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ABSTRACT

A multiple mirror experiment confirms the predictions of theory that

the axial confinement time exceeds that of a single mirror of the same

2
length, and that the confinement scales as L where L is the system length.

The experiment indicates that the improved confinement occurs in an inter

mediate mean free path (mfp) regime in which the mfp for scattering out

of a loss cone is of the order of a cell length. The absolute value of

the axial confinement is smaller than the optimum confinement predicted

from the theory by a factor between two and three, which is accounted for

by the deviation of experimental parameters from optimum conditions. The

scaling of the confinement time with mirror ratio is also investigated.

A reactor calculation using the multiple mirror confinement time gives

QE = 2 for a 400 meter system with 3000 MW(e) output.

* Work supported by National Science Foundation Grant NSF-GK-27538 and
the Air Force Office of Scientific Research Grant No. AFOSR-69-1754.
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I. INTRODUCTION

The theory of multiple mirror plasma confinement is presented in a

companion article in this publication, hereafter referred to as I. Ex

perimental results on steady-state plasma confinement in a multiple-

mirror device are the primary subject of this article. Preliminary ex

perimental results with a simplified interpretation have been previously

2
reported. A more detailed analysis of the preliminary data and addi

tional data will be given in Section III. Comparison with theory will

also be presented in Section III. A reactor calculation based on the

results of theory and experiment will be presented in Section IV. The

present status of the multiple mirror concept will be summarized in

Section V.

II. APPARATUS

The Berkeley Multiple Mirror Device (Fig. 1) consists of a series

of water-cooled coils forming up to 8 mirror cells along a 6 cm. dia.

150 cm long vacuum chamber. A "Q" machine-type source produces a

steady state alkali-metal plasma of variable mean free path (mfp) at

one end to simulate ion confinement in a symmetric system which would

have twice the number of mirror cells. Ions are created in the first

mirror throat by contact ionization of lithium or potassium vapor on

a hot tungsten plate (2 cm dia.), which also provides electrons by therm

ionic emission. In practice, the hot plate wa« not a perfect reflector
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of ions due to surface recombination, as discussed in Appendix A. How

ever, with potassium and operation with a negative plasma potential

with respect to the hot plate (electron-rich operation), the surface

recombination rate could be made small compared to the ionization rate

of neutrals. Because of the high recombination probabilities for lithium,

surface recombination was much more severe than with potassium, so most

experiments were done with potassium.

The plasma length, which we designate as L/ where L is 1/2 of a

symmetric system, was varied by moving a negatively biased collector

plate along the chamber axis, as shown in Fig. 1. The end loss rate

of ions was measured by the collector current I . The number of mirror
J c

cells K = L 1% was varied either by moving the collector within a fixed

multiple-mirror field, or by switching mirrors on and off between the

source and a fixed collector. The plasma density was measured by a

single Langmuir probe which could be moved both radially and longitu

dinally to explore the entire plasma volume.

With certain density and magnetic field parameters, large ampli

tude (Sn/n - 100%), nonsinusoidal fluctuations were observed on both

the Langmuir probe current I and the collector current I . Within

proper parameter regimes, however, the fluctuation levels were small

(6n/n - 1%). All longitudinal confinement experiments were conducted

in stable regimes with low fluctuation level. However, radial loss per

sisted at low fluctuation level, as evidenced by the collector current

I which decreased with increasing distance of the collector from the

source faster than could be accounted for by surface recombination loss.
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Such radial losses could result from DC convective drifts due to azi-

muthal temperature inhomogenieties on the hot plate. A method of sub

tracting out radial loss to obtain longitudinal confinement times is

presented in the next Section.

—6
The chamber was evacuated to less than 5 x 10 torr during ex

periments, so that ion-neutral collisions were always negligible com

pared to ion-ion collisions. Volume recombination was negligible at

10 -3the typical ion densities (n - 10 cm ) in the experiment.

III. EXPERIMENTAL RESULTS

In I an axial containment time was derived which we shall use to

compare with the experimental results. The confinement time against

all losses may be defined, operationally, by the total number of ions

within the system divided by the input flux SA

n(z) A(z) dz

Tt •° SA <!>
o

where n and A are the plasma density and area respectively, and

Ao is the cross sectioned area of the mirror throat at which the flux

density S is generated. An approximation to (1) gives

n. ^ AL' nA ML7
T = _AX§. . .Ave
t SA S {Z)

where n^ve, A, and M are separate averages over if . We see that x varies
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approximately as the average mirror ratio,

B f- _max /dz_
T' J Hz) (3)

and thus we shall use this averaged quantity in describing the experi

mental results (we note that M is somewhat different from the M ec used
eff

to describe the one dimensional containment, the difference arising

from the three dimensional nature of the flux lines).

