several users without swapping. When a compiler is so
constructed that it always generates a pure procedure as object
code, this pure procedure is normally, in our sense, locally
verifiable; references to subscripted variables are allowed, but
the object code checks that each subseript is in range at the
time of usee.

All of the considerations of this chapter apply, of course,
not only to assembly-language programs, but to compiled versions
of algebraic-language programs as well., An algebraic-language
program may be proved correct and yet not run properly when com=-
piled, perhaps because the compiler is not correct (many compilers,
of course, still have uncorrected errors in them), but more often
begause the proof of correctness was an "ideal" proof which did

not take finite precision into account. This point is made in

~ 375 ~

[Redish 71], with specific reference to the proof given in [Lon=-
don 70] of the correctness of TREESORT III, an in-place sort
written in ALGOL.

There are several approaches to the problem of proving the
correctness of programs which perform floating point calculations.
One 1s to use interval arithmetiec, in which each real number z is

represented by two floating point numbers x and y, for which it

is known that X < 2 < Y. Addition of two real numbers 2q and Zoy
with corresponding floating point numbers X139 V39 Foo and Yoo is
then performed (if all these numbers are positive) by calculating
the largest legal floating point number which is less than X+
and then the smallest such number which is greater than Yt¥oe
The other arithmetic operations are handled similarly. A subro u-
tine package performing interval arithmetic is proved correct in
{Good and London 68] (see also [Good and London 703)e. The advan-
tage of interval arithmetic is that we no longer need worry about
subtraction or about the total number of operations performed;
any algorithm, so long as it is correct in the ideal sense, is
correct when executed using interval arithmetic. One disadvantage
of interval arithmetic is that it is slowj this, however, could
be remedied by building interval arithmetic into the hardware of
some computer, Another, more serious, disadvantage 1s that, at the
end of execution of a program using interval ar ithmetic, we are
gi\}en an interval within which our answers are guaranteed to be
contained, but we have no way of knowing, in advance, what the
size of that interval will be,

For an excellent discussion of rounding errors, see [Wil-

kinson 63J. (Wilkinson uses fl1(X14X2) for our FLA (X1, X2)%
£1(X1¥X2) for our FLM(Xl, X2); and so on.)

- 376 -

EXERC ISES

l. Complete the proof of partial correctness of the program

of section 9=l,

2, Prove that the program of section 9«1 terminates. In
what specific ways does this proof use the assertion ICA?

3. Complete the proof of partial correctness of the first
program of section 9=2,

4, Complete the proof of partial correctness of the second
program of section 9=2¢

5, Consider the final program of section 7«2, which per-
forms, in FORTRAN, a linear search of an array. Translate this
program into the machine language of the original 16-bit computer
of section 3~5, in much the same way as is 1llustrated in section
9-3, (Instruction modification is to be used in this program in
the same way as illustrated in section 9=3, in order to traverse
all the elements of the array to be searched.) Formulate initial,
final, and intermediate assertions for this program, including
the assertion IBA, and describe the assertion IBA preciselye.

6., Prove the partial correctness of the program of problem

5 abnve °

7. Write a program in the assembly language of section 3=5
to calculate the value of Z according to the formula Z2 = C¥ =
A*\A - B*B, Formulate initial assertions involving max and min,
as in section 9<%, which must be satisfied for this program to

be correct, and then prove 1lts correctnesse

- 377 -

8. Show the validity of the verifilcation condition of the

second control path of the program of section 9=.

9. Verify properties (1) through (4) of the assertion FEQ

defined in section 9=5,

10. Complete the proof of partial correctness of the pro-

gram of section 9=5e

- 378 ~

/]

CHAPTER TEN

SEARCHING AND SORTING

10=-1 Linear Searching and Timing

In any search routine, there is a table of values of some
kind, and we are looking for some element of that table which sa-
tisfies some given condition, In the search routines to be con-
sidered in this chapter, our table is an array with subscripts
extending from 1 to Ny and our condition is that the element of
this array which we a e trying to find be equal to soue fixed
quantity, sometimes called the farget. We shall oall the target X,
and the array A3 thus, if the search is uccegsful, the asser=-
tion which is true after the search has been completed 1is

(X # AC(II), II ,IN, (1eeN))

while if the search is suce s the assertion is X = A(I), where
I is an integer variable used by the program, Normally we need to
have I set properly at the end of the searchjy that is, we need to
know not only that X 1s equal to gome element of A, but specifically
yhich element,

The easiest method of searching an array 1s the linear search
method, a program for which was given in section 7=2. We may write

this program with assertions as:

- 379 -

DIMENSION A (n)
C N>0,N<n
I=1
C 1<I, I<N, Ngny, X#A(II)y II +INe (eoI=1))
1 IF (X .EQe A(I)) GO TO 2
I=I+1
IF (I .IE, N) GOTO 1
C (X # A(II)y, II JIN. (leeN))

e ¢ ©
C X = A(I)
2 CONTI NUB

This program has two stopping points, the first for an unsuccess-
ful search and the second for a successful search, BEach of these
has its own assertion. (We recall that all stopping points of a
program must be contrmol points of it.) The intermediate assertion
given here is the one that was glven with this program in section
7=2, rewritten according to the conventions of section 7=3.

As we have seen, the precof of partial correctness of a pBo=-
gram involves determining its various control paths, and then .fin=-
ding and proving the verification condition of each pathe In most
of the programs which follow, we shall not attempt to give the com-
plete proof of partial correctness. Sometimes we shall merely list
the verification conditions of all paths, as they would be obtained
by either the forward or the back substitution methods of sections
6-Y¢ and 6«53 the paths themselves are considered in the order in
which they would be found by the method of section 6=3, At other
times, we shall give a detailed analysis of a single path in a pro-
gramy and leave the consideration of 1ts other paths to the readers.

- 380 -

For the program a‘bove, there are four control pathsy of which we

shall consider only the third ones

C 1<I, I<N, N<n, (X#A(II)y II JINe (1eoI=1))
(1<I, Ignl
(X # A(I))
I=I+1
(I<N
C 1<I, I<Ny N<ny (X# A(ID)y IX oIN, (TeeI-1))

The assertion 1 5 I is ﬁreserx}ed here‘ﬂ bercause I is increasedy I < N
" at the end follows from the éAondifioﬁ-.i—:ﬁ N in the paths and N<n
is preserved because N 1s unchanged., The assertion X # A(I)
is equivalent to (X # A(II), II ,INe (I)), and this, together
with (X # A(II), II JIN, (LeoI-1)), is equivalent to (X # A(IIL),
IT ,INe (lesI)). Then I is increased by 1, giving (X # A(II), II
oINo (le.I=1)) again, Formally, we have used the following general
factss

1, (F(I)y I oIN, (J)) is the same as F(J)

2o (F(I)y I oINe S1) and (F(I)y I IN. S2), taken together,
are the same as (F(I), I +INe (S1 oUs S2))

30 (TeoT) = (Teed=l) oUe (J)y If I g J

In a program such as this, which has more than one stopping
point, it is sometimes desirable to set up initial conditions
under which the program must terminate at some one particular point.
This may be done by placing the assertion oFAISE. at all other
stopping points of the program, setting up the initial conditions
at the beginning, and proving the correctness of the resulting pro-
gram, In the above programy if it is to terminate at statement nume-

~ 381 =~

ber 2, there must exist an integer J, 1 < J < Ny with X = A(J).
We may write this as

BI(J, (LeoN))y X = A(J)

Using this as part 6f the initidl assertion, we mav-;-rewgiterom'

program with assertions as

173

DIMENSION A(n)
C N>0, N<n, EI(Jy, (1eeN))y X = A(J)
I1=1
C 1<I,I<N, N<ny EI(Jy (IseN))y X = AQJ)
1 IF (X ¢EQe A(I)) GO TO 2
I=I+1
IF (I JIE, N) GOTO1
C oFAISE,
o« o0 ,
C X = A(I) -
2 CONT INUE

This time, we assert at statement number 1 that the integer J,
which is known to exist, has not been checked so far =-- that is,
it must lie between I and N, inclusive, Let us examine the control
path ending at the assertion FALSE.:

C 1<I, I<N, N<mny EI(Jy (I..N)), X = AQI)
(1<I, I<nl
(X # A(1))
I=I+1 .
(I>N)
C JAISE.

The verification condition of this path is that, if the path is
- 382 -

-

taken, oFAILSE. is true, In other words, we must prove that the
path ¢an never be taken when started with its initial assertion
valide Since I < N at the beginningy but I + 1 > N, we must have
had I = N, and the integer J 18 in (NeeN)o This means that J = N
and thus X = A(N), But then X = A(I), since I = N, and the path
is never taken because of the condition X # A(I) in it,

Now let us assume that the array A is sorted in ascending
order., This may be expressed in two wayss

(A(K) < A(K+1), K oINo (LeeN=1))

(which says that each element of the array is not less than the im-
mediately preceding one), or

(A(K) < A(L)y K oINe (1.eN)y L oINe (LeoN) oSTo (K < L))

(which says, more generally, that each element of the array is
not less than any element which precedes it. Recall that we are
using «STe. to mean "such that.") The equivalence of these two,

for N > 2, may be shown by induction on N, For N = 24 the equi-

valence is straightforward, while if

(A(K) < A(K+1), K oINe (l.eN=1)) &
(A(K) < A(L)y K oINe (LeoN)y L oINe (LooN) oSTe (K < L))

then

(A(K) < A(K+l)y K oINo (leo(M4l)=1) &

(A(K) < A(K+1)y K oINo (leeN=1)) and A(N) < A(WL) &

(A(K) <A(L)y K oIN. (LeeN)y L oINe (LoeN) oSTo (K < L))
apd (A(N) < A(L), L IN, (N+1)) &

(A(RK) < A(L)y K ¢INo (leoN+l)y L oINs (LeoN+l) oSTe (K < L))

- 383 -

The last of these equivalences follows by noting that, if K =
N+l, we cannot have K < L, whereas if L = N+l, then A(K) < A(L)
since A(K) < A(N) and A(N) < A(L), |

We shall define

AsC(A, I1, I2) = (A(K) < A(K+1)y K oIN, (I1,..I2-1))

L]

-~ that 1s, ASC(A, I1, I2) means that the elements A(Il) through
A(I2) are sortéd in ascending order. When necessary, we shall use

the facty proved in the same way as above, that

AsC(A, I1, I2) = (A(K) < A(L)y K oINes (I1..I2),
L ¢INe (IlooI2) oSTe (K < L))

A linear search of a sorted array can stop when we pass the
point where the searched-for element "ought to be," The following
program, given with assertions, makes this kind of a searchs

DIMENSION A(n)
C N>0, N<mn, ASC(4, 1,.N)
I=1
C 1<I, I<N, N<n, ASC(Ay 1, N)y (X # A(II)y II oINo (lo.I-1))
1 IF (X-A(I)) 4, 3, B
2 I=I+1
GO TO 1
C X =A(I)
3 CONTINE
C (X # A(ID), IT oINe (LooN))
} CONTINUE | | .

