Copyright © 1973, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



)

-

REALIZATION OF HIGH SECURITY SHARED-RESOURCE COMPUTER SYSTEMS

BASED ON EXECUTE-ONLY SEGMENTS

by
David Rabinowitz

Memorandum No. ERL-M389

June 21, 1973

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



REALIZATION OF HIGH SECURITY SHARED-RESOURCE COMPUTER SYSTEMS
BASED ON EXECUTE-ONLY SEGMENTS
by
David Rabinowitz
Department of Electrical Engineering and Computer Sciences

and the Electronics Research Laboratory
University of California, Berkeley, California 94720

ABSTRACT

A major area of research today concerns provisions for protection
of sensitive data and programs. This paper describes a segmented time-
sharing security system where each segment is execute-only and is com-
pletly protected from access by all other segments. it discusses various
mechanisms which can be used to implemént such a system and gives an

example of how such a system can be used.

Research sponsored by the National Science Foundation Grant GJ-36475.



-®

t-

One of the goals of a multiprogramming or timesharing system with a
file system is to provide a means by which files and programs stored
wtih the file system can be made available to users according to .various
criteria defined by their owners. At the same time it is équally impor-
taht, if not more éo, that others be denied access to these entities.
When security is of the utmost importance, the ultimate protection is
achieved by giving each user his own totally separate computer system, in
which case the overhead advantages of timesharing, -as well as provisions
for sharing resources are lost. This paper proposes a system whereby
each user appears to have a totally disjoint computer while actually
timesharing a big system with all the advantages in overhead reﬁuction
and with full capabilities for sharing all resources of the system while
still protecting resources from access and use by people not authorized,
at any level desired.

The system proposed is based on a segment-oriented design similar

to that of the MULTICS system [l] but differing in one basic way; in this system

each segment is totally independent, operating in its own memory space
and totally protected from access by any other domain, as if it were
running alone on the system. In effect this creates a system with not
two modes, such as supervisor and problem modes on IBM's System/360, but
rather with n modes, where n is the number of segments. allowed in the system,
and with each mode having, possibly, special priviledges not available to
others.

On this system a segment consists of a fully paged virtual memory

space and has a name., The virtual memory space is extremely large and



]

can be used in non-contiguous sections with no storage space wasted for
unused pages, but a segment cannot access anything outside its own memory
space. Every segment has one owner, the user who created it. The hard-
ware keeps track of who owns each segment and grants the privilege of
destruction to the user. The details of the imﬁlementation will be dis-~
cussed later.

Each terminal, or job stream in a multiprogramming system, owns one
process which is, at any time, under control of one segment. The process's
status is defined by a stateword which contains, in addition to the pro-
gram counter and working registers, as in all multiprogramming and time-
sharing systems, the segment-id, the terminal-id (considering from now on
the implementation on a timesharing system), the user-id of the user who
initiated the current incarnation of the process and the time-of-day this
process (actually this session) was initiated. Thus, for example, if user
X logged on to teletype y at time t, then x, y and t would be in the
hardware-protected stateword. How it gets there will be discussed later.
However, once the process is running the segment in control at any time
can ascertain who is using it, from what terminal, and in which incarnation
of this user-terminal combination.

Thus far it is not clear how resources can be shared in this system.
It is evident that, since all segments are totally protected from each
other, that every segment must be, in effect, execute-only, and the only
way for one segment to communicate with another is by calling it. There-
fore one of the keys to the system is the calling mechanism. In this
system, every segment can call any other segment whose name it knows.

This does not imply that the names of the segments are the keys which

must be protected, for what the called segment does when called is not



yet specified. A segment calls another segment by executing a CALL in-
struction, with parameters being the name of the segment being called
and the address and length of a string of words in the calling segment's
memory space to be passed as parameters. As far as the calling segment
is concerned, a .call to another segment is similar to a request for out-
put, where the ﬁarmeters being passed are elements of the output string.
The string is placed on an output buffer, with the output device being
the called segment.