A. Confinement time with 5 cells

The magnetic field for most confinement experiments consisted of

5 identical mirror cells each with an average mirror ratio M = 2.2

(peak M = 3.7). Figure 2 shows typical probe currents as a function

of probe position in (a) low, (b) intermediate, and (c) high density

regimes, measured by the Langmuir probe centered on the axis and moved

from the source at z = 0 to the collector at z = 140 cm. The ion-ion

mfp X , estimated from ion temperature calculations in Appendix B, is in

dicated for the middle cell in each density regime. In the low density

regime Fig. 2a, a nearly uniform density at corresponding points in all

cells is found, with a modulation due to the mirrors as expected for a

collisionless beam. The midplane densities are not a factor of M less

than in the throats, indicating some trapped particles in each cell. Be

cause the mfp X» L , however, little multiple-mirror retrapping is ex

pected. At intermediate densities (Fig. 2b), a steep density gradient is

observed, the density dropping nearly linearly from cell to cell from the

source, indicating impedance to free flow by the mirrors. The mfp for

* —

scattering into an average loss cone angle (X z X/M) is about one cell
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length I = 28 cm at the average density. At higher densities (Fig. 2c),

a more uniform density from cell to cell is observed, characteristic

of MHD flow 1.

Figs. 3a, b and c show the collector current as a function of

collector position corresponding to the density profiles of Fig. 2a,b,

and c, respectively. Fig. 3 indicates little or no radial loss for

the low density regime (a), and a moderate rate of radial loss for the

intermediate (b) and high density (c) cases. In Figs. 3a, b, and c

there is an anomalous change in collector current when the collector

passes the second mirror at z = 28 cm which does not follow the sub

sequent behavior of the collector current with increasing z. Also in

Fig. 3 (b) and (c), there is a modulation of I with the cell length,

I being higher in the midplanes than in the mirror throats. These

effects may be due to instrumental effects or due to real changes in

radial loss rates with collector position. In each of (a), (b) and

(c), the highest value of I occurring over an interval of a cell length

is taken as the measure of the end loss flux, and the highest value

occurring in the first cell = Ic(0) is taken as a measure of the

source strength SA .
o

From Eq. (1), the total containment time, including radial loss,

is given by

qj n(z) A(z) dz
Tt " i(o) • <4>

C

where q is the ion charge and A(z) is the effective plasma cross section

at the density n(z). The density n(z) is an average over the radius at

point z. Typical radial density profiles, taken at 4 consecutive mirror
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throats, are shown in Fig. 4 for (a) low, (b) intermediate, and (c) high

density regimes. In Fig. 4. r is the collector radius, r is the hot

1/2
plate radius, and r = r (0)[B(0)/B(z)] is an aperture radius set by

a a

a heat shield in front of the hotplate, and projected along the field

lines. The top radius scale in Fig. 4 is contracted by a factor of ffa

from the bottom scale to show the relative plasma size in the mid-planes.

In a previous report, the simplest estimate for A(z) in Eq. (1) was

made by integrating the entire radial profiles out to the wall radius,

resulting in optimistic values of x . In this analysis, however, plasma

at radii beyond r (z) will be considered lost radially and we therefore
EL

2
take A(z) = it r (z). The appropriate density n(z) is then

cl

r (z)
1 f*n(z) =-£7^v I n(z,r) 2 rirdr.

Note that if we measure I near a midplane, r&(z) - rc from Fig. 4.

Since the total source flux SA(0) * lc(0)/q divides into surface

recombination loss, radial loss, and end loss to the collector when the

collector is at z = L7 , x by Eq. (4) includes all types of loss. The

confinement time against end loss to the collector, alone, is defined

by A,

qjf n(z) A(z) dz
x 5 ^ -,_,. . (5)z Ic(L )

However, because of the effect of a distributed radial loss on the density

profile n(z), x given by Eq. (5) with I (L') < I (0) is theoretically
Z C w

larger than x = x with no radial loss [I (0) = I (L')]. Thus, to

compare with theoretical values of x which do not include radial loss,
mm
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we calculate a factor C, , in Appendix C, such that x^^exp) = cxz(exp).

Using probe and collector current profiles such as in Figs. 2 and

3, and using Eq. (1), (4), and (5), values of xfc xz and tm normalized

to an ion transit time l'/v ,denoted by xfc , i^ and x^, respectively,

are plotted as a function of average density n^ve = (1/L) / n(z) dz in

Figs. 5 and 6. The xfs are normalized to L/2v so that they are inde

pendent of v(x~n~l /qv) and thus ion temperature T^ which could not

be easily measured and for which calculations are somewhat involved

(see Appendix B). Fig. 5 shows data exhibiting a relatively low rate

of radial loss, and Fig. 6 shows data with a relatively higher rate of

radial loss, which is thought to be the result of changes in the heat

shields and alignment of the source from that of Fig. 5, or possibly the

result of the slightly higher mirror ratio used in Fig. 6. In both

o 9-3
Fig. 5 and Fig. 6, x approaches 1 at densities below 10 cm, as

expected when collision rates are low, and increases with density to a

10 -3
maximum of about 8 near n4 = 10 cm, at which the mfp for scattering

Ave

into an average loss cone angle X/M ~ I . The peak of x occurs at a

slightly higher average density in Fig. 6, presumably due to the higher

rate of radial loss. As the average density is increased further, x

decreases as would be expected for onset of MHD flow. At n. =

10 -3 10
5x10 cm (n- ~ 8x10 at the source), X - 6 cm from Appendix B, which

is approximately equal to the mirror width B(dB/dz) (See Fig. 10).