Let us see what happens at the end of an unsuccessful search by

- 384 -

considering the control path ending at statement number s

¢C 15I, I<N, Ngny ASC(Ay 1, Ny (X # A(II), II oINe (LooI-1l))

c (1<I, I<nl
(X=-A(I) < 0) |
a C (X # A(II), IX LIN, (1eeN))

Since ASC(A, 1, N) implies that (A(K) < A(L)y K JINo (LeeN)y L
JINe (LeoN) oST. (K < L)), we have, in particular, that (A(I) <
A(II), II JIN, (I+leeN)). Since X < A(I)y this gives (X < A(II),
II oINo (I+l..N)), which implies (X # A(II), II JIN. (I+l..N));
and this, together with (X # A(II), II (IN. (l.eI-1)), from the
beginning of the path, and X # A(I) (implied by X-A(I) < 0), gives
the assertion at the end of the pathe

The proof of termination of the above two routines is very
simples In each case, NeI is a loop expression, as may easily be

checked,

It i1s well known that the linear search is a relatively slow
searching method., We shall now show how our methods may be used to
prove exactly how many steps an algorithm takes. Iet NSTEES be a
pseudo~variable whose value, at any time in a given program, is
the total number of steps taken so fare, If by "steps" we mean "exe-
cutable statements," then each executable statement increases the
value of NSTEPS by l. We may now include assertions in our program
which involve NSTEFS§ the initial assertion is NSTEPS = O, If the
program with these nnew assertions can be .proved coxXred § thentthe
tétal numlier af abeys- baken &y the aigorddihl is given by the :value
of ¥BTEPS :as specified 'in the final.adsertion.

For the_ first search program of this section, we may place
the assertion NSTEPS = 3#J<&2 at statement number 1, the assertion

- 385 =

NSTEPS = 3*N+l at the failure exit, and the assertion NSTEPS =
3*I-1 at the success exit. With these assertions, the program may
again be proved correct. Thus, if the search is successful and
A(I) = X, the program takes 3*I-1 steps (this, of course, depends
on I, that is, on whether X is found near the front of the table
or near the back)e If the search is unsuccessful, the program al=-
ways takes 3*N+1 steps.

Most programs do not aiways take the same number of steps
each time. In such a program, the final (and often the intex-
mediate) assertions about NSTEPS are not equalities, but only
upper and lower bounds. In the program above which searches a
sorted array, we may put NSTErS = O at the beginning, NSTEPS =
3*I-2 gt statement number 1, and MSTEPS = 3*I=-1 at the success
exit, as before, but the assertions at:the failure exit are
2 < NSTEPS and NSTEPS < 3*M+l. Thus this program is "at most li-
near" -« it takes no more than a number of steps which is some
multiple of the size of the table —= but it can take much less
than thate (For a program to be strictly linsar in a variable N,
we would have to have finil assertions of the form gN+b < NSTEPRS
and NSTEPS < cN+d.)

Othér facts about the timing of programs may also be de=-
termined in this waye The number of times a certain individual
statement is executed, for example, may also be considered as a
pseudo=variable whose value 1s initialized to z=roy and which is
increased by one each time that statement is executed. The num-
ber of multiplications which take place in a..program, the number
of times a particular subroutine is called, and the total number
of assignment statements executed, are further examples of quane

tities i‘epresentable as pseudo=variables in this waye
- 386 -

10-2 Binary and Hash Table Search

A binary, or logarithmic, search of a sorted table is car-
ried out by repeatedly dividing the table in half. We shall study
a version of the binary search which makes a two=-way test each
time the table is divided, rather than a three-way test; that is,
it does not check, each time the table is divided, whether the
middle element of the current table A is equal to the target X,
The use of a two-way test increases the efficiency of the binary
search on most computers, _

The integer variables IFIRST and IIAST will denote the first
and last indices, respectively, of that part of the table in which
we are currently looking. Our key assertion is tihat, if the element
X is apywhere in Ay its index must be between IFIRST and ILAST,
inclusive, This ‘may be expressed as

(X # A(II), II oINo (LooN)) R
(EI(Jy, (IFIRST.oILAST))y X = A(J))

Note that this is not quite the same as
(X # A(II), II oINo ((LoeN) Do (IFIRST,.ILAST)))

because of the possibility of duplicate items in the tablee. In
particular, we might have A(IFIRST=1l) = A(IFIRST) = X ér*_A(IRAST)
= (A(ILAST}]) =X, either of whith would make the first of the
above two conditions true and the second one false.

Initially, IFIRST and ILAST are set to 1 and N, respective-
ly. To divide the table in half, we calculate the average of
IFIRST and ILAST, that is, (IFIRST+ILAST)/2, and call this IMIDL.
Since the division is performed without rdunding, elther IMIDL or

..387-

IMIDL + 1/2 is the exact average of IFIRST and ILAST., This suggests
that IMIDL should be taken to be the final index of the first half

of that part of the array between IFIRST and ILAST, inclusive. If
X is larger than A(IMIDL), it belongs in the second half of the
tablej the new IFIRST will be IMIDI+1l, and ILAST remains unchangedeo
Otherwise, X belongs in the first half of the table, mdy in this
casey IFIRST remains unchanged and IMIDL becomes the new ILAST.
The process of dividing the table in half terminates when we
have a table of length 1, that is, when IFIRST and ILAST are equale
At this point, we simply check to see if X is equal to A(IFIRST).

The program with assertions is as followss

DIMENSION A(n)
C N>O0, NSn, ASC(Ay 1, N)

IFIRST = 1
ILAST = N
GO TO 17

C 1 < IFIRST, IFIRST < ILAST, ILAST < Ny N < Dy
C ASC(A, 1, N)y ((X # A(II)y IT oINo (1eoN)) «CRo
C (EI(J, (IFIRST..IIAST)), X = A(J)))
11 IMIDL = (IFIRST+ILAST)/2

IF (X .GTe A(IMIDL)) GO TO 15

ILAST = IMIDL

GO TO 17
15 IFIRST = IMIDL+l
C 1 < IFIRST, IFIRST < ILAST, ILAST < Ny NS o,
C ASC(A, 1, N)y ((X # A(II)y II oINe (1oeN)) oORe
¢ (BI(J, (IFIRST..ILAST)), X = A(D))
17 IF (IFIRST .NE, ILAST) GO TO 11

- 388 -

]

L

IF (X EQe A(IFIRST)) GO TO 19
C X # A(II), II IN, (1..N))

C X = A(IFIRST)
19 CONTINUE

The assertion ASC(A, 1, N) is as in the preceding section. We
have used'one more contrl point than is absolutely necessaryy
in order to shorten the analysis of control paths. The assertions
at the two intermediate control points are the same, except for
IFIRST < ILAST at statement number 11 versus IFIRST g ILAST at
statement number 17.

There are six control paths, as followss

Pathl C N> 0, N<n, ASC(Ay 14 N)
IFIRST = 1
ILAST = N
C 1 < IFIRST, IFIRST < IIAST, ILAST < Ny N < By
C ASC(A, 1, N), ((X # A(II)y II oIN. (L.eN)) o(Ro
¢ (BI(J, (IFIRST..ILAST))y X = A(J)))

The verifications here are straightforwardy in particular, if
IFIRST = 1 and IIAST = N, the two conditions connected by .(R.

are exaot opposites of each other.

Path 2 C 1 < IFIRST, IFIRST < ILAST, ILAST < Ny N < ny
C ASC(Ay 1, N)y ((X # A(II)y II oINo (LeeN)) oOR,
C (BI(J, (IFIRST . ILAST)), X = A(J)))
IMIDL = (IFIRST +ILAST)/2
(1 < IMDL, IMIDL <)
(X > A(IMDL))
- 389 -

IFIRST = IMIDL + 1

C 1 < IFIRST, IFIRST < ILAST, ILAST < Ny N < n,

C ASC(Ay 1, N)y ((X # A(IT)y II oINe (1osN)) oOR.
¢ (BI(J, (IFIRST..ILAST)), X = A(J)))

When 0R. appears in the initial asseirtion:of 'a path, as here,
we must consider separately the two assertions connected by ite
If (X # A(II), II oINe (l..N)) at the beginning of the path, _
then this will still be true at the end, If (EI(J, (IFIRST..ILAST)),
X = A(J)) at the beginning of the path, &hd~if the path is actually -
followed, then we may show that this will still be true at the end,
as followse Since X > A(IMIDL), we have at the end X > A(IFIRST+l),
and from ASC(A, 1, N) we then obtain (X > A(II), II <INo (1..IFIRST-1))
and hence (X # A(II)y II oINo (leoIFIRST-1l)). Hence the J that exi-
sted at the beginning of the path must have been in the set
(IFIRST. . ILAST) as that set exists at the end of the pathe

As for the other assertions at the end of this path, II4ST
< Ny N < n, and ASC(Ay 1, N) are unchanged during the path. Since
IFIRST < ILAST and IIAST+ILAST is even, (IFIRST+ILAST)/2 must be
strictly less than (ILAST+IIAST)/2 -- that is, at the end, IMIDL
< IIAST and hence IFIRST < ILAST, Finally, since IFIRST < ILAST,
we have IFIRST < IMIDL after calculation of IMIDL, and hence
1 < IFIRST at the ende The verification that the restriction
[1 < IMIDL, IMIDL < nl) holds within the path is straightforwarde.