A call to another segment handled entirely by hardware. Every
segment has a single call entry point, location 1 of page 0, to which
every CALL transfers control. On a CALL, the changing parts of the state-
word (all but the user-id, terminal-id and log-on time) are pushed onto
a hardware-maintained stack for that process, the name of the routine be-
ing called is forced into the segment-id portion of the stateword and
"1" is forced into the program counter. The segment-id of the calling
segment is retained in a special part of the stateword for possible access
by the newly-called segment. The system is now executing the new segment
at address 1.

All paging operations are handled entirely by hardware (perhaps
microcode) which, in effect, considers the segment-id to be part of the
program counter. Thus, after the stateword has been modified on a CALL,
the hardware tries to execute location 1 of the new segment. If, by some
chance, this page of this segment has been executing recently and is still
in main memory, the hardware will simply execute from that point. If,
however, that segment page is not in main memory, the hardware will treat
the situation as a simple page fault and go out and get the page, re-

ferring to whatever tables it needs. Note that since all addressing is



paged, through page tables, memory is automatically protected, as a
segment cannot get at any memory which is not its page table.

There is one difference between the way the hardware handles a CALL
and a simple memory reference, and that is that a CALL starts a timer
which disables all interrupts for up to its duration, that duration be-
ing fixed and dependent on the computer being used. This interrupt-free
period is granted each segment to allow it to clean house and perform any
locking of itself to other references as needed, and can be ended at any
time by the segment. It should be mentioned that a segment is an entity
and not a text which may be copied. At any time there is only one copy
of each page of each segment in existence in the system, so when a segment
is called, the segment itself responds to the call, and not some private
copy of that segment made by the system. Therefore, a segment must be,
in effect, re-entrant, and the interrupt-free period allows it the time
to reset polnters and do whatever else is necessary to implement this
reentrability.

Once a segment is running it is in complete control. It can read the
stateword and determine who the user is, at what terminal he is working,
at what time he logged on, and what segment just called it. It can also
read the parameter string by issuing an input-like command, GET, as if he
were requesting input from an I/0 device, giving as a parameter the address
in its memory space into which the string is to be placed, as well as a
limit on the length to be accepted. Note the similarity to the 'message’
system being implemented in PRIME [2] in that parameters are passed
through the system. The segment cannot, however, read anything from the

process's calling stack, so the user's session history is protected.



Having taken care of the reentrance problems, the called segment
now does its thing. In the case of a simple un-protected segment which
performs a simple function, like computes the SIN function or such, the
segment simply reads the input parameters, computes the function and re-
turns the result using the RETURN instruction, with the parameters again
being the location and length of the 'output' string to be returned.

The effects of the RETURN are identical to those of the CALL with the
exceptions that the new segment name and program counter values, and

other changing elements of the stateword, are popped off the calling
stack, and there is no interrupt-free period started. Note the similarity
between this system and a multi-computer network where each computer
communicates with the others by sending messages, each being otherwise
totally secure from the others.

In the case of a protected segment, the segment can behave like a
FORMULARY CONTROL procedure [3], executing code to verify the user's
authority and privileges using whatever algorithm is desired. It should
be noted here that every segment can read the time-~of-day clock and can
do input and output to the device running the process, the terminal listed
in the stateword, by giving a simple INPUT or OUTPUT command. It is
allowed to use only this one device, and on issuing the command, the
character, or string, referenced is transferred by hardware (perhaps
microcode) between the address in the segment's virtual memory and the
device's I/0 buffer. Thus, any segment can interact with the person at
the terminal in real time, allowing any level of hand-shaking verifica-
tion desired.

It was noted above that a segment can do I/0 operations only on the

device listed in the stateword. This implies that a segment cannot



explicitly request to read or write on disks or other mass storage devices,
in addition to being denied access to any system line-printers and such.
The latter restriction is resolved by allowing only one segment to write
on each line-printer or read from each card reader, etc., this protection
being provided by having the hardware check the segment-id of the execut-
ing segment in the stateword on each such request, and requiring each
other segment which wants to use the printer to do so by calling the
printer segment. By analogy, the segment-id defines the mode of the
system (ala supervisor mode vs. problem mode) and the mode of the printer
segment (or of each printer segment in the case of multiple, independently
protected line-printers) carries the privilege of performing I/0 on its
printer. Note that this implies that each I/O device can potentially be
protected as well as any other object in the system.