11 -3
At n. - 1.5x10 cm, X - 1 cm approaches the average potassium ion

cyclotron orbit 2 irp , at which Larmor motion and conservation of ion

magnetic moment is destroyed. Thus the decrease in x in Figs. 5 and

6 at the higher densities is consistent with onset of MHD flow. In

the MHD limit, x would be approximately the value M .
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B. Scaling with number of mirror cells.

One test of the scaling law of multiple mirror confinement time with

the number of mirror cells can be made by observing the changes in the

density in the first cell, n.,, for a constant source, as the collector

is withdrawn within a fixed multiple mirror field, thus adding mirror

cells to the system. Fig. 7 shows the probe current (°= density) in the

first cell next to the source as a function of collector position in the

(a) low, (b) intermediate, and (c) high density regimes. The experimen

tal conditions for Fig. 7 were the same as for Figs. 2 and 3. In Fig. 7

the density at the source is seen to increase in a stepwise fashion as

the collector passes each mirror throat, adding another cell to the sys

tem. The increase in density is strongest in the intermediate density

regime, as expected. The first density jump corresponding to the collec

tor passing the second mirror is a result of partial filling of velocity

space due to ion trapping when the first cell is created. It is not a

multiple-mirror effect, and only jumps following the first are used as

a measure of improvement in confinement with multiple-mirrors over the

confinement with one mirror cell. The ratio of n.. with 5 mirror cells

(n ) to n, with one mirror cell (n . ) is plotted as a function of
max 1 x mm *

td (— n ~ n. in the intermediate density regime) in Fig. 8.
2 max 2 max Ave °

The x° curve from Fig. 5 is also shown for comparison. The values of
mm

n /n . are seen to generally follow the values of x
max min ° J mm

Although the density in cells other than the first were not meas

ured for collector positions other than z = L , the density profiles

with the collector at z = L such as Fig. 2 can be used to estimate n.

in terms of n, in the various density regimes, for K =» 5 cells. In
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the short and long mfp regimes of Fig. 2a and 2c for example, the axial

profile is roughly uniform and n. ~ n.,, while for Fig. 2b, n. - •=• n-.

Assuming the same ratios of n. /n- for any number of cells 2 < K - 5

in the same mfp regime, the average density n. (K) can be estimated

from the values of n.,(K) in Fig. 7 for each collector position corres

ponding to K cells. Neglecting correction factors for radial loss

effects on the density profile, the longitudinal containment time for

K cells x (K) be taken proportional to

tz(K) -nAve(K)(L/)/ Ic 0/) , (6)

' 1
where L = Kl is varied by increments of Si . Taking n. (K) - — n1(K)

from Fig. 7, and using Fig. 3 for I (L^), the resulting values of x
c z

for 1 to 5 cells, in arbitrary units normalized to the x obtained
z

with K = 1, are presented in Table A below along with the theoretical

ratio

T-« i y
x (1) An " "j
mm j 1

Where Eq. 28 of Ref. (1) is used for n. .

Table A

Experimental and Theoretical Scaling of Containment Time

with Number of Cells K, Normalized to K = 1

K

1

xz(K)
(Experimen

1

t)
T«m<K>mm

(Theory)
1

2 3.4 3

3 6.2 6

4 10.6 10

5 16.4 15

-9-
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The values of x (K) for K > 1 in Table A are somewhat larger than theory,
z

because x (th) is compared with x (exp) rather than with x (exp) which
mm z mm

cannot be calculated in this case. Nonetheless, the agreement between

theory and experiment on the scaling of x with L must be considered
mm

good for the uncertainties involved in the comparison. Note that while

the increases in n., in Fig. 7 become smaller for K = 4 and 5 due prima

rily to increasing radial loss relative to end loss, x (K) continues

2 2
to increase approximately as L (or K ) due to the decrease in I with K,

as seen in Fig. 3.

Another test of the scaling of confinement time with the number of

mirror cells K can be made by observing the changes in density with in

creasing K with L constant, by switching on additional mirrors between

a constant source and a fixed collector at z = l'. The density with 3

cells was compared to the density with 1 cell (called a long mirror cell)

for the same total length L and source strength S. The magnetic field

profiles for these two cases are shown in Fig. 9.

Figure 10 shows density profiles in the low density regime for 3

cells and 1 cell (long mirror). The density follows the field variation

of Fig. 9 closely in each case, indicating collisionless behavior. Fig.11

shows the density profiles in the intermediate density regime. The den

sity with multiple mirrors is everywhere higher than with only 1 cell,

indicating considerably improved confinement. The multiple-mirror den

sity profile shows the characteristic stair-step shape predicted from

theory. The raidplane density is approximately the density in the mirror

throats, as expected for a plasma that is locally Maxwellian at all points.

To quantify the comparison in terms of confinement time x - nAve» tne

-10-



the ratio of average midplane densities (we use a bar, here, for the

spatial averages)
3

- _i 2s n. (mm)
mm _ 3 j=l J ,ftx

^~~- n(to) (8)

can be considered, which is the ratio of confinement times if the mirror

width and changes in plasma volume due to the finite mirror width are

neglected. In Eq. (8), n and nn denote the densities with the 3 cell
mm &m

multiple-mirror field and the long mirror field, respectively. The re

sults for n /n. taken from curves such as in Figs. 10 and 11 are plot-
mm *m

ted in Fig. 12 as a function of twice the long mirror midplane density

2 n , which is approximately the average multiple mirror density in the

intermediate density regime. The ratio ii /nA increases from 1 at low
mm x>m

densities to the theoretical 3 cell maximum of 2 at higher densities.