Path 3 C 1 < IFIRST, IFIRST < ILAST, ILAST < Ny N < B,
C ASC(A, 1y N)y ((X # A(II), II oINe (1o.N)) «ORe
C (BI(J, (IFIRST..ILAST)), X = A(N))
IMIDL = (IFIRST+ILAST)/2 .

- 390 -

"

(1 < IMIDL, IMIDL < nl

(X < A(IMIDL))

ILAST = IMIDL
C 1 g IFIRST, IFIRST < ILAST, ILAST < N, N < n,
C ASC(Ay 1y N)y ((X # A(II)y IX oINe (1eeN)) oRo
¢ (EI(Jy (IFIRST..ILAST)), X = A(J)))

Here, as before‘,. (X # A(IT)y II IN. (LeoN)) is true at the
end if it is true at the beginning., Otherwise, there are two
possibilities. If X = A(IMIDL) in the path, then (EI(J,
(IFIRST..IIAST)), X = A(J)) is certainly satisfied af ter ILAST
is set equal to IMIDL. If X < A(IMIDL), then X < A(II) for all
II greater than IMIDL, again by the ascending-order condition,
and thus the integer J at the begin.ning of the path must 1ie
between the final values of IFIRST and IIAST, inclusive. Since
IFIRST < ILAST, we have at the end IFIRST < IMIDL and hence
IFIRST < ILAST (équality might holdy because the division 1is
performed without rounding). Also, the value of ILAST cannot in-
crease along th:l.é pathy so we still have at the emd ILAST < No
The final assertions 1 < IFIRTy N < n, and ASC(A, 1, N) remain
unchanged along the pathe

The remainder of the proof is straightforward; Path 4 goes
from statement number 17 to statement number 113 its verification
condition is immediate, Path 5 goes from statement number 17 to
statement number 19; the-fifial assertion”in tkis path Lolldws -im-
imediately from the condition in the path brought about by the
final IF statement, Path 6 goes from statement mumber 17 to the
"unsuccessful search" exit, Since IFIRST = ILAST, J (if it exists)
must be equal to IFIRST, and X = A(IFIRST)§ but we know this is
false, and hence the first of the two original alternatives, namely

- 391 -

(X # A(II), II oIN, (LeeN)), must have been true at the beginning
of the pathe The loop expression of this program 1s ILAST«IFIRST}
each time around the loop, either IFIRST increases or ILAST de-
creases, and ILAST-IFIRST never becomes negative., Thus the program
is correcte

We now consider a hash table H of length Ly in:whigh’ there
are currently N entries, leaving L=N empty spaces ‘in the table.

Let 2 be the special word (often, but not always, zero) which de-'A

notes an empty space in the hash table. There 1s then some set
of indices of entries in the table, and, for any index K which is
not in this set, we have ﬁ(K) = Zo The set of indices is deter-
mined by the entries themselves, which we shall denote by T(1),
sesy T(N)o (There is nothing in this notation to distinguish T
from a linear array of entries, and, in fact, we mdy consider it

as such, even though there would normally not be such an array in |

memory.) All the T(I) are assumed to belong to some set ENT of all

possible entries in the table, and, for each element Q of ENT, we
are given HASH(Q), the hash index of Qy which is between 1 and L
inclusive. If no collisions exist in the hash tabley we have

((T(K) = H(HASH(T(K)))y K oINe (leoN))y (H(K) = Z,
K JIN. ((L..N) D+ SET(HASH(T(K))y K oINe (1.oN)))))

If collisions do exist -~ that is, if HASH(T(I)) = HASH(T(J))

for some I # J -- then we must have a collision handling methodo
Let us assume that egech T(K) is always kept in H, rather than in
some auxiliary list space, and that there is a function COLL(Q, J)

giving the index of the J=th "try" at placing Q in the table. That

1s, if H(HASH(Q)) # Z, then we try H(COLL(Q, 1)), H(COLL(Qy 2)),
and so on in this order, until we find J such that H(COLL(Q, J)) =
- 392 =

o

N

Z, and this 1s the point at which Q is placed. For convenience,
we let COLL(Q, O) = HASH(Q) for each Q. Our assertion is now

Cz ((BI(T, (Le.L))y T(K) = H(COLL(T(K)y J)), (H(COLL(T (K), II))
2, II ¢INe (00ed)))y K oINe (1eoN))
) Iet us call this assertion HIA(H, Ly Ty N). It is preserved by
hash table insertion routines, and is assumed to be true whenever
a hash table search is performed, For the simplest collision hand-
1ling method (linear with wraparaund) we have COLL(Qy J) = HASH(QQ)
+ (if HASH(Q) + J < L then J elge (J=L)); the following routine
searches a hash table under these conditionss’
C HMA(H, L, Ty N)y L>N
I = HASH(X)
C HrA(H, L, Ty N), (X # H(COLL(X, J))y Z # H(COLL(X, J))),
e C T oIN. (0foI=1=HASH(X)+(if I oLT, HASH(X) then L else 0)))
IF (X EQ. H(I)) GO TO 2
IF (X Qe 2) GOTO3
I=I+1
IF (I JIEs L) GOTO1
I=1
GO TO 1
C X = H(I)
2 CONTINUE
. C (X # T(K)y K oINo (1..N))

3 CONT INTE

When a hash table, as above, is used to associate information

with the quantity being hashed, then the basic hash table as=
- 393 =

sertion must be modified, For example, there may be a second
hash table H2, also of length L, as weli aé N further entries
T2(X)y 1 < K < N; each T2(K) is a quantity which we wish to as-
sociate, in some way, with the corresponding T(K), and this is
done by placing T2(K) in H2 as H2(KK) where T(K) has been placed
as H(KK). The assertion that all these quantities have been pro-
perly placed is |

((EI(Jy (LeoL))y T(K) = H(COLL(T(K), J)),
T2(K) = H2(COLL(T(K), J)), (H(COLL(T(K), II))
£ 2y II ¢INe (0eed)))y K oINe (1eoN))

We may now substitute this asser tion for HPA(H, L, T, N) in
programs such as the one displayed above.

- 394 -

[

10=3 Permutations and Uhsertedness

@ ' In proving the correctness of programs which rearrange data,
such as sorting and merging programs, certain assertions are made
whose properties depend on & study of permutations, The simplest
of these is the assertion that an array has beén sorted, Let us

consider the following array of four elements with values given:
AQ) =13 A) =19 AG)=1 A(H) = 16

If we were to sort this array and place the sorted results in a
new array B, without changing the original array, we would have

B(1) =11 B(2) = 13 B(3) = 16 B(&) = 19

Here we clearly must have B(1) < B(2), B(2) < B(3), and B(3) £
B(4), or, in the terminology of section 10-1, ASC (By 1y 4)o But

to prove the correctness of a program which performs this sorting,
it would be a mistake to regard the above relations as the entire
final assertione If we did that, then a "sorting program”" which
terminated in the above case with

B(1) =1 - B(2)=2 B(3) =3 B4) = &

would be just as "correct.” We also need to know that B(1) = A(x),
for some value of x with 1 < x < 43 and similarly B(2) = A(x)s
B(3) = A(g), and B(4) = A(w). Moreover, we must know that x, ¥,
Z, and ¥ are all distinct,

Let us refer to X, ¥, Zy and y as £(1), £(2), £3), and £,
respect ively. Then B(1) must be equal to A(E(1)), for 1 <1 < 4.
The values of the function £ lie between 1 and 4 inclusive, and

- 39 -

they are all distinct, which means that £ is a permutation on the
integers 1 through 4, In the case above we have

£r(1) =3 £(2) =1 £f3) = 4 f(u) =2
We could just as easily have written here A(1) = B(g(l)), for
gl) =2 g(2) =4 g(d) =1 gl+) =3

and 1 < 1 < %, The function g is also a permutation; it is the

inyerse of £, and £(g(1)) = g(£@)) =L for 1 <1 <k
Using the terminology of section 7=3, we may write

EP(Py (1eoN))y (A(K) = B(P(K))y K oINo (1oeN)))

as the assertion that the elements of the array B are a rearrange-
ment of the elements of Ay where N is the number of elements. That
~1sy "there exists a permutation, call it P, on the .integers l
through N, such that A(K) = B(P(K)) for each Ky 1 < K g No" We
denote this assertion by PERM(A, B, N), If A(x) = B(x)y L < x < N,
then certainly PERM(A, B, N) holds, because we need only to set
P(x) = x for each x; this is the identity permutation. Thus
PERM(A, By N) becomes an initial as well as a final assertion in
a program to sort the array A into the new array B, It is not sur-
prising that, in many sort programs, it is also an intermediate
assertionj that 1s, it remains true as the sort progresses.

