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ABSTRACT

This paper presents a unified treatment of the problem of choosing

appropriate state space descriptions of the swing-equation model for

transient stability studies. An application of Lyapunov theory to these

representations is given.
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1 Introduction

The study of transient stability of multimachine power systems

via Lyapunov's direct method has received considerable attention in
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the last few years. The starting point for these analyses is

usually the swing-equation model which describes the dynamics of an

n-machine interconnection in terms of n coupled second-order differen

tial equations. While there is general agreement concerning these

differential equations, some confusion has arisen with regard to the

appropriate state space representation * for the stability analysis.

Indeed, the recent exchanges of views between Ribbens-Pavella and

11 16J. L. Willems, and Sastry and Murthy and J. L. Willems, indicate

that there are even questions concerning the order of an appropriate

state-space description.

For an n-machine system, there are possible system representations

of dimension 2n, 2n-l, or even (in special cases) 2n-2. It is not

possible to specify which representation is "correct" based solely on

the rules of consistency of a state-space representation; rather, the

appropriate choice is dictated by the needs of the stability analysis.

This point will be clarified in the following.

The object of this paper is to present a unified treatment of the

problem of choosing system representations of the swing-equation model

suitable for transient stability studies. The paper consists of two

sections. In Section 2 the appropriate system representations of the

swing-equation mod?l in the general, as well as special cases, are

derived. Thsse state space descriptions are convenient in applying



Lyapunov theory. Lyapunov functions associated with these representa

tions are constructed in Section 3. Computation of the transient

stability regions of the proposed Lyapunov functions may then be

carried out by techniques discussed in Reference 12.

2 System Representations of Swing Equation Model

The swing equation for an n-machine interconnection (and with the

2 5 6
usual simplifying assumptions) are taken to be: ' '

n

M. 6. + D. 6. + >^ b4 .sin(<5.-6.) =ii i l ^L^ ij i j

j^i

1, 2, ..., n

(1)

where 6. is the angle between the rotor of the i machine and a refer

ence axis rotating at synchronous speed, M. is the inertia coefficient

(necessarily positive), D. is the damping constant (nonnegative), P. is

the "excess" power at the i machine, and the b.. are coupling

coefficients. An important fact is that b.. = b.., for i, j = 1, 2, ...,

n, i i j.

To start with, we present a 2n-state system representation in terms

of t^e state variables

6 =

n
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and

w.

0) = H

This representation constitutes a valid state space description; how

ever, for the purposes of stability analysis there is an essential

defect: the equilibrium condition is met not at isolated equilibrium

points but along certain sets of equilibrium lines. The reason may

easily be seen from Eq. (1) where the 6.'s are involved only through

their differences. Thus if 6_ satisfies the equilibrium condition so

does any point of form 5 +ri 1 with n an arbitrary real number and _1

the n-column vector with each entry equal to 1. Indeed, this situation

conforms to physical reality. A system is considered stable (in an

appropriate sense) if it returns to any point on the aforementioned

equilibrium line, e.g. after a momentary upset we do not require the

6 's to return to their original values but rather require this of

their differences.

Although there are complications, it may be possible to carry out

i stability analysis in 2n-space as long as stability is defined with

respect to a return to the equilibrium line. For example, El-Abiad

2
and Nagappan chose this 2n-state system representation and defined

their Lyapunov function on IR x IR such that it is zero on the equi]1-

^riuTn line. Their Lyapunov function is consequently only positive semi-

definite on IR x 1R and care is needed in applying the results of
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6 9
Lyapunov theory. Willems ' used a 2n-state representation and defined

stability with respect to the equilibrium line. Again his Lyapunov

function is positive semi-definite.

These complications caused by dealing with the stability of sets

can be easily avoided by choosing a (2n-l) state system representation

when there is damping (i.e. D. > 0) and a (2n-2) state description when

there is no damping (i.e. D. =0). In this way we study the stability

of isolated equilibrium points whose theory is well established.

2.1 A (2n-l) state system representation

To derive a (2n-l) state description of (1) we introduce the angle

differences as state variables. More specifically, we shall choose

th t
(arbitrarily) the n machine as the reference machine and define the

(n-1) intermachine angles

a. = 6. - 6
i i n

i = 1, ..., n-1

constituting the (n-1) vector

n-1

We choose the (2n-l) variables a, , a0, ..., a -, w., 0)o, ..., a) as
1 £. n—l 1 / n

the state variables of the system (1). Let

T.f an infinite bus is included in tne system, it is chosen as the
reference machine.
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and

n-1

f.(a) - s b.. sin(ct.-a.) + b. sin a.
1 — jLtmA ij i j mi

f (a) = - > b . sin a..
n - jL^t nj j

i — 1, ..•, n—1

n-1

Note that for any a ^ IR

so that

n-i-1 n-1

> b. . sin(a.-a.) = 0,

i=i j=i
j^i

n-1

fn<S> " " Lj £i<2> •
i=l

If we define the two (n-1) vectors

and

-1

-1

-1

L J

f(o0 = f2(a)

n—1 —

t
See bottom of page 6.
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(2)