The ratio of 2 holds over a wider range of densities than the peak of

x such as in Figs. 5 and 6, possibly because both x and x. can de-
mm mm 36m

crease to some extent from maximum values keeping nearly the same ratio.

In the MHD limit, however, the ratio n /n„ is expected to approach
mm Jem

unity. The scatter of points about the solid line curve fit is due pri

marily to small drifts in the source strength between measurements of

n and n.
mm x,m

C. Scaling of confinement with mirror ratio

To examine the dependence of multiple-mirror confinement on the mir

ror ratio M, the variation of n /n . with M was measured rather than
max min

o
x
mm

since n /n was much easier to measure while still being re-
max min °

lated to confinement time as indicated in Fig. 8. Figure 13 shows a
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family of n /n . curves plotted as a function of n , for five cells
max min max

and numbered from 1 to 8 corresponding to 8 values of M and M as given

in Table B below:

Table B

Values of M and M for Fig. 13

//MM

1 1.45 1.40

2 2.55 2.01

3 3.27 2.20

4 3.70 2.31

5 4.51 2.82

6 5.72 3.13

7 6.50 3.39

8 12.0 5.26

The mirror ratios for all cells were the same.

The location of the peak values of n /n . for increasing M or
F max min

M in Fig. 13 consistently decrease to lower values of n with increas

ing mirror ratio. This is believed to correspond to the dependence of

the mfp for scattering out of the loss core X as 1/nM. Thus a given

value of X , which optimizes trapping, can be achieved with lower den

sities at higher M values. We note that the peak values of n /n .
& r max min

first increase and then decrease with increasing M. The magnitudes

of the peak values of n /n . are less than the maximum value of 5,
r max min

due to the combined effects of average plasma drift, ambipolar effects,

radial loss, and MHD effects. At M = 3.27 (curve number 3), the maximum
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mirror and midplane fields were applied, limited by the generator power.

To create higher mirror ratios, the midplane field was reduced, keeping

B the same. To make M smaller than 3.27, B was reduced, keeping
max max

B . constant. Since changes in M from 3.27 reduced the average field
min

strength, the degree of radial loss and MHD effects probably also changed.

This is one reason for the magnitude of the n /n . peaks to be op-
° max min

timized near the value of M = 3.27.

III. COMPARISON OF x EXPERIMENT WITH THEORY
- - mm •

1
The theory of multiple mirror confinement was developed assuming

sharp mirrors [B(dB/dz)~ « Jt ] for which M = M. With mirror widths

comparable to £ in the experiment, however, M<M. If M = 2.2 for all

cells, corresponding to the conditions of the experiment in Figs. 5 and

6, then Eq. 29 in I, with M = 2.2, predicts a maximum containment time

x (max) = 2MK (L" /v) = 22(L'/v) for K = 5 cells, about a factor of

2.7 times larger than the maximum of x (exp) - 8 {if /v) from Fig. 5 or
mm

Fig. 6.

The maximum experimental values are less than the maximum theoreti

cal values for reasons other than the presence of radial and recombina

tion losses in the experiment, which are already account for in x (exp).

The condition on the mfp, X, that B/(dB/dz) « X « I for Eq. 29, in I

is not satisfied in the experiment. With X * \/m =* i in the experiment

we find from Fig. 2 of I that the ratio of the diffusion coefficient to

the minimum diffusion, D/D . > 2, and therefore gives a containment con

siderably less than maximum. Also, the condition that X ~ B(dB/dz)

in the experiment implies some loss of confinement due to MHD effects.

The use of moderate mirror ratios and a small number of cells leads to

-13-



non-negligible drift velocities compared to the thermal velocity in the

experiment (maximum x ~ 10 in Figs. 5 and 6 suggest average longitu-
z

dinal drift velocities Vd ~ 0.1 v). This effect shortens the containment

time to some degree, although the results of numerical computations, in

cluding drift velocity self consistently, (see Fig. (10) of Ref. 1)

indicate that the effect is not large. Finally, it should be noted that

ambipolar effects, in the experiment, are estimated to increase D by a

factor of about 1.5. Some of the difference between experimental theo

retical values of x^ is due to the neglect of this factor in the theory.

One quantity, of some theoretical importance, that can be calculated

approximately with the aid of the experimental data, is the ratio of the

*
momentum transfer mean free path X to the mean free path for scattering

out of the loss cone X/M, i.e.,

X* =a X/M (9)

From the theory and numerical calculations of sections III and V of

Ref. 1 we found a - 1. Provided MHD and ambipolar effects can be taken

into account, we can obtain an estimate of a by finding at what value

*

of X the ratio x /x (max) that we would expect from Fig. 2, Ref. 1
mm ram

is equal to the value of x (exp)/x (max) found experimentally. This
mm mm

*

value of X can then be compared with the measured value of X/M to find a.