Now suppose thaty Instead of placing our sorted results in a
new array, we are sorting an array in place. In this casey Just as
in section 6=-2, we must introduce new variables into our progranm
for the sole purpose of allowing us to state our assertions proper-
lye If the array A is being sorted, we may invent a new array =-
call it AO -~ with A(x) = AO(X) for 1 < x < Ny where the dimension

- 396 -

1]

of A is N, This is then owr initial assertion, and owr final as=-
sertion is PERM(A, A0, N) (as ‘before, this is also true at the
start of the program), as well as ASC(A, 1, N)o It is to be noted
that this subterfuge 1s necessary only when the program contains
no other known array, or its equivalent, which contains the values
of the elements of A, For example, if a flle is read into memory
and sorted, we have ths same data in two places -- . in memory and
‘on the file - and so our &ssértion may:4imply-he that sach vari-
able A(x) i3 at some unique place within the fileo

We now prove that PERM(A, By N) is preserved by an inter-
change of two elements of the array Ay that is, we shall show
that the verification condition of the path

T = A(T)
A(I) = A(J)
AQT) =

C PERM(A, By N)

is valid. This prototype situation may then be applied to an
arbitrary interchange sort program, in which an array is sorted
by successive interchanges. (For an in-place sort, we take B to

be the same as AO above.) Let £ be the permutation whose existence
is implied by PERM(A, B, N) at the beginning of this path; we wish
to find a permutation g which will make PERM(A, B, N) true at the
end of the pathe. The definition of g in terms of £ 1s as follows:

g) =£U)y g = £y g®) = LK) for kK # 4y 1 Ak M

vhere 1 and J are the respéctive values of I and J (note that the
values of I, J, and N are not changed in the above path). If x #
- 397 -

i, 1y then A(x) = B(£(x)) = B(g(x)) at the beginning of the pathy
since A(x) is not changed anywhere in the path, this relation
still holds true at the endo If A(I) = B(£(I)) and A(J) = B(£(J))
at the beginning of the pathy then by forward substitution we
obtain A(I) = B(£(J)) = B(g(I)) and A(J) = B(£(I)) = B(g(J)) at
the end of the pathe This completes the proof,

Iet us now prove the correctness of a typical interchange
sort routine, We use PERM and ASC as above; PERM(A, AO, N) will
be preserved throughout the algorithm (except during the inter-
changes themselves)., The routine is as followss

DIMENS ION A(n)
C N>22y N<n, (A(K) = A0(K)y K oINo (1..N))

I=1 |
C 15I, I<N, N<pn, PERM(A, A0, N), ASC(A, 1, I)
1 IF (A(I) «GTo A(I+1)) GO TO 2

I=I+1

IF (I J,NEo N) GO TO 1

GO TO 3
2 T = A(T)

A(I) = A(I+1)

A(I+1) =

IF (I &EQ. 1) GO TO 1

I=1I-1

GO TO 1

C PERM N), ASC 1, N)
3 cc%i'm‘,)’ @y 1

This routine looks through the a ray A in the forward direc tion
for an adjacent pair of elements (A(I), A(I+l)) which are out of

order. It is alwsys assumed that the elements A(1) i:hr.ough A(I)
- 398 -

“

are in ascending order, so that, if I becomes equal to N, the
array is sorted. If the pair (A(I), A(I+1)) is found to be in
order, then I is increased by 13 if this pair is out of order,
it is interchanged and I is decreased by l.

There are five control paths, as followss

Pathl C N>2, N<n, (A(K) = A0(K)y K oINo (1..N))
I=1
¢ 1<I,I<N,N<pn, PERM(A,.A0, N), ASC(A, 1, I)

Here 1 < I follows from I =13 I <N follows from I = 1 and N > 23
N < n is unchanged by the pathj and ASC(A, 1, I) 1s ASC(A, 1, 1),
which is alﬁays true.' (Formally, ASC(A, 1, 1) is (A(K) < A(K+l),
K oINe (1e00))y which follows since (Les0) is the null set.) The
fact that PERM(A, AO, N) is implied by the initlal assertion here
follows from our discussion of the identity permutation.

Path 2 c 1I,I<N NSy PERM(A, AO, N), ASC(A, 1, I)
[1<I,I<ny1g1I+l, I+l <l
(A(I) 5 A(I+1))
I=I+1
(I#N)
C 1<I, I<N, N<pn, PERM(A, A0y N), ASC(A, 1, I)

The restrictions in the path are all clearly implied by the ini-
tial assertion. The inequality 1 < I is preserved because I in-
creases, and N < n is also preservede The initial assertion I < N
becomes I+l < Ny or I < N, and since I # N in the path, we must
have I < N at the ende The assertion PERM(A, AO, N) is unchanged
by this path. Finally, ASC(A, 1, I) at the begiining of the path,

- 399 -

together with A(I) < A(I+1), give ASC(Ay 1, I+1) (by the first
definition of ASC, given above), and then I is increased by 1,
giving ASC(Ay 1, I) again, V

Path3 C 1<1I,XI<N, N<pn, PERM(A, AO, N), ASC(A, 1, I)
(1<I, I<ny 1514, I+l <ol
(A(I) < A(I+1))
I=I+1
(I=0N)
C PERM(A, AO, N), ASC(A, 1, N)

Again, the restrictions in the path are implied by the initial
asser tion, and PERM(A, AO, N) is unchanged by the path; and, just
as in the previous pathy ASC(A, 1, I) holds at the end, Since I =
Ny this becomes ASC(A, 1, N).

Pathhs C 1 I, I<Ny, N<n, PERM(A, A0, N), ASC(Ay 1, I)
(1<I, I<n 1514, Iv1 < nl
(A(I) > A(I+1)
(1<I, I<nl
T = A(I)
(1<I, I<n 1g1I+l, I+l <0l
A(I) = A(IH1)
%1(+1§;:.-L, ,TI+1 <l

—

C 1<I, I<N, N<n, PERM(A, AO, N), ASC(A, 1, I)

There are four restricted commands in this path, and all the re-
strictions are implied by the initial assertion, since I does not
change during the pathe The assertions 1 < I, I < Ny and N<n

are likewise unchanged during the pathe The fact that PERM(A, AO,
- 400 - '

fo

N) is preserved in a sequence like this follows from owr discus-
sion earlier in this section. Finally, ASC(Ay 1, I) is ASC(A, 1,
@ 1), which, as we notedi before, is always true.

Path5 C 1< I, I<N,Ngn, PERM(A, AOy N), ASC(A, 1, I)
[1<I, I<m 1< 41, I4l < pl
(A(T) > A(IH))
(I, I<nl
T = A(I) _
(<1, I<ny 1< I+l, I+l < nl
A(I) = A(I+1)
(1 < I+, I+l < 1l
A(I+1) =T
(I #1)
I=I-1

€ 1<1I, I<N,NZn, PERM(Ay AOy N), ASC(Ay 1, I)

Here we must have had 2 < I at the beginning of the path (since
1<Iand I#1),and therefore 1 < I at the end. The inequality
I<Nis preserved since I decreases; the inequality N g n is also
preserved, PERM(A, AO, N) is preserved here Just as it was in the
precedihg pathe Finally, we may write ASC(A, 1, I) at the beginning
of the path as A(I-1) < A(I) together with ASC(A, 1, I=1)o Then
ASC(A, 1, I-1) is preserved by the first three assignments in this
path, since it is a condition only on values A(Z) for x < I-l.
When I is decreased by 1, this becomes ASC(A, 1, I) againe Thus
the sort program is partially correct.

. The loop expression for this sort program is a bit more com-

plex than the loop expressions we have considered so far. It is

- 401 -

the total number of pairs (A(I), A(J)) which are currently out
of order. We shall call this the unsortedness of the array Aj
it is very commonly a loop expression in sort programs. Formally,

[

it may be expressed as

SUMLE(T < T, A(I) > A(T)) then 1 slse O,
I oINe (LeoN)y T oINe (1oN))

(]

Notice that this is an integer expression which cannot be negative.
We shall now prove, fbr the prototype control path discussed ear=
lier in this section (in connection with preserving PERM(A, B, N)),
that the unsortedness of the given array is always less at the end
of the path than it was at the beginning, provided that A(I) and
A(J) were out of order to begin with, That is, we shall prove this
with the additional assertions I < J and A(I) > A(J) at the begin-
ning of the path,
Clearly the pair (I, J), which was out of order, is placed in “
order by the given operation; this decreases by one the number of
pairs out of orders, We complete the proof by showing that for any
pair (I, x) which is in order and is put out of order by the in-
terchange of I and J, the pair (J, X) will be out of order and
will be placed in order; a similar ‘statement may then be proved
if we start with a pair (J, Xx) whichlis put out of order, and hence
there can be no further net increase in the unsortednesse Let (I, x)
be in order; then either x < I and A(x) g A(Y), or else I < x and
A(T) < A(;).’ In the first instance, x < J since I < J, and so
(I, x) cannot be put out of order by the transposition. In the | .
second, in order for (I, x) to be put out of order, we must hove
x < Je By hypothesis, A(I) > A(J), and since A(I) g A(x) we must
have A(x) > A(J). But this shows that (J, x) is out of order be- ™

- 402 -

fore the transposition, and in order after it. As mentioned-before,

a similar argument holds in reverse, and the proof 1s thus completeo

i , .

-

- 403 =

10-k The Tree Sort

Most of the more advanced sorting methods in existence have
timings proportional to n log, ny where n is the number of items
being sorted. One of these methods is the tree sort, which has the
additional advantage of being an in-place sort requiring no re-
cursion and relying entirely on interchanges.

The tree sort works with what may be called a "simulated
treeo" That is, there is no actual tree structure in memory, and
no pointers; the elements of the array (which we shall again call
A) to be sorted afe simply considered as belonging to an abstract

treey as follows:

A1)

A(?) / - AB)

I ’
AQH) S, 2(6)" SINCD

IN NI Y

A(B) A(9) a(0) A1) A@2) AQ3) AQH) AQ5)

ANVAVANRVANNANNV AN NS

and so on. Note that there is an arrow from each A(1) to A(21)
and to A(21+1), unless 2i (or 2i+l, respectively), is larger
than the size of the arraye. Putting it another way, there is an
arrow from each A(1/2) to A(i), for i > 2, where the division is
performed without roundinge

The first step in the tree sort is to rearrange the array
Ay by means of interchanges, in such a way that every path in
the above tree is sorted in descending order. That is, we nmust
have A(1/2) > A(i) for each i1 > 2, This is done by calling a sub-

routine whose correctness we will now prove, The remainder of the

- Loy -

]

tree sort 1is postponed until section 205, when we shall be able
to apply certain facts about subroutine parameters. In tact, the
correctness of the main routine which ealls this subroutine de-
pends in an essential way upon the method by which the parafmeters,
are calledo) _ |

The subroutine is called SIFTUP. It has two parameters, I
and No When it is called, it assumes that all paths in ’the atbove‘
graph involving A(I+l) through A(N) are sorted in descending order;
after it 1s done, all paths involving A(I) through A(N) are sorted
in descending order This means that after the maln program calls
SIFTUP(I, N), it decreases I by 1 and calls SIFTUP(I, N) agaln,
The initial value of I in the main routine is N/2, because there
are no paths in the graph involving A(N/2) through A(N); after
SIFTUP(1, N) has been called, all paths in the entire graph will
be in deseending order, and, in particular, A(l) will be the lar-
gest element of A,