As for the question of requesting access to a mass storage device,
it becomes evident that this capability is totally unnecessary for system
operation. A segment has its very large virtual memory. Any data be-
longing to it resides in its virtual memory and is retrieved by doing a
simple memory fetch. Any data not belonging to it is not directly acces-
sible to it, which is the goal of the system, and must be obtained by
calling the segment to which it does belong. Disk reference are implied
in this system, and performed at every page fault, but ﬁo explicit re-
ferences to disk are involved.

The fact that everything accessible to a segment resides in its
virtual memory implies that all files must reside in the virtual memories
of segments and that these segments must have within them the code
necessary to respond to CALLs, determine what is desired and whether the

process requesting the file manipulation has the right to do what it



wants to do, and finally to do the thing, if necessary, or sound the
alarm if that is necessary. This implies that analogs to both the
CONTROL and VIRTUAL procedures form the Formulary Model [3] are required
by every file segment. Note that unless removable mass storage devices
which can be removed from the system and read elsewhere are used, access
to the contents of the file segment is not possible except through the
code in the segment itself, so SCRAMBLE and UNSCRAMBLE [3] would probably
not be necessary, though they can always be used if desired. Finally,
since every call to a segment gets the same copy of that segment, as
only one copy exists, a file segment can remember who célled it recently
and what it decided about privileges and authority, and can therefore do
the authority and privilege checking only on the first call, when the
processing is not data-dependent. The time-on field in the stateword
uniquely determines the process incarnation, as the time-of-day clock
from which the time-on is generated is of high enough resolution to pre-
clude 2 processes having the same time-on. Thus, if a segment receives
a call from a process, verifies the privileges of the process, does the
required work and returns the results, it can, before returning, make a
note within itself of the process time-on and its privileges, and if it
later receives a call from the same process incarnation it already knows
the privileges without further computing. I should reﬁeat here that a
segment is a virtual memory space and is defined by its name in the state-
word. A process is a stream of control defined by the terminal-id, and
a process incarnation is a specific session on that process, defined by
the user-id and time-on. Thus, at any one time a process is in a certain
incarnation and is controlled by some one segment.

Now that the system is generally déscribed we must get into the real

nitty-gritty of how the work is done. Among the things which must be

-8~



described are how segments get created and destroyed and how their
gigantic memory spaces are managed without undue overhead, how the user-
id and time-on get into the stateword and how tﬁe user is authenticated,
and finally héw security supervision and threat-monitoring is accomplished.
To begin with, there is a fixed number of processes in existence in
the system at all times, one for each terminal. When a terminal is idle,
not logged on, its process is under control of the LOGON segment, a seg-
ment belonging to the system. This segment is the only one which has
the power to modify the fixed parts of the stateword of a process.

Remember that there is no heirarchy of authority in this system, and there-

fore that this segment, while having this one extra power, has no other
authorities above other segments. However, the simple power to modify
the fixed parts of the stateword is sufficient to require that the code
in this segment be blessed, that is, totally verified and guaranteed.
The algorithm needed is so simple and short that this is no problem.

When a process is idle its stateword contains the null user-id and
time-on, and its terminal-id, which never changes for a process. The
process is 'asleep', waiting for something to be entered at the terminal,
the LOGON segment having requested an input character and having been
blocked when none was forthcoming. When a character comes in, the LOGON
segment asks the user to enter his user-id and, on receipt of it, looks
it up in its user table. If it is found, it has, associated with it, the
name of the user's CONTROL segment, a segment which was defined by the
user and created for him by the system administration when he was first
granted access to the system. The LOGON segment simply calls this seg-
ment and lets it decide whether or not this is the real user. The CONTROL

segment interacts with the user in whatever ways required and then

-9~



RETURNS with an indication of whether or not the person is approved. If
the person 1s approved, the LOGON segment proceeds to update the state-
word with the user-id and time-on, and again calls the user's CONTROL
segment, this time with a different parameter, telling the CONTROL seg-
ment that the user is logged on, and the CONTROL segment then serves as,
or calls, the user's command processor. If the person is not approved,
the CONTROL segment can make a note of it for that user's information,
can simply return unsuccessfully to the LOGON segment, perhaps after some
period of delay to discourage machine-aided infiltration, or sound an
alarm to the system by the alarm mechanism to be described. Note that
the user's CONTROL segment could not have been created by the user, as
he didn't exist at the time it was created, but was rather created by
the system administration and is therefore owned by the administrationm,
which has full privilege of ownership and can therefore remove any user
from the system at any time.