For example, using the density profile of Fig. 2b which has an

9 —3 onAve= 6*10 cm this corresponds to a x (exp) = 6 from Fig. 5. The

theoretically maximum value of confinement time, for these parameters,

is 22 giving a ratio

x (exp)/x (max) = .27
mm

mm
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MHD effects are not apparent in Fig. 2b, and we neglect them. For sim

plicity we take x /x (max) = D . /D(n) i.e., we assume that the density
mm mm mm

is constant at the value n, so that the confinement time is inversely

proportioned to the diffusion coefficient. Since the experimental value

of D is 1.5 times the value it would have without ambipolar forces we

use the value D . /D(nA ) - 0.27 (1.5) = 0.4, to obtain the value of
min Ave N '

*/X 1% - 0.5 from Fig. 2, Ref. 1, as the experimental value for the momen

tum transfer mean free path. From Appendix B we estimate X(n ) = 40 cm

and, with M = 2.2 and with I = 28 cm, we obtain the experimental value

X/MJl = .65. From (9) we then have a = 0.78 = 1, thus experimentally con

firming our analytic and numerical results. It also permits us to use

Fig. 2, Ref. 1, for calculating reactor parameters, which we do in the

following section.

IV. REACTOR CALCULATION

A preliminary evaluation of the significance of the multiple mirror

concept can be made by estimating parameters for a steady state reactor

(assuming no anomalous radial loss). We have the following powers (watts)

of energy flow associated with the length L of a DT multiple-mirror fu

sion reactor: Fusion neutron power produced in the blanket, including

Li6

15 (6)1,S- L/2

the Li (n,T) He reaction energy with a tritium breeding ratio of

/Pn = 2I -| n2(z) <av >(z) En A(z) dz , (10)
o

where E^ = 14.1 + 1.5 (4.8) = 21 MeV is the energy per reaction depos

ited in the blanket, < av > is the reaction rate, and A(z) is the effec

tive plasma cross sectional area at density n(z). Fusion a-particle

power produced in the plasma,

-15-



P = P (E /E ) , (11)
anan'* v/

where E =3.5 MeV is the a-particle energy of the DT reaction.
(X

Bremsstrahlung power loss

/"L/2e._1rt-37 _2/_N m/_xl/2P0 = 2 / 5x10 n (z) T(z)A/" A(z) dz, (12)
3 -b

-3
(n in m, T in KeV).

Power loss associated with plasma loss along field lines,

P^ = 8[Q/kTF] kT(z) D(z) Vn(z) A(z), (13)

where we have written P. = 4Q(z) A(z) with Q the energy flux density,

with the factor of 4 taking into account loss through both ends and the

fact that electrons carry off an equal amount of energy as the ions.

The ratio [Q/kTF] is taken from Fig. 2, Ref. 1, and the particle flux

density F(z) = -2D(z) Vn(z), with the factor of 2 to account for ambi

polar diffusion. In the steady state P. = const. We take B = const,
x* nicix

a practical magnetic field limit in all mirror throats. Then we adjust

B(z) in the mirror midplane such that

3= [2n(z) kT(z)]/[32(z)/2 y ]= const., (14)

which allows for the maximum mirror ratio in each cell at the maximum

allowable 3 • From conservation of flux

A(z) = Aq M(z) , (15)

where A is the area of the mirror throats,
o
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From (14), assuming T(z) - const.

,1/2M(z) - Mx [nj/ntor" . (16)

Assuming the cell length I = const, from diffusion theory one then

obtains, approximately,

n(z) «n (1 -f)3/2 (17)

T(z) *Tx [nCz)/^]1712 (18)

where z measures the distance along the density gradient region of

length X (allowing x < L/z). Eq. 18 indicates that for practical pur

poses the variation of T with z can be neglected. The subscript 1

refers to values taken at the maximum density n- in the center of the

reactor. In order to choose I , Q must be chosen to be near its minimum
c ^

*

value over the range of X (z) for the reactor, while at the same time

using as few mirrors as possible, subject to the above constraint. Since

F « D and Dmin <* 9,^ ,we use Fig. 2, Ref. 1 to graphically compute

Q « Q D • I* kTFD, c
min

which is found to be quite flat in the range .2 < X 1% < 4, slowly de-

creasing for X 1% > 4, and slowly increasing for X /I < .25. We there-
c c

fore chose l^ as large as possible consistent with this inflection region,

taking X 1% « .25 at n = n, , i.e.
c 1

*c =4X* =4X/M (19)
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We assume P and P„ is converted into electricity by a thermal
n p

cycle at efficiency nT , P is deposited directly within the plasma,
J- Ot

and P is directly converted into electricity at efficiency nDC .