We shall not attempt to explain how SIFTUP works, but shall
simply give the program with its assertions: |

SUBROW INE SIFTUP(I, N)

C 1<LI0yI LNy NSy I= 10,
(A(K/2) > A(K)y K IN, (2%I0+1l.0N)),
C EP(Py, (1.oN)), (R(II) = AO(P(II)), II oIN, (L..N))

COPY = A(I)

J = 2%
((I = 10, (ACK/2) > A(K)y K oIN, (2%IO+1l..N))) .OR,
(I > 2*10, A(I/2) > COPY, A(I/2) > A(I),
(A(K/2) > A(K), K oINe (2*I0.oN))))y I < Ny 2*I = J,
EP(Py (1.eN)), COPY = AO(P(I)), (A(II) = AO(P(IX)),
IT oIN. ((1..N) Do (I))))y 1 < I0; N<n

IF (N=J) 4y 3, 2

Q

Q O a Q 4

- 405 -

2 IF (A(J+1) JIE, A(J)) GO TO 3
F=J+1

C ((I=1T0, (A(K/2) > A(K)y K oIN. (2*IO+L.eN))) oCRo
C (I > 2*10, A(I) > A(J), A(I/2) > COPY, A(I/2) 2 A(I),
C (A(XK/2) > A(K)y K ¢IN, (2%I04eN))))y I = J/2y 2¥I1 < Jy J < Ny
C ((2*I < Ny A(J) = MAX(A(2%I),y A(2*I+1))) (o
C (2*I = N, A(J) = A(N))), (EP(P, (L..N)), COPY = A0(P(I)),
C (A(II) = AO(P(II)), II oIN. ((1l..N) Do (I))y 1 < I0y NS
3 IF (A(J) oIE, COPY) GO TO &4
A(I) = A(3)
I=7J
GO TO 1

4 A(I) = COPY
C EP(P, (LeoN)), (A(II) = AO(P(II)), II oIN. (1ooN))y
c A(K/2) > AK)y K oIN, (2*I0..N))

RETWRN

END

Since the array A is being sorted in.place, we must, as be~
fore, introduce another array AO, such that the elements of A are
a rearrangement of the elements of AO both before and after SIFIUP
is executed. In addition, we have introduced a variable IO to stand
for the initial value of I, since SIFTUP may change the value of I,
As before, n denotes the total amount of space ‘reserved for the .-

array A,

In order to simplify the proof, we make the following abbre-

viations:
Al = (1 g I0)
A2 = (I = I0)
A3 = (I <5 N)

- 406 -

"

7]

Ay = (N < n)
A5 = (A(K/2) > A(K)y K oIN, (2#I0+1..N))
A6 = (EP(Py (LooN))y (A(II) = AO(P(II))y II oINe (LeeN))
A7 = (I > 2¢I0) |
. A8 = (A(1/2) 2 A(I))

A9 = (A(K/2) > A(X)y K JINs (2*I0..N))

A10 = (2%I = J)

A1l = (A(1/2) > COPY)

Al2 = (EP(P, (1e.N)), COPY = AO(P(I)), (A(II) = AO(P(II)),
II oINe ((LeeN) Do (I)))) -

A3 = (I>N)

Al¥ = (EP(P, (looN)), ((4f II = I then COPY elge A(II)) =
AO(P(II))y II oINe (LeoN)))

A15 = ((if K/2 = I then COPY else A(K/2)) > (4£ K = I then
COPY else A(K))y K oINe (2%I0,.N))

Al6 = (J = N)

= (A(I) > A(J)
A18 = (I = J/2)
A19 = (2%I < J)
A20 = (T < N)

= (2¢I < N)

A22 = (A(J) = MAX(A(2*1), A(2*1I+1)))
A23 = (2*I = N)
A24% = (A(J) = A(N))

. A25 = (J < N)
A26 = (A(J+1) < A(J))
N A27 = (A(J+1) > A(J))

A28 = (A(X) > A(J+1)
A29 = (I = (J+1)/2)

- L4o7 -

A30 =
A3l =
A32 =
A33 =
A4 =
A35 =
A36 =
A37 =
A38 =
A39 =

(2*%I < J+1)

(J¥1 < N)

(A(J+1) = MAX(A(2%1), A(2*I+1))

(A(J+1) = A(N))

(A(J) < COPY)

(A(J) > COPY)

(J > 2#I0)

((4f J/2 = I gthen A(J) elge A(J/2)) > COPY)

((4f 3/2 = T then A(J) else A(I/2)) 2 A(3))

((if K/2 = I then A(J) else A(K/2)) > (if K = I then

A(JT) else A(K)), K OINO (2%I040N))

ALO =

EP(Py (1o.N)), COPY = AO(P(J))y ((if II = I then

A(J) else A(II)) = AO(P(II)), II oINo ((LeeN) Do (J))))

(These are initial and final assertions of control paths

in thils program. The ones which are final assertions have been
obtained by substitutione)

- 408 -

[/

{

There are seven control pathsorThe first
one starts at the beginning of the program; 1ts hypotheses are the
assertions Al, A2, A3, Ak, A5, and A6, Its conclusions ares

((A2 and A5) or Z), where we shall not spell out 2 because
A2 and A5 are true anyways

A3y whlch is preserved;

2%] = 2*I, which is obviousgy

EP(Py (1ooN)), A(I) = AO(P(I)), (A(II) = AO(P(II)), II .IN.
((LeeN) D¢ (I)))), which reduces to A6

and Al and Ag which are preserved,

The second control path starts just following statement
number 1 and proceeds immediately to statement mumber 4, Its hy-
potheses are ((A2 and AS) gr (A7, All, A8, and A9)), A3, AlO, Al2,
Al, A%, and Al3. Its conclusions are All, which reduces to Al2,
and Al5, If A2 and A5 are true, then A2 and A10 give (2*I0..N)

s (JwaN)y and this is tha nuil set by A133 so that there is/fiothing
té prove.in.Al5. Otbsrwise, we cannot have K/2 = I for K in
(2*I0..N)y bocause then K = 2*I or K = 2*I+l, and 2*I = J > N by
A10 and Al13. Hence Al5 reduces to (A(XZ/2) > COPY, (A(K/2) > A(X),

K oINo ((2*I0,.N) oDe (I)))), and this is implied by All and A9.

The third control path starts at the same point as the
second, and proceeds immediately to statement number 3. Its hypo-
theses are ((A2 and A5) or (A7, All, A8, and A9)), A3, AlO, Al2, .u,
A%, and Al6. Its conclusions ares

((A2 and A5) or (A7, A1Z, A13; A8, il A9)). Here if A2 and
AS are true initially, they are preserved, Otherwise A7, All, A8,
and A9 are preserved, and it only remains to prove Al7. By AlO,
Al17 becomes A(J/2) > A(J), and this bocomes A(N/2) > A(N) by Al6.
But this 1s true by: A9 - S o

A18, which is true by Al0j
- 409 -

Al19, which is true by AlOj

A20, which is true by Alé;

((A21 and A22) or (A23 and A24)). A23 is true by A10 and Al6,
and A24 is true by Alés .

and Al2, Al, and A4y which are preserved,

0

The fourth control path starts at the same point as the se-
cond and third, and proceeds to statement 2 and then to statement
3 (without executing J = J + 1), Its hypotheses are ((A2 and A5)
or (A7, All, A8, and A9)), A3, Al0, Al2, Al, A4, A25, and A26.
Its conclusions ares

((A2 and AS) or (A7, A17, All, A8, and A9)), which is true
Just as in the preceding path, except that Al6 no longer holds,
so that A(J/2) > A(J) does not become A(N/2) > A(N), but A(J/2)
> A(J) is still true by A9, A25, A7, and A10j

Al18 and Al9, which are true by AlOy just as beforej

A20, which 1s true by A25% “

((A21 and A22) or (A23 and A%d+)). A21 is true by AlO and
A25, We have A(2*I+1) < A(2*I) by A26 and AlO, so that A22 re-
duces to A(J) = A(2*I), which is true by AlO;

and Al2, Al, and A4, which are mreserved,

The fifth control path starts at the same point as the se-
cond, third, and fourth, and is the same as the fourth except
that T = J + 1 1s executed., Its hypotheses are ((A2 and AS5) or
(A7, A11, A8, and A9)), A3, AlO, Al2, A1, A%, A25, and A27. Its
conclusions ares

((A2 and A5) or (A7, Al7, All, A8, and A9)), which is true
just as in the preceding pathj;

A29, which is true by Al0 (recalling that the division is

performed without rounding)s =
- 410 -

A0 4 which 1s true by AlOj

A31, which is true by A253 o

((A21 and A32) or (A23 and A33)). A21 is true by AlO and
A25. We have A(2*I+l) > A(2*I) by A27 and AlO, so that A32 re-
duces to A(J+l) = A(2*I+l), which is true by AlOj

and Al12, Al, and Al, which are preserved.