(3)

(4)



then (4) may be written as

*„<*> = <e, f(a) > ,

where (•,•): IR x in P\ denotes the inner product defined

t tfor two vectors x = (x^ x2, ..., xn-1) and v_ = (y^, y2> ..., y^)

n-1

by <x, y )= Z x. v.. Similarly, by defining the excess power vector
1 1

i=l

pe fR n_1 bv

n-1

and using the assumption £ P. = 0, which involves no loss of general
ly X

. •H • .„
lty, we may write:

P = <e, P > .
n —' —

We define next the n-order diagonal matrices

M - diag (Mx, M2, ..., Mn),

D = diag (Dx, D2, ..., Dn),

and, the (n-1) x n transformation matrix

'As f(-) is a periodic function (with period 2-n) we restrict its domain
to ?be periodic frame of reference - it < a. <_ tt , i = 1, 2, ..., n-1.
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T = [I * e]
— —n-1 . —

where, I _ is the (n-1) identity matrix. Note that the matrix T^ has

rauk (n-1) and consequently represents a singular transformation.

We can now replace (1) by

n k+ r ®+ i* t£.M " y =£» <5)

or, equivalently by a state representation

a = T u (6)

w=-M"1 [T^f.(a) +D to] + M-1 T^P . (7)

2.2 Equilibrium points

An equilibrium point of (5) is specified by

To)° = 0 • (8)

T* [f (a°) -P]+Da»° =0 (9)

For a system with damping D is a positive definite matrix since each

damping coefficient D. is positive. Then, from (9)

' u° = - d"1 T^f(a0) - P]

so that

T u° = - T D"1 T* [f(cc°) - P] = 0 (10)

by (8). Now, it follows by repeated application of Sylvesterfs

inequality that T D T is an (n-1) rank matrix and hence nonsingular
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Therefore, (10) is satisfied if and only if

f(a°) =P • (11)

This relation then determines the a-component of an equilibrium point

of (5). To specify the w-component, we note that when (11) holds, (9)

can be satisfied if and only if

o)° = 0. (12)

Then the 2n-l equations in (11) and (12) specify isolated equilibrium

points in IR x IR of a damped system.

Consider next an undamped system - the case I) = 0_. An equilibrium

point is determined by solving

To)° =0 (13)

Tfc [f(o°) - P] =0. (14)

Since T is full rank, (14) can hold if and only if (11) is satisfied.

On the other hand, (13) holds for any ^ of the form

w = ne_ n G IR . (15)

Thus, a solution of (13), (14) specifies not a point in IR x IRn but

rather a continuum of points: a line in IRn" x IRn. Consequently, we

should reduce the order of the system representation by one and consider

a (2n-2) representation in IR x IR

-8-



2.3 A (2n-2) state system representation

We replace the n frequency variables u^ by the (n-1) intermachine

frequencies

1 n

= T to

n-1 n-1 n
-j

Using (6) and (7) we then obtain the following state representation

a = y

Y = - S [f(a) - PJ,

where

S ^ T M_1 TC .

Many authors have treated the case of zero damping.

The equilibrium points are given by

Y° = 0 ,

and (because S^ is nonsingular)

0
f(o ) = P .

1,5,8

(16)

(6')

(7')

(17)

n-1 n-1Thus isolated equilibrium points are specified in IR x IR space-

Physically, stability would imply that the differences between angular

velocities return to zero following a disturbance even though the
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individual angular velocities change. Thus synchronism is maintained

although at a new synchronous speed. For a lossless system without

damping this, is a reasonable objective. This is in contrast to a

stable system with damping for which each machine must settle to the

synchronous iiequency since in this case the system incurs losses due

to damping.

A (2n-2) state description also arises in another way. If the

system is uniformly damped, i.e.,

— = k, i = 1, 2, ..., n (18)
i

then it is possible to reduce the order ofthe (2n-l) system although

there are no compelling reasons to do so, particularly since the system

has isolated equilibrium points. The case of uniform damping has

received wide attention in the literature.

We define the relative angular velocities y. as i-n (16), noting

that with uniform damping M D = k I , and using (6), (7) we obtain

a =•• y (6")

X " " £ [£(«> - P] - kY (7")

which is a valid state representation. Note that with zero damping

(k = 0) the equations reduce to (61) and (7*). It is worth noting that

this representation only yields information regarding the differences

between the angular velocities.
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3 Application of Lyapunov Theory

The system representations (5)-(7) and (6")-(7") are convenient

forms to which Lyapunov theory may be applied to determine transient

stability regions in IR x R and R x IR state spaces,

respectively. Energy-like Lyapunov functions are presented for these

system representations.