Taking the reinjection efficiency to be unity a power flow diagram is

constructed as in Fig. 14. From Fig. 14, the following power ratio

QE , defined as
_ P(total electrical power generated)

^E ~ P(injected, or recirculating electrical power)

is calculated to be

o nT[Pn +P8 +(1 -"DC)Fi] +nDCP* (20)
E" P* + P6 " Pa

For P - 0 , Q„ - 1. Using Eqs. 20 and 10 to 13 together with Eqs.
net XE

15-18, Q_, can be optimized with respect to the axial profile as given
E

in Fig. 15 for fixed L, with the results also given in Fig. 15. In

Fig. 15 the shape optimization does not yield a significant advantage

in 0., but indicates one can operate with 2 X/L = .5 at the same Qg = 1

of a triangular density profile, with substantially improved power dis

tribution. Using this value of 2 X/L, together with Eqs. 15-19, then

Eqs. 10-13 can be integrated approximately to yield

P *^ n2 <av> E A.L (21>
n 6 1 n 1

P ~\ n? <av> E A..L (22>
a 6 1 a 1

P3 -3.3xl0"37n2 T1/2 AjL (23)

185 kT X.. v n. A,
P£ - -i L_A (24)

ML
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Eq. 20, together with Eqs. 21-24 can be used to minimize L with respect

to T. Choosing a reasonable value of Q_ = 2 we obtain the results in
hi

Fig. 16, which indicate that operation near the ignition point with

T = 4.5 KeV is best. For Q_ = » , corresponding to the self sustaining

condition Pa « P& + P ,a curve of L versus T similar to Fig. 16 indi

cates a minimum at T = 6 KeV.

The maximum density n- is set by limits on B in the central

region of the reactor, and by the plasma beta defined by Eq. 17. An

upper limit on B . = 200 kG is assumed for superconducting magnets,

and an upper limit on average beta of 3 = .8 is taken. For this value

of 3 a perpendicular diffusion coefficient D, = 10 D„ ,_ can be toler-
-1- Bohm

(4)
ated. Peak mirror fields of B « 300 kG can be provided by small

max r J

conventional coils placed inside the blanket which add 100 kG to the

superconducting field, consuming less than 10% of the power output. An

internal mirror ratio M = B /B . (inside) - 2.7 is then created at
max min

n = n-.

Using Bmln = 200 kG, Bmax = 300 kG, and 3= 0.8, nT = .5 and

nDC = ,75 and substituting Eqs. (21-24) into Eq. (20>, Q is plotted

as a function of L in Fig. 17. The breakeven condition indicated in

Fig. 17 at L = 140 meters is sensitive to the conversion efficiencies

nT and especially nDC . However, QE is insensitive to nT and n for

QE > 2, becoming completely independent of r\ and n at the self sus-

taining condition at L = 1100 meters, where no injection of energy is

required.

The minimum length for economic operation is probably L = 400 meters,

which corresponds to Q£ = 2, or net electrical power output P =P
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(recirculating). At that point the parameters of interest are T = T. =

16 —34.5 KeV, iu = 8x10 cm , X(n-) = 3.3 meters, &c = 5.0 meters (20

cells on each side in the density gradient regions), x - 30 millisec.
mm

The minimum economic power output P is directly related to the length

L or the central region of high field L/2. There is a minimum power

output per unit length required to meet a given capital cost per kW(e)

2
for a given cost /m of superconducting coils with the constraint of a

minimum blanket thickness of ~ 1 meter. Using estimates of magnet costs

(expected to be the most costly single item for superconductor fields

B > 100 kG) from Rose and assuming a capital cost per net electrical

kilowatt of $200/kW(e), the power output would need to be of the order

of 10 MW(e)(net)/ meter in the central region of length L/2. Thus

P _ - 3000 MW(e) total net power for Q = 2, a useful power level. A
net h

plasma diameter of 3 cm would be required to produce the 10 MW(e) net

per meter at T = 4.5 KeV.

For Q_ - 2, 3000 MW(e) of injected power would be required to sus-
E

tain the reaction. If this power were injected by neutral beams at the

characteristic energy of the plasma of 4.5 KeV, it would require 6.5 .

c

10 amperes of beam current; this appears to be a very severe requirement,

particularly at the low 4.5 KeV energy. However, an alternative method

exists in which the plasma current is supplied by pellet injection, as

invisioned for toroidal devices, and the energy is supplied separately.

Two methods of supplying the energy, that are in principle feasible today,

are by high energy neutral injection transverse to the device, and by

electron beam injection axially. The former, with injection at 150 KeV,

would require 2.10 amperes of current, a requirement not very different

-20-



from that envisioned for a single mirror reactor. The latter method,

4
with injection at 100 KeV, would require 3.10 amperes of electrons,

steady state, a value that has already been exceeded in intense rela-

tivistic beams, for short pulses. It has been shown that, even in the

absence of strong collective effects, a 100 KeV electron beam will

collisionally transfer most of the energy along a plasma column of the

density and length of the proposed reactor.

The preceding calculation of reactor parameters is intended to

serve as a comparison with other reactor configurations, rather than

as a complete feasibility study. A number of possibilities exist for

improving the system performance, which should be investigated in a

more comprehensive study. A more general optimization of the magnitude

and spacing of the magnetic mirrors, under various constraints, can

be made. Preliminary calculations have indicated that improved total

performance can be achieved by seeding the plasma with a small percent

age of higher Z material, and by increasing the density near the system

ends with colder plasma. Energetic neutral injection can also make a

significant enhancement to Q„ (or system shortening) because of the

initial confinement time, during which the energetic particles are de

ft

grading in energy. The possibility also exists for decoupling the

mean free path from the density by introducing a non adiabatic component

q

in the external field.