A segment 1s created by a hardware command, CREATE, with parameters
of location and length of a string in memory, as in all previous commands
mentioned. The CREATE command generates a new segment—id, creates
necessary tables and initializes the segment's virtual memory to the
string passed as the parameter, starting at location 0, making note of
the owner of the segment, and returning the assigned segment-id. Note
that in many cases a user may want to create a segment with a fixed con~
trol routine in it, as in the case of a text file with a common protection
mechanism and access routine. In that case, rather than keeﬁ a copy of
this routine within himself to use to initialize the segment, he can
simply call a segment, perhaps provided by the system administration,

which creates this segment for him. Note that the user who creates the

=10~



segment as identified by the user-id, owns it, regardless of what segment

actually executes the CREATE. Alternately, he can always create a seg-
ment with whatever code he wants. To destroy a segment a user issues
the command DESTROY, with the segment-id as the parameter. The hardware
checks the stateword to be sure the command is being issued by the owner
of the segment, and if it is, all records of the segment are removed
from the system. If the command is issued by other than the owner, an
alarm is sounded. Note again that unless the mass storage media can be
moved and read elsewhere, there is no need to purge the destroyed pages
of the segment from the disk, as there is no way for anyone to access
them before having overwritten them with new data, as will be shown.
Since a segment has a potentially very large virtual memory, there
must be some way to control the amount of storage required by that memory
space, to allocate and free pages depending on their use. A page is
.allocated to a segment automatically the first time it is referenced.
The page is initialized to a constant value, probably all 0, and added
to the segment's tables. The segment is not allocated disk space for
permanent storage of its new page until that page is first swapped out.
Therefore it is impossible for a segment to read the remains of another
segment on disk. A segment can release a page by giving a FREE command
with parameters being again the location and length of a string in memory.
The hardware removes from page tables the entries for all pages entirely
contained within the string, retaining all pages overlapping the string.
Thus, the segment can free sections of its memory without worrying about
page boundaries. Again, the disk sectors associated with the freed pages
are freed and need not be purged.

Finally, at any time any segment can sound an alarm. An alarm is

-11-



sounded by executing the instruction ALARM, which effectively executes a
CALL to the ALARM segment. The alarm segment is a system-provided seg-
ment which is like every other segment with the addition that it alone

is allowed to read from the calling stack of the process it is contrélling
and is able to inhibit execution of a 'grand escape', to be described
later. A parameter passed by the ALARM instruction tells the segment how
serious the calling segment considers the incursion to be, and the ALARM
segment operates accordingly. Among the things it can do is to make a
note in a threat-monitoring file, recording any desired information from
the process calling stack, sound an audible alarm at the offending termi-
nal (if one exists- if one does exist, the ALARM segment éan be given the
privilege to use it the same way the line-printer I/0 segments had the
privilege to use the line-printers), or, in extreme cases, can use its
'grand escape' prevention to refuse to return, effectively tying up the
process and therefore the terminal.

This brings up the question of how a user can escape from a segment
which has entered an endless loop or otherwise refuses to release con-
trol. As in all systems there has to be an 'escape' key on the keyboard
to allow a user to terminate an uncontrolled process. In this system
there are two such keys, a 'minor escape', and a 'grand escape'. The
escape is accomplished through an interrupt mechanism. An interrupt looks
to the segment being interrupted like a CALL except that control is trans-
ferred to location O instead of 1, with the parameters being the relevant
interrupt information. The difference between a ginor escape and a grand
escape is that the minor escape causes an interrupt to the segment being
executed, while the grand escape causes the process calling stack to be

purged before interrupting, thus effectively placing the user back under

-12-



the control of the LOGON segment. Note that though the process is under
control of the LOGON segment, its stateword still contains the user-id
and time-on, and the LOGON segment is aware of the fact that it was
entered by a grand escape and will turn control over to the user's