The sixth control path starts at statement number 3 and
goes immediately to statement number 4, Its hypotheses are ((A2
and A5) or (A7, Al7, All, A8 md A9)), A18, Al9, A20, ((A21 and
A22) or (A23 and A24)), A12, Al, Al .and A3lo Its conclusions are All,
which reduces to Al2, and Al5, If A22 is true, then COPY > A(2%I)
and COPY > A(2%I+1) by A22 and A3lj otherwise, J = N by Al9, A20,
and A23, so that COPY > A(2*I) by A3% and A23, and 2%I+1 > N,
If A2 is true, then I is not in (2*I0,eN), and otherwise A(I1/2)
> COPY by All. This takes care of the cases K/2 = I and K= 1I in.
Al5, and the other cases all follow from A5 or from A9, one or the
other of which must be truee _

Finally, the seventh control path starts at statement number
3 and goes back to statement number 1, Its hypotheses are ((A2 apd.
45) o (A7, A17, A11, A8, and A9)), A18, Al9, A20, ((A21 and A22)
or (A23 and A24)), Al2, Al, AW, and A35., Its conclusions ares

(% or (A36, A37, A38, apd A39))y,where: we shall not spell out
Z because the other alpernative will always hold. In fact, A36
follows from Al9 together with either A2 or A73 A37 reduces to
A35 by Al183 and A38 becomes A(J) > A(J) (which is obvious), again
by A18, If A22 is true, then A(J) > A(2*I) and A(J) > A(2%I+l) by
A22; otherwise, A(J) > A(2*I) by A23 and A24%, and 2*I+1 > N, If
A2 is true, then I 1s not in (2*I04.N), and otherwise A(I/2) >
A(J) by A8 and Al7, This takes care of the cases K/2 = T and K =

-4]] -

I in A39, and the other cases all follow from A5 or from A9j

A204 which is preservedj;

2%J = 2%J, which 1is obviouss

A0, which is derived from A12 by taking P in A4O (call it :
PP) to be PP(I) = P(J), PP(J) = P(I), and (PR(K) = P(K), K .IN,
((LeoN) Do (I, 3)))e We have COPY = AO(P(I)) = AOCPP(3))y A(J)
= AO(P(J)) = AO(PP(II)), and (A(K) = AO(P(K)) = AO(PP(K)), K .IN,
((LeoN) Do (I, J))), from Al2, which implies A4Os

and Al and A4, which are preserved,

s

In all of these paths except the third, there are restric-
tions due to the use of subscripted variables., In the first path,
these restrictions follow from assertions Al, A2, A3, and A%, In
all tﬁe other paths, we make use of the fact that either A2 or A7
must be true, In the second path, Al, A3, and A% are also needed;
in the fouwrth and fifth paths, A25, A10, and Alj and in the sixth
and seventh paths (which use both A(I) and A(J)), assertions Al, B
Al9, A20, and AL, This completes the proof of partial correctness.

The termination of this program follows from the faet that
N=J is a loop expression when loops are measured from statement
number 3, Every loop must pass through statement number 3§ the
expression NeJ is bounded at that statement by asser tion A20; and
its value must decrease every time we go around the loop, since
N does not change while J can only strictly increase -~- at state-
ment mumber 1, which must be executed, and at J = J + 1o In fact,

at statement number 1, J is doubled, and it is therefore:increased

Y

(since J = I > I0 > O by Al and either A2 or A7). Thus our program

is correct.
The SIFTUP program is short (only ten executable statements),

but of high complexitye. It was obtained only after considerable

thought, and the complexity of its proof should not be surprisinge.
- 412 -

10-5 Merging and Exchanging

A different kind of permutation is used in proving the
correctness of a program which merges two sorted arrays A and B
to produce a single sorted array C. Three pointers, which we shall
call I, J, amd K, are kept in such a routine, The elements A(1)
through A(I-1) and the elements B(i) through B(J=1) have presu-
mably already been merged to form the elements C(1) through C(K),
and K = (I=1) + (J=1), or I+J=2, Our permutation P will be on the
set (1..K), and, for each element X of the set (l..I-1) we will
have A(X) = C(P(X))s that is, each element of A, below:the I-th
element, is contained in C somewhere below the K=th element. Each
element of B below the J=th element is also contained in C, and
these 3-1 elen;énté’ of B are keyed to the permutation P by writing
B(X=(I-1)) for X in (I..K). Thus our assertion is |

EP(P, (100K))9 (A(X) = C(P(X)), X oINo (looI-l)),
(B(X=(I=1)) = C(P(X))y X ¢INe (Ic0eK))y K = I+J=2

We shall denote this assertion by MERGE(A, By Cy I, Jy K)o

The following program merges the sorted arrays A and B to
form the sorted array C, in the manner suggested above. The length
of A is M and the length of B is No In order to determine the K-th
element of the new array, we look at the I-th element of A and}
the J-th element of Bj the smaller of these two, in the given’
order, becomes the new K-th eleﬁ\ent of Co In addition, if the
smal ler element came from A, then I is increased by l; otherwise,
J is increased by 1l. As soon as we are finished with A or with B,
we copy the rest of B (or, respectively, A) into C, The program
may be written as followss

- 413 -

DIMENSION A(m), B(a), C(p) |
AsC(Ay 14 M)y ASC(By 1y N)y M>0, M<pny N>Oy N<ny, M#\N< D
I=1
J=1
K=0
1L, I<MM<my1LJyJ<N, NSy M#N < D,
Asc(a, 1, M), Asc(B, 1, N), MERGE(A, B, C, I, J, K),
(K =0 R. (K >0, C(K) < A(T), C(K) < B(J), ASC(C, 1, K)))
K=K +1
IF (A(I) < B(J)) GO TO 3
C(X) = B(J)
J=J +1 ,
IF (J JE. N) GOTO 1 |
1<I, I<MMcnm, a5C(Ay 21y M)y J=N+1y NSy MNP
MERGE (A, By, C, I, Jy K)y K > 0, C(K) < A(T), ASC(C, 1, K)
K=K+1
C(X) = A(I)
I=I+1
IF (I JIE., M) GO 0 2
GO TO 5
C(X) = A(I)
I=I+1
IF (I JJEc M) GOTO 1
1<Jy TSNy NSy ASC(By 19y N)y I =M+ 1y M<my MMN S P
MERGE(A, By Cy I, J, K)y K > 0, C(K) £ B(J), ASC(C, 1, K)
K=K+1
C(K) = B(J)
J=J+1 ,
IF (J JE, N) GO TO &+
MERGE(A, By Cy M, N, M¢N), ASC(C, 1, M+N)
CONTINIE - bl -

L]

4

As the value of K incresses, the permutation whose exis-

tence is implied by MERGE(A, B, C, I, Jy K) expands its domain
W and range and takes on new values, although its old values remain
the same, To see how this happensy let us examine a typical con-

trol path in the above routines:

C 11, I<MM<m1gJI,JSN Ny N Dy
C AsC(A, 1, M), ASC(B, 1, N), MERGE(A, B, Cy I, J, K),
C (K=0 R, (K> 0, C(K) < A(I), C(K) < B(J), ASC(Cy 14 K))) -
K=K+1
[1<I,I<mlgdyJdsnl
(A(T) 2 B(I))
1<J,3<n 1<Ky Kgpl
C(K) =.B(J)
J=J+1
(T <N
C 1<I, I<M M<m1gJTy TN, NSy N <Dy
¢ Asc(a, 1, M), ASC(B, 1, N), MERGB(A, B, C, I, J, K),
C (K=0 .R. (K> 0, C(K) < A(T), C(K) 5 B(J), ASC(C, 1, K)))

This :contrel path involves statement number 1 apd the four state-
monts which immediately follow ite The restrictions in the 'path

all follow from the initial assertion (remembering that MERGE(A,

B, Cy I, Jy K) implies K = I+J=2)o Back substitution yields the
following comlusion (omitting the case K = 0, vhich never happens):

’ 1<I, I<M M<n 1< I+, J¢l S Ny N < n,
M+N < py ASC(A, 1, M), ASC(B, 1, N), EP(P, (1..K+1)),
(A(X) = (4f P(X) = K+1 then B(J) ¢ elge C(P(X)))y X oIV,
& (1..1-1)), (BX=(I-1)) = (4f P(X) = K+1 then B(Y) else

| RGN, X oINe (TuKs1)), Kol = Tefd=2, |

- 415 -

K+1 > 0, B(J) < A(I), B(J) < B(J+1),
(K=1 ,®R., (asc(c, 1, K), C(X) < B(J)))

to be derived from the initial assertion and the conditions
A(I) > B(J) and J+1 < N (using the modified value of J) occur=-
ring in the.path. The last condition arises from writing ASC(C,
1, K) in the final assertion as ASC(C, 1, K~1) and C(K-1) g C(K),
and then applying back substitution, remembering to separate out
the case K = 1, |

Of all these final assertionsy, 1 < I, I <My M<m NSy
M+N < py ASC(A, 1, M), ASC(B, 1, N), and (K = 1 o(R. (asSC(C, 1,
K)y C(K) < B(J))) are clearly preserved, while B(J) < A(I) and
J+l < N are conditions found in the pathe Also, 1 < J+1 follows
from 1 < J3 K+l = I+J+l=2 follows from K = I+J-2; K+1 > 0
follows from either K = O or K > 0Oy one of which must be truej
and B(J) < B{J+1) follows from ASC(B, 1, N)y 1 < J, and J+1 < N,
This leaves only the assertion about the existence of a permu=
tation with certain properties. If the assertion in the hypothe-
sis (on the set' (1..K)) is denoted by P, and the asser tion in the
conclusion (on the set (L..K+l)) by FP, then we may determine FP

in terms of P as followss
PP(K+1) = K+1, (PP(XK) = P(KK), KK oIN. (1e.K))
The conclusion about the permutation PP then reduces to

(AX) = C(P(X))y X oINs (LeoI=1)), (B(X=(I51)) = C(P(X)),
X oINo (IeeK))y B(K+l=(I=-1)) = B(J)

and this reduces to the initial assertion. In particular, K+l=
(I=1) = J, because K = I+J=2 initially.

