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Abstract

This paper considers n-input n-output convolution feedback systems

characterized by y = G * e and e = u - Fy, where the open-loop transfer

function G contains a finite number of unstable multiple poles and F is

a constant nonsingular matrix. Theorem 1 gives necessary and sufficient

conditions for stability. A basic device is the following: the principal

part of the Laurent expansion of G at the unstable poles is factored as

a ratio of two right-coprime polynomial matrices. There are two necessary

and sufficient conditions, the first is the usual infimum one and the

second is required to prevent the closed-loop transfer function from being

unbounded in some small neighborhood of each open-loop unstable pole.

The latter condition is given an interpretation in concepts of McMillan

degree theory. The modification of the theorem for the discrete-time

case is immediate.
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I. INTRODUCTION

A number of increasingly sophisticated sufficient conditions for

the input-output stability of distributed linear time-invariant feed

back systems have been published over the last few years. Desoer treated

the single-input, single-output system where the open-loop system includes

an integrator [1]. Desoer and Wu allowed an integrator and considered

the n-input n-output case both for continuous-time and discrete-time

systems [2,3,4]. Further refinements were obtained by Baker and Vakharia

[5], Desoer and Lam [6], Nasburg and Baker [7], and M. Vidyasagar [8].

General necessary conditions were published by Desoer and Vidyasagar [9].

Necessary and Sufficient conditions were obtained by Willems for the open-

loop-stable, single-input, single-output case [10], by Vidyasagar [8],

and by Desoer and Callier for open-loop-unstable, n-input, n-output systems

both continuous-time [11] and discrete-time [12]. Graphical tests were

developed by Willems [10], Davis [13], Callier and Desoer [14], and

Callier [15].

The main result of this paper is Theorem 1 which gives necessary and

sufficient conditions for the stability of a multivariable, distributed,

linear, time-invariant, feedback system whose open-loop matrix transfer

function includes a finite number of unstable poles. The conditions ob

tained are better than those of [11] because (i) they are conceptually

and computationally simpler, (ii) they allow poles on the boundary and

(iii) the derivation is much simpler. Corollary 1 relates the necessary

and sufficient conditions to the McMillan Degree Theory* in fact, for an

interior pole, it expresses condition (9) in terms of the rank of a
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Hankel matrix.

An important difference between the single variable case, (n=l),

and the multivariable case, (n>l), is the following: if a scalar transfer

function, say, 1 + fg(s), has a pole at p, then its inverse, (1 + fg(s))~" ,

has necessarily a zero at p; on the other hand, in the multivariable case,

if a matrix transfer function, say, (I + F6(s)), has a pole at p, then its

inverse, [I + FG(s)] , may very well have a pole at p. To see this con

sider

I + FG(s) = diag[(s-l)/(s-p), (s-p)/(s-l)].

In view of the essentially algebraic nature of the proofs, it will be

clear to the reader that the same results apply to the discrete-time

case. To carry out the simple required modifications, see [4, 12].

II. System Description and Useful Facts.

We consider a distributed, linear, time-invariant, feedback system

with n inputs and n outputs. The input u, output y and error e are

functions from JR+, (defined as [0,~)), to <tn or corresponding distributions

on R+. The open-loop system is of the convolution type so that we have

y = G*e (1)

e = u - Fy (2)

where Fee with det F ^ 0 and G is an nxn matrix whose elements are

complex-valued distributions on R+. We shall repeatedly use the convo

lution algebra & [2,3]; recall that f€ d iff, for t < 0, f(t) = 0,
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and, for t >_ 0, f(t) =ffl(t) + £ f 6(t-t ) where f (•) e L1[0,»),
oo J-—U

fed for all i, 53 |f,| <~ and 0 = t <t, for all integers i >0.
1=0 x U i

Thus f is a distribution of order 0 with support on IR . An n-vector v,

(nxn matrix A), is said to be in <%nt (<2nXn, resp.) iff all its

elements are inCC. Let f denote the Laplace transform of f: f belongs

to the convolution algebra Q, if and only if f belongs to the algebra CZ

(with pointwise product). Similarly we write v e Q,n, AG (2 nXn. We

denote by <E+ the closed right half-plane i.e. <E = {s |Re s^ 0).

Throughout the paper we consider a system defined by (1) and (2)

where the open-loop transfer function G(s) has a finite number of "unstable"

poles in (t , i.e.

* V1 ^-m,+a

S(s) =E £ Rko(8"pk) +Vs) for Re s~°» (3)
k=l a=o

where Re pk > 0 for k = 1, 2, ..., I; the poles pk and the coefficient

matrices R, are either real or occur in complex conjugate pairs;

G (s) e (XnXn. We define the system given by (1), (2) and (3) to be

stable iff its closed-loop impulse response H belongs to Q^ . This

definition of stability has a very important interpretation: for closed-

loop impulse responses having such a form, the closed-loop system is

p
stable in the sense above if and only if it is L [0,°°] stable for all

P e [1,»], [10].

Useful Facts and Definitions. 0JnXn(s), (GnXn[s]), denotes