CONTROL segment, as when the user first logged on. Note that every
segment can be interrupted and must therefore be prepared to handle interrupts.
Most segments would probably want to pass the interrupt back to the seg-
ment which called it, as for example the SIN function segment. This
capability is provided with the INTERRUPT command, which effectively backs
up one level into the calling stack and then generates an interrupt,
carrying the original interrupt information. Thus, such a segment would
contain an INTERRUPT instruction in location O and would require no other
interrupt-handling code.

Note that the grand escape effectively wipes out the user's work and
would only be used in rare cases. Note also, however, that any segments
the user may have created or modified in the aborted process are not lost,
as there are no temporary work copies unless the user explicitly creates
them, all work being done with the actual segments. Note also that as
the ALARM segment is impervious to the grand escape, it can therefore
completely ignore a terminal.

Let us now consider how a typical job of editing, compiling and
running a program could be done on this system. There are several
different approaches which would work, the methods varying in overhead
and security. One method would be the following:

To create and edit a program, the user, once logged onto the system,
would call the EDITOR, which would create a new segment for the user with

a copy of its (the EDITOR's) routines in it. The user would then use his

wlga



personal copy of the EDITOR to create and edit the new text file, all of
it residing in the virtual memory of this new segment. When the user is
happy with his program, he can request that his copy of the EDITOR re-
lease itself, freeing the pages it occupied but leaving the necessary
control and access routines, and then ask the remaining code to call on
the compiler-copying segment to pass it a copy of the compiler it wants.
This copy of the COMPILER can be read into the segment's virtual memory
and executed there, producing object code, again in the segment's virtual
memory. The COMPILER can then self-destruct, if desired, and the code
can be run. Note that there is no need to separate the object code from
the source text; both can be kept in different parts of the same segment.
There is no need to load a resident package either, as whenever

the program wants to execute a system subroutine it can simply call that
routine's segment; an inter-segment call is almost no more costly than

a page fault.

The above is only one way of accomplishing the work. The user could
have retained copies of the EDITOR and COMPILER while the program was
running, to allow himself to make quick corrections and recompile if the
program didn't work, and could have loaded in a debugger if desired, or
he could have created a new segment with only basic text update and re-
trieval routines and then have the EDITOR run within its own segment,
calling the new segment to access and update the text file, etc.

The one remaining detail to be discussed is the log-off method, which
is very simple and stfaightforward. A user logs off under control of his
command segment, which could also be his control segment but reedn't be,
thus allowing several users to share a command processor. When the

command segment receives a LOGOFF from the terminal it returns control to

14—



the LOGON segment, passing a parameter that specifies it wants to log-
off, The LOGON segment clears out the stateword, updates account files,
if desired, and then issues an INPUT command, requesting a character
from the terminal. Until a character arrives the process is blocked

and inactive. The arrival of a character restarts the logon procedure.

DISCLAIMER

This is a first attempt to define the structures and techniques
necessary to implement this type of system, the original goal being to
design a system consisting entirely of execute-only segments. While it
does appear to present a straightforward hardware-supported security
scheme, it has not been implemented and the design certainly cannot be
claimed to be complete. However, it does have some new features, per-
haps the most attractive being the simplified inter-segment calls and
the concept of an n-mode system where each mode has some privileges, but
these privileges are not assigned heirarchically as in traditional ring-
type systems, but rather disjointly. We think the concept merits further

study.

REFERENCES

[1] Bensoussan and Clingen, The Multics Virtual Memory, ACM 2nd

Symposium on Operating System Principles, Oct. 1969, pp. 30-42.

[2] M. Ruschitzka and R. S. Fabry, The Prime Message System, COMPCON 73,

pp. 125-128.

[3] Hoffman, L. J., The Formulary Method for Flexible Privacy and

Access Controls, FJCC 1971, pp. 587-601.

-15-



	Copyright notice 1973
	ERL-389