To start with, let us define the "potential energy" of our

system

W(a) - f <[f(£) -f(a°)], dC>
Jo
a,

where the integration is performed over an arbitrary path between a

and a. The integral is well defined and path independent since

3f. 3f. 3f_

JT =3^" »ijj=1« **'' n"lj i,e-' 3^~ is sy™"*ric.
j i -

The "kinetic energy" of the system (5) is given by y (w, M to ) .

Consequently a proposed "total energy" Lyapunov function V(*,*) : R x

IR h-> IR is given by

V(a,u) =j <u,M w> + W(a).

This corresponds to the Lyapunov function in References 2 and 6. For

the uniform damping case, the "kinetic energy" is given by y (x>JL Y ^

and the corresponding Lyapunov function V(«,.*) : IK x IR I—*- R

is proposed

-11-



V(a,X) =\ <Y,S'"1 Y>+W(a) ,

which corresponds to the Lyapunov function in References 1, 5, 8 and 9

Au explicit expression for S_ is given in the Appendix.

It is easily seen that

V(ct ,to ) = V(a ,y ) = 0.

Furthermore, the total derivative of V along the trajectories of (5) is

V^c\ (<**w) = - ^iiL>2.iiL^ •

Similarly, the total time derivative of V along the trajectories of

(6"), (7") is

%"), (7") (-,x) ="k<^'^"1 I} i°

-1 tsince S_ is positive definite.

The Lyapunov functions proposed for the two system representations

possess derivatives which are negative semidefinite in the entire state

space. To obtain a transient stability region we must find some region'

in the respective state spaces where the Lyapunov functions are positive

definite. Now, the kinetic energy term is always positive definite in

the velocity subspace since M and S^ are positive definite matrices in

their respective velocity subspaces. It remains to locate a region

where W(a) is positive definite in the R space. A detailed discussion

A -1S^ is positive definite follows from the fact that S^ is positive
definite (see Appendix).
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of this matter is presented in Reference 12.

4 Concluding Remarks

The state space representations of the equations of motion of an

n-machine interconnection with and without damping were presented in a

unified manner. Since more than one representation exists for these

equations of motion, the one appropriate for stability studies must be

chosen. By considering the two state representations of Eqs. (5)-(7)

and (6"), (7") the following points may be observed:

1^ In both cases the coordinates of the equilibrium point in the

o^-subspace of the state space are the solution of the same nonlinear

equation.

2_ When an infinite bus is included in the system we choose a

(2n-2) state representation since w = 0 and 6 = constant. The state
n n

variables are w , co0, ..., w , ot_, a0, ..., a ., and the first (n-1)
12' * n-1 12 n-1

rows of (5) constitute the state representation.
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Appendix

The (n-1) matrix S_ is defined in (17) . By inspection S^ is symme

tric, also, it has rank (n-1) [see discussion following (10)]. Now,

-1 -1 "" 2 2
since M is a diagonal positive definite matrix, M = M M so

_ 1 _ 1 _ 1

that S=TM"1 T* = (M 2 T*)' (M 2 T*) . Now M 2T* has rank (n-1)
14

which implies that S^ is positive definite.

Next, we obtain a more direct expression for _S.. To do so, let us

first partition the M matrix into

where,

Then,

M

M '
—r i

|m
n

Mr = diag(M1, M2, ..., Mn-1).

S •-•- T vT1^ ^n-1 :^ r«_i ' i-r I

i

i

'1_
IM

*n-l

t
e

= M 1 , + £- M e > <e
—n-1 M —r — —

n

(A-l)

where • ) ( • : IR x IR denotes the diad defined for two vectors
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x, v_ g IR Dyx^^y_ = 2E.Z»

Finally, we obtain an explicit expression for S^ by means of the

following lemma.

Lemma

Let R be an arbitrary q x q matrix, a_, b^ be vectors in Rq and 1^

denote the q x q identity matrix. Define the matrix (£ by

Q = I + R a > <b (A-2)

Given (£ is nonsingular, then

a"1=I-l+<b,R >^} ^ (A"3)
—a

Proof. Let x, y_ be any vectors in IR related by v_ = Qx. Thus

y = x + Ra> <bx = x + Ra<b,x> (A-4)

Now

<b,v_> =<b,x> + <b,Ra> <b,x> ,

So that

<b)Z>

< '̂̂ > = l +<b,Ra> •

Rewriting (A-4) as

T..\? have

<b,x>
i-Ra<b,x> = z - Ra rTTS-rTy
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X = I -[i-u(U) s±> <i
-1

where the bracketed expression is identified to be Q

We apply this lemma to the (n-1) square matrix

Q =I i+^-M e><e
— —n-1 M —r — —

n

Q.E.D.

,-1which is nonsingular since M and S_ are nonsingular. We define ML

n

I M. so that M,,, = <e,M e > + M . Then
. , 1 t — —r — n
i=l

so that

o"1 =̂ i— —n-1
±-M e> <

1+^-<e,M e> Mr
M — ^r —

n

.-1

"^n-1 Hp. -i-M e>(e ,-
-1 M„ ^r — -

I - - ~ M e > <e
—n-1 M_ —r — —

M ,
—r
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