- 416 -

n

Another sorting-related process is that of ¢ _gggggg;gg we

shall use this termy as it 1s often used, to refer to

a process whereby two pointers, initializ d to point to the be-
ginning and thé end of a table respectively, move toward each
other, ultimately meeting in the middle of the table, and, every
so often, the elements of the table to which they point are ex-
changed, We shall present the exchange process which is used as
the first stage in tﬁe xgg;§ g;gggggg|ggg§, another fast in-place
sorting method,

The effect of our exchange process will be to get all nega-
tive elements of the array A in front of all positive elements,
Successive stages of the program then sort the negative elementé
and the positive elements separatelye. (The sort actually acts on
a single bit of the sort key; the first stage acts on the 1eftmost
bit, which is taken to be the sign bit. If unsigned quantities are
being sorted, this first stage of the sort would be different,) -
The program is as follows:

DIMENS ION A(n)
C N21,N<n

I=1
J =Ml
C 1<I,I<JyTgNl, Ng.ny (AfK) <,09 K INo
C (leoI-1))y (B(K) > 0y K oINe (J..M)):
1 IF (A(I) GE. 0) GO TO 3
2 I=1I+1
IF (I JE, J)GOTO1
6o TO &

C 1<I,I<J, T < Nl, Ngny (A{K) 2,05 K IN,
C (leeI=1))y (A(K) > 0, K (IN, (Jo.N))y A(I) .2 O
- 417 -

3 J=J =1 |
IF (I EQe J) GO TO &
IF (A(J) GEo 0) GO TO 3

T = A(I) :
A(T) = AQJ)
A(J) =T ¢
GO TO 2
C (A(K) < Oy K oINe (LeoI=1))y (A(K) 2 0y K oINe (IooN))
L CONTI NIE |
Note the slightly unsymmetrical treatment of I and Je This 1is ne-
céssary because, among other things, when I and J are equal, A(I)
must be either the last negative element or (as 1n‘ this version of
the algoritim) the first positive element of Ao
Let us abbreviate our assertions here as in the preceding
sections
Al = (N2 1)
A2 = (NS n)
A3 = (1 < N+1)
Ay = 1 < I)
A5 = (I < J)
A6 = (T < W1)
A7 = (A(K) < Oy K oINs (looI=1))
A8 = (A(K) > 0y K oINe (JeoN))
A9 = (A(I) 2 0)
A10 = (A(I) < 0) 4
Al = (I +1#£7J)
Al2=(1<1I+1) l
A3 = (T+1<d) -

- 418 -

Al = (A(X) < 0y K oINe (1eoI))

Al = (I +1=2J)

A16 = (A(K) 2 0y K oIN, (I+1l..N))

Al7 = (A(K) 2 0y K IN, (Ic.N))

A18 = (a(3-1) > 0) :°

A9 =(T=-15N+1)

A20 = (A(K) > 0y K (JINo (J=1, N))

A21 = (A(J=1) < 0)

A22=2(I+14J7-1) |

A23 = ((i£ K = I then A(J=1) else if K= J - 1 thep
A(I) glse A(K)) < Oy K oIN, (1ooI))

A2t = ((4€ K = I then A(J=1) else if K =J = 1 then
A(I) elgse A(K)) > 0y K oIN, (J=l.eN))

A2 = (I +1=J-1)

A26 = ((1£ X = I then A(J=1) else if K=J - 1 then
A(I) elge A(K)) > Oy K JINo (I+l..N))

For convenience, we list only the hypotheses and thev con=
clusions in the verification condition of each control pathj
showing that the cbnclusions actual 1y follow from the hypotheses
will be left to the reade:é.

Control path 1 starts at the beginning of the program and
ends at statement number 1, Hypotheses are Al and A2, Conclusions
are A3y A2, and the tautologiés' 1 <1, N+41 5 N41, (A(K) < Oy
K oINe (1e¢0))y and (A(K) 2 Oy K oINo (N¢leoN))e

Control path 2 starts at statement number 1 and ends at
statement number 3, Hypotheses are AW, A5, A6, A2, A7, A8, and A9,
Conclusions are the same as the hypotheses,

Control path 3 starts and ends at statement number l.
Hypotheses are A%, A5, A6, A2, A7, A8y A10, and All, Conclusions

- 419 -

are A12, Al3, A6, A2, Alk, and A8,

Control path 4 starts at statement mumber 1 and ends at
statement mumber 4, Hypotheses are A4, A5, A6, A2, A7, A8, AlO,
and Al5. Conclusions are Al% and Al6,

Control path 5 starts at statement number 3 and goes im-
mediately to statement number 4. Hypotheses are Ali, A5, A6, A2,
A7, A8, A9, and Al5, Conclusions are A7 and Al7.

Control path 6 starts and ends at statement number 3. Hy=-
potheses are Al, AS, A6, A2, A7, A8, A9, All, and Al8. Conclu-
sions are AW, A13, A19, A2, A7, A20, and A9,

Control path 7 starts at statement number 3, passes through
statement number 2, and ends at statement number l. Hypotheses
are Alvy A5, A6, A2, A7, A8, A9, All, A2l, and A22, Conclusions
are Al2, Al3, A6, A2, A23, and A2k,

Finally, control path 8 starts at statement number 3, pas-
ses through statement mumber 2, and ends at statement number 4o
Hypotheses are A4, A5, A6, A2, A7, A8, A9, All, A21, and A25,
Conclusions are A23 and A26,

There are restricted commands in control paths 2, 3, l, 6,
7, and 8, In each ocasey the restrictions follow from assertions
A+, A5, A6, and A2, Thus the program is partially correct.

To prove that the program is correct, we notice that J=I is
a loop expression, This program is noteworthy in that, although
there are several loops in it, there is one loop expression for
all of theme |

- 420 -

“

)

N

NOTES

The remarks on timing in section 10-1 are related to the
idea of termination, although not in a straightforward manner,
That isy if we prove the partial correcfness of a program, using
a final asssertion which says that the program terminates in ¢
steps (where g is some expression in the variables of the pro=-
gram), this still does not prove that the program terminates; it
only proves that if the program terminates, it does so in g steps.
Timing proofs may, however, be modified so as to constitm;e valid
proofs of termination, as is done in section 3.8 of [Good 701,

The binary searoh program of section 10-2 was used in
{Floyd 713 as an example illustrating the operation of an :l.n-
teract_;:ljve program verifier; Deutsch has written a verifier which
proves the correctnésa of th:ls’ program [Deutseh 737, |

Thev fact that a sorting program is not proved correct until
it is prmd that the sorted values aie & rearrangement of the'
original values we;s noted in [London 70] and in [Hoare 71bl. The
use of an array of initial values of the variables to be sorted,
not appearing explicitly in the original program to be proved cor-
rect, appears in [London 70]3 the theorem concerning the preser-
vation of the PERM assertion when an interchange is performed was
first noted (although not formally proved) in [Hoare 71bl, |

The tree sort of section 10=# was originally written by
Floyd [Floyd 64] and proved correct by London [London 70]. Exer-
cise 10y below, is based on [Hoare 71bJ,

- 421 -

EXERCISES

1. Complete the proof of correctness of the linear search
routine given at the beginning of section 10=l, |

2. Insert into this linear search routine the assertions
concerning its timing which are given near the end of section
10-1, and prove the correctness of the resulting program, thus
proving that this routine is linear in N |

3. Prove, using the methods of section 10=1, that the
binary search routine of section 10=2 is logarithmic. (In other
words, show that the total mmber of steps taken by this routine
is bounded from above by an expression of the form a 1og N + by
and from below by another such expmression,)

4, Prove the correctness of the hash table routine of sec=-

tion 10=2,

5o Prove the correctness of the following program (commonly

known as a "bubble sort") using the methods of section 10=33

DIMENSION A(n)
C N>2y NSn, (A(K) = A0(K)y K oINo (1ooN))

J=1

C 1 Y J, Jd < N’ NS h, PERM“, AO, N), ASC(A, l, J)
I=J
Q = A(I+1)

1<I, I5JyJ<Ny, NS,
Q < A(T+1), ASC(A, 1y J)y (I =T oR. A(J) < A(J¥L)),
EP(P, (1..N)), Q = AO(P(I+1)),
(A(K) = AO0(P(K))y K oINo ((LeeN) Do (I+1)))
IF (Q «GE. A(I)) GO TO3

M QO Q Q Q

- 422 -

"

J—

A(I+l) = A(I)
I=I-1
IF (I N2, 0) GO TO 2

C 0<I,I<Ty1<TyT<N, NSy (=0 RoeQ2A(1)),
C Q < A(I+1), ASC(A; 1y J)y (X = J oRe A(T) < A(THD)),
C EP(Py (1..N)), Q = AO(P(I#1)),
¢ (A(K) = AO(P(K))y K oINe ((1eeN) oDo (I+1)))
3 A(I+l) = Q
J=Jd+1

| IF (J JEo N) GOTO 1
C PERM(A, AO, N), ASC(A, 1, N)
CONPINTE

(Note that it is not necessary to use unsortedness to prove that
this program terminates.)

6o Find lower and upper bounds for the number of steps (exe-
cutable statements) taken by the progrem above, and prove that
these are in facf the bounds. (Hints The program 1s fastest when
the given array is already sorted; it is slowest when the arra;y
is sorted in reverse arder.)

e !l‘he loop in the SIFTUP program of section 10- contains _
an unconditional GO TO statement, Such a loop ¢an usually be
shorteneds in fact, we could rewrite this program as

SUBROUTINE SIFTUP(I, N)

‘COPY = A(I)

GO TO 7 |
5 IF (A(J+1) JE. A(J)) GO 20 6

- 423 -

J=J+1
é IF (A(J) oIE. COPY) GO TO 8
A(I) = A(9) | | -
I=1J ¥
7 T = 2%I | |
IF (N=J) 8y 6, 5
8 A(I) = COPY
RETRN
END

"

Produce a proof of the correctness of this program by modifying,
as little as possible, the proof of correctness of the original

programe

8o Prove that the modified program (in the preceding pro-
blem) is faster than the wmodified program, by determining the
nunber of statements executed in each program according to the -
method of section 10=l.