V. SUMMARY AND CONCLUSIONS

The theory of multiple mirror confinement predicts that an inter

mediate mean free path (mfp) regime exists for which ions are lost

axially from a multiple mirror system by a random walk process. This
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2
implies a scaling of confinement time as x « L which is favorable

mm

for reactor design. The experimental determination of x under stable
mm

conditions indicates a confinement time a factor of 2 to 3 below the

theoretically maximum confinement. This difference is accounted for

primarily by the merging of the long and short mfp regimes, so that the

full potentialities of the intermediate mfp regime cannot be realized

in the experiment. The scaling to a reactor would produce a well de

fined intermediate mfp regime such that only ambipolar effects would

reduce the axial confinement time below the theoretical maximum given

in Eq. (29) of Ref. 1. On the basis of these results a reactor calcula

tion indicates that the multiple mirror concept results in a reasonable

power and size (a 400 meter reactor gives Q„ = 2 with 3000 MW(e) of

useful output).

The multiple mirror experiment consisted of simple mirrors which

would produce a hydromagnetically unstable plasma in a reactor configura

tion. In the experiment the plasma is stabilized by line-tying to the

hot plate. The introduction of multipolar windings to achieve an average

minimum B system does not substantially change either the axial confine

ment or the reactor economics. However, the stability of the average

minimum B fields, with respect to localized modes, remains to be investi

gated. A program is now underway to do this. Since the loss cones are

essentially full, in the multiple mirror configuration, there should be

no difficulties with velocity space instabilities.
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APPENDIX A. Surface Recombination Loss

The relative probabilities, or ratio of surface densities iJ^ and \\>Q

for ions and neutrals respectively, is given by the Langmuir-Saha equa

tion

^=(^)eXPl_q(*i_*wi)kTS] (1A)
where (u) /u)Q) is the ratio of statistical weights (w.Adq = 1/2 for

alkali metals), <{>, is the ionization potential of the alkali neutral,

and <|> . is the effective work function for ionization. (<j> , is not al

ways equal to the work function for electron emission <J> ). The ioniza

tion probability P for a neutral striking the hot plate is obtained from

p =iZ7-rTTT <2A>l+(*0/*i)

In electron rich operation, the particle balance equation for elec

trons is

4ne (0) ^e "Je (V exp [~lq ^p1' kTs \> (<,p <0) (3A)

where n (0) = n.(0) = n.. is the density near the hot plate surface,

v is the electron thermal velocity, q is the electron change (magnitude),

<f> is the plasma potential relative to the hot plate potential and J

is the Richardson electron emission flux

J =CT2 exp(- q (J) /kT ) (4A)
e s r n we s
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20 -2 -1 -2
where the constant C - 3.8x10 cm sec *K . Eq. 3A can be

solved for the plasma potential (equal to the sheath potential dif

ference at the hot plate):

kT n-

where n.(T ) = 4J (T )/vq
Us e s e

In electron rich operation, the hot plate sheath represents a poten

tial barrier for ions returning from the plasma. Depending on the ion

temperature T, a certain fraction of ions given by the factor exp[-|q<J> |

/kT] can penetrate the barrier, of which a fraction (1-P) recombine

at the hot plate surface. The net flux F of ions lost to the hot
r rec

plate by surface recombination in electron rich operation is given by

1 - kT
F -y. n- v e Ki (1-P) , (<J> < 0) (6A)
rec 4 1 i p

The typical hot plate temperature in the multiple mirror experiment was

T = 2700 K, for which n ~ 10 cm . With the typical density used

10 -3
in the confinement experiments, n. ; 10 cm , Eq. 5A gives

<j> ~ - 4.6 kT /q z - 1 volt. An ion temperature kT z 2 kT z .4 eV is

calculated in Appendix B, giving a sheath attenuation factor

exp(-|q<f>J/kT) ~ .09. For lithium at Tg = 2700° K, 1-P ~ .9, and

Eq. 6A gives F = (.08)Or n- v.). With K multiple mirror cells, the

loss flux to the collector is approximately (t* n v.)/K. With lithium

and K = 5 cells, F is approximately 30% of the collector flux. With

potassium, and K=5, 1 - P - .3, and F is approximately 10% of the

collector flux which can be neglected.
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APPENDIX B. Ion Temperature and Mean Free Path

To estimate the ion temperature T relative to the hot plate tempera

ture T , in the presence of a sheath in electron rich operation, one
s

uses the particle and energy balance equations for the ion species, of

the form |q<t| |q<j>p|
[(Fo+^v kT )p]-|nv kT =MF (IB)

^ |q*pl
[(FQ+|nve kT )pj(2kTg +|q<J>p|) --|nve kT (2 kT +|q<f>p|) =MQ. (2B)

Here Fq is the neutral flux bombarding the hot plate from the oven,

n, V and T are the ion density, thermal velocity and temperature near

the hot plate, and <J> is the plasma potential given by Eq. 6A. Eq. IB,

applied at the hot plate side of the sheath, and Eq. 2B, applied at the

plasma side of the sheath, are statements that the difference in total

particle and energy fluxes at the hot plate are equal to the net particle

flux MF and net energy flux MQ, respectively. The mirror ratio M is

inserted because the source is in the mirror throat and we wish to refer

ence F and Q to the midplane. These net fluxes are associated with radial

loss and losses to the collector. Eliminating the quantity in square brack

ets between Eq. IB and Eq. 2B results in

|qV
MF + kT ^n I

1+ [s1[e Tl(i+^t41
(♦ < 0) (3B)

q*pl V4p
l+[—^~Ue kT]