9. Complete the proof of the merge program of section 10=5,

10, The exchange process of section 10«5 may be expanded
into a program which finds the F=th element in order in an (ori=-
ginally unsorted) array, and simultaneously performs interchanges
in such a way that A(F) > A(G) implies F > G and A(F) < A(G) im=
plies F < Gy 1 < G < Ny as in the program belowe. For convenience,
let

Al = (A(P) JIE, A(Q)y P oINe (LooM=1)y Q oINe (MeoN)) a
A2 = (A(P) oIEe A(Q)y P oINo (LeeNN=1), @ oINe (NNeoN))

A3 = (A(P) oIE. Ry P oINe (1o.I-1)) 1
Ar = (A(Q) oGEe Ry Q oINe (J+leoN))

- Lo -

Then the program is as follows. (Notes Not all of the necessary
intermediate assertions havé been givene)

C
c
e 2
c
3
c
5

SUBROUTINE FIND(A, N, F)
DIMENSION A(N)
INTEGER Fy Ry W
1<Fy PNy (A(R) = AO(K)y K oINe (LooN))
M=1
NN =N
PERM(A, AO, N)y, M < Fy F < NN, Al, A2
IF (M .GE., NN) GO TO 8
R = ACP)
I=M
J=NN
PERM(A, A0y N)y MS Py F < WN, M < I, T <N, AL, A2, A3, Ak
IF (I 0T J) GO TO 6
PERM(A, AO, N)y M< P, PP < NN, M <7, J < N, Al, A2, A3, Ak
IF (A(I) GE.R) GOTO k4
I=I+1
GO TO 3
PERM(A, AOy N)g M F, P NN, M< I, J < N, AL, A2, A3, AW
IF R Be A(J)) GOTO S
J=J =1
GO TO &
IF (I .GT. J) GO TO 6
W= A(T)
A(I) = AQJ)
A(J) =W
I=I+1

- 425 -

J=J-1
GO TO 2 |
6 IF (F «GTo J) GO TO 7
NN =J
GO TO 1
7 IF (I .GT. F) GO TO 8
M=1 |
GO TO 1
C PERM(A, AO, N)y (A(P) < A(F)y P oINs (1LooF)),
C (A(F) <A@Q)y Q@ oINo (Foel))
8 CONTINUE

Prove its correctnesse

- 426 -

U]

£x

Bjorner 70

Cooper 69

Deutsch 73

Floyd 6%+

Floyd 67

Floyd 71

Goldstine
and wvon
Neumann 47

Good 70.

Good and
London 68

Good and
London 70

Hoare 69

REFERENCES

Bjorner, D, machines, BIT 10, k&
(1976)’ épo ° ’ ?

COOPOI;, De Coy Progrs

s%%%m-gzgez] ',“-: "N

ﬁl 9 DPDe 3= ,

Deutschy Lo P in;er%ct;l,zg T ar 1fier
Phe 15. i‘hegis%gbepar nt of Eompu%er ?

Science, University of Celifornia, Ber-
keley, May 1973.

Flo Re W orit T IIT
omnteal st O 2y B raeeber
196‘(')’ Pe 7010
Flo oW Aigiﬁ;gg mean o programg
géc. Syﬁ;’;, pplled Math, l§ (&themat cai
Aspects of Computer Scilence), American
Mathematlical Society, Providence, Re Io,

1967, ppe 19=32,

Floyd, Ro Wey T Me_xé%q_ﬁ%dei f core
gg’g_ prog: %orma on Process ngQVJ,,

oceeﬁﬁs of‘ IFIP Congress 71 (Ljubljana),

Ce Vo Freiman, edey North=Holland, Amsterdam,

19724 ppe 7-11,
Goldétine(,i He Hoy and von Nemnann,t.)‘., Planning
goding problems for an elec E%n;c com-
ﬁﬁg ﬁ‘%, reprinted ollected
orks of John von Neumann, vol. 5, PPo
80-235, Pergamon Press, 1§63o

Good, D, I,y Ioward a man-machine system
m %g?gg cogzegtggs%, e Do h%g}ia,
uter Sclence

par tment, University of
Wisconsin, 1970,

Goody D¢ I,y and Iondon, Re L.y In arit
mot1s 257 the Burrouths B3300 Fout ALGOL
procedures and of thelr correctness,
omputer Sciences Techniecal Report No. 26,
University of Wisconsin, 1968,
Goody D¢ Ioy and ILondony Re Ley Computer intepr-

val arithmetie: definit roof of cor-
% ementation, ourna%f he AUHI?%
ober s DPPe 603~612,
Hoare, Co A¢ Roy An axiomatic basis for com-
%ﬁg}; pro?ammigﬁ, Communications of the
Al 12, ¢ PPoe 576"580, 5830

- 427 -

Hoare 71a

Hoare 71b

Hoare and
Wirth 72

Karp' 60
King 69
King 71
Knuth 68
Laver 71

London 70

London 71

London 72
Manna 68

Manna 69

Hoare, Cs Ao Rey Procedures and parameters: an
axiomatic approach, in Engeler, Eey €do,
Tocture Notes in Mathemties 188: Symposium
on Semantics of Algorithmic g%guggeg,
Springer-Verlag, erlin-Heidelberg=-New York,
1971, ppo 102=116., .

Hoare, Co As R oof of a rograms FIND, Com-
mdeations of the AW, 1B % (antary 1971),
PPo 3945,

Hoare, Co Ae Rey and Wirth, Ne., An axiomatic
definition of the programming language PASCAL,
richte der Fachgruppe omputer-ﬁissenscmffen,
Nro 6, ETH, Zurich, November 1972,
Karpy Re Mey A note on the application of graph

theory to digital compute gyj):%g%g}g, .
and Control 3, 2 (i§30§, PPo 179=190,
Kingy Je Coy A program vgglf;,er; Ph., D, Thesis,

Department of Computer Sclence, Carnegie-Mellon
Universityy, 1969,

King, Je Co &ov;_r_;é rogramg to be correct, IEEE
‘l‘x"an;actions on Computers C20, 11 : PPe
1331=1336,

Knuth, Dy Ea, The Art OF Computer Pro gramming,
Vol. 1: Fundamental Algori s AddIson-Wesley,
Reading, Mass., 1960, '

Lauer, Po, Consistent formal theories of the se-
n of programm languages, Technical

Report 25.&5, 1BM %aboratory ienna, 1968,

London, Ro Loy Proof of %lg%ritm -~ a2 new kind
cortification (%Sr ification of Algorithm

245, I), Communications of the ACM

13, 6 (June 1970)’ PDPo 371‘3730

London, Ro Ley Experience with inductive asger-
tions for p’roVEgg rograms correct, in ﬁgeler,
E., ede, Lecture lotes in Mgfﬁematicg %8:
Symposium on Semanties of or ic Ian-
guaEes gpringer- erlag, Berlin-Heidelberg-New

OTKy i??l,pp. 236-?51.
London, Ro Le, The current state of proving pro-
e 2

%%m correct, Proce ACM Annual Confe, August
2y PPe 39 .

Manna, Zey Termination of algorithms, Phe De
Thesis, Department of Computer Science,
Carnegie-Mellon University, 1968.

Manna, Z., The correctness of rograms, J. Computer
and Sys;tems Sci, 3, 2 (]_.%69?, PPo Ii9-127o

- 428 -

bw

(43

Manna 70
Manna and
Pnueli 70
Maurer 72
Naur 66

Painter 67

Redish 71

Turing 50

Wilkinson 63

Mannay, Ze.y Te tion of pro amsx;e_ggg_gg&eg_
e pibemeiad grapd, BooC, St

Manna, Z¢, and Pnueli, Acy Formalization of
mégeilisg o Sushoii sy S

mwﬁiérﬁé&ﬁaﬁ %o%%r %%:
matics, Sept. 1972,

Naury Po, of o orit ene snap-
shots, ﬁ—&'ﬁ iﬁ“i pp.%l =316,
Painter, J, A. c rectnes a gom=-
Ei%e% fo an %ﬁ anguage o ﬁ.‘bo
sis, Computer Science Department, Stan=-

ford Uhiversity, 1967,

Redishy Ko Aey C 0 ndon's ce -
; gf’_ %ﬁy (w%fh repiy%ﬁ'on) ’

ommunications o ACM, 14, 1 (January
197:!-)9 PPe 50=51, ? ’

Turing, A.,y Checking e gou;ﬁ in Report
of ; Cor’zference ong}l%gﬁéﬁ'pee u 5mat:|.c ale
culating Machines, University Mathematical

Laboratory, Cambridge, Jan, 1950, pp. 67-69.

Wilkinson, J. Hoy Round "in Algebraic
Frocossen, Prantiee-Taile 1863,

- 429 -

INDEX

Absolutely pure procedure, 337
Acyclic program, 307
- Algorithm
for control path determi-
nation, 223-22
for forward and back sube
stitution, 231
for local verification, 345
for loop expression se-
quences, 323
ASC (assertion), 384
Assertions, 2?&
in loops, 2

Back substitution, 227
Backward transfers, and con-
trol pointg, 279
Brackets (used for restric-
tions) ’ 23,1'
Branch-forward program, 307

Cauchy'!s criterion, 305
Closed loop, 307
Closed loop condition, 278, 311
Control paths, 205, 311
Control points, 20%
Correctness, 2

and seman%ics, 209=-215
Cycle, 307

EI, EP (functions), 268

Euclid's algorithm, see GCD

Exists (an integer, etec.), 268

Extra variables in assertlons,
215-216

FEQ (assertion), 370

Final assertion, 203

Finiteness of the number of
control paths, 311

FIA, FID, FL, FIS (functions),

%gg; and 2%53 366
orward su titution, 226

GCD program (example), 201, 337
Globally verified, 348

IBA and ICA, 349

Inductive inference, 253

Initial assertion, 203

INRA (assertion), 372

Instruction behavior (constancy)
assertion, 349 :

- 430 -

Instructions, as restricted
commands, 33
Intermediate assertion, 20%

Language of assertions, 261

lexlcographical order of
sequences, 321

Local verification, 341

Loop expression, 2%, 296

Ioop expression sequence, 321

Matrix multiplication (example), 31l
ﬁ%ﬁ.aﬂd nin, 356

GE (assertion), 413
Minimum increment (decrement), 299

Nonconstructive loop expression, 305
NORM (assertion), 372
MSTEPS (special variable), 385

Offset assertions, 259, 260

Partial correctness, 208
PERM (assertion), 396

PFW (function), 3

Prime test (example), 269
Program-reduced program, 309
Pure procedure, 335

Recursive definition of asser-
tions, 261
Restricted commnand, 23%

SEQ (function), 325

SET (function), 265, 266
Setsy in asser%ions, 261
Sieve program (example), 277
Simpsonts rule (examplei, %OO
STe (Ysuch that"), 265, 267
Straight-line programs 307
SIM (function), 266, 287

Terminate, to, 291

Termination a% a particular
pointy 381

23§&§power algorithm (example),

Unsortedness, 402

Verified purity, 31
Verification conditions, 205

	Copyright notice 1973
	ERL-394 (1 of 3)
	ERL-394 (2 of 3)
	ERL-394 (3 of 3)