2kT(-±nv>
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F can be evaluated in terms of x (max) and F . of Ref. 1 according to
mm mm

x (max)
F = -S55 F (4B)

t min

where x , measured experimentally, is less than x (max) due to radial
tot mm

loss, ambipolar effects, MHD effects, and incomplete scattering in each

cell. Q is given in terms of KTF in Fig. 2 of Ref. 1. Defining the ratio

y = Q/kTF (5B)

we find 2 < 3 < 4 depending on the mfp regime. Substituting Eq. 4B with

(with MF = -r nv/K) , and Eq. 5B into Eq. 3b, we obtain

where

-l + Tt^" lqU1+K Le kT (1+ P )
JL *eff 2kTs
T |q<J> I ' VTP
s + E

i j. v'1 kT1 + yKeffe

, (<j> < 0) (6B)

Kp =f—V"JK (7B)eff Ix (max)J
mm

Taking u = 3, which is the approximate experimental condition, Eq. (6B)

can be evaluated graphically for the ratio T/T as a function of <j>
S H

for various K ff. Using Eq. 6A for $ ,the results for T/Ts are plot

ted in Fig. Bl as a function of t^/n for Keff = 1, 5, 10, 100 and «, .

For K„ < 5, the values of T/T are fortunately insensitive to K ff ,
eff s Ui-J-
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and for 10% accuracy, Eq. 4B for F need not be evaluated. Note that

for n,/n near 1, and small K, T < T , a result of the preferential

_2
and loss of fast ions cooling the plasma. At n,/n - 10 , the typical

experimental operating point, however, Fig. Bl predicts T - 2 T , a

result of the thermalization of the energy imparted to the ions by the

hot plate sheath. The ion-ion mfp X for scattering into a root mean

square angle of one radian is plotted in Fig^ B2 as a function of den

sity n1 at the source for various hot plate temperatures T , using Eq. 6A

and Fig. IB for T/T . For X at z $ 0 where n(z) < n, , the values of
s i

X in Fig. B2 can be multiplied by n_/n(z).
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Appendix C Correction Factors for Effects of Radial Loss on x
_ z

Consider a symmetric multiple-mirror system of half length L/2 con

taining K mirror cells numbered j =1, 2 ... K starting from the center

cell, into which 2S particles are injected. We assume a constant rate

of radial loss proportioned to density n. in each cell:

dn,

radial = - er
J

-77**- radial = - en. (IC)

where e = x , . For particle balance in cell j, with M, A andv

constant,

^j-i^+ lw" "hr+ MVje • (2c)
Note that n.+- should be taken 0 for j = K. For cell j = 1, Eq. 2C

is given by

S+|n2v =^v +MAj^e . (3C)

The effects of surface recombination loss can be included by the use

of an effective source strength S1 given by

S' = S - Frec' . (4C)

For a given e, Eqs. 2C and 3C give K equations for K unknown den

sities. The solutions for a 10 cell system and for e = 0, e = x~ (max)
mm

and e = 2x (max) are given in Fig. IC. The densities are in units
mm °

of (4Sf/v). Assuming the collector signals I (L ) are proportional to

n in the last cell in each case, x is proportional to/. n./n,rt .
10 z t—' j 10

-28-



Since all n, are proportional to S1, x is independent of S'. Fig. CI shows
J z

10

radial loss reduces n,0 by a larger factor than £j n, is reduced. Thus x for

e ^ 0 is greater than x (max) for e = 0 . Assuming surface recombination
mm

loss is negligible compared to radial loss, or that a certain portion

of the collector current drop due only to radial loss I (0)/I (L )(radial)

is distinguishable, for each curve in Fig. CI with a given e there is

a corresponding value of

Ic(0) i^ (e=0)
ro7) =^r

The ratio of x to x (max) defined by
z mm

(5C)

10

T 2-r (n^/i^Xe)
C= t^-t --ti (6C)

x (max) 10

"* Z (nj/nK)(e=0)
j=l

is plotted as a function of I (0)/l (l') in Fig. C2 for a 10 cell

and a 5 cell system. Assuming both x and x for a non optimum mfp ex

periment are less than for the ideal short mfp system by the same amount,

the calculated ratios £ given in Fig. C2 will also apply to the experi

ment. That is, an experimental value of x (exp) is obtained from measured
mm

values of x (exp) by
z
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x (exp) = £x (exp) . (7C)
mm z

x (exp) is the appropriate experimental quantity to compare with

x (max).
mm

To treat the limiting case of many cells, the one dimensional

diffusion equation (constant D)

D5-"- - en = 0 (8C)
dzZ

can be solved to obtain a correction factor

x / n(z)dz
< 5T~ -i~Ztn : <9C)

mm ("CU') ^'^

with the boundary conditions n(L )= 0 (absorbing boundary at z = L )

and -dj"~| _0 = S . The result is given as the diffusion theory

line in Fig. 2C. Diffusion theory represents the limiting values of

C for many cells in which the density profiles and radial loss are con

tinuous. The values of £ increase with fewer finite number of cells,

due to an increasing effect of the assumed discrete distribution of

radial loss for those cases.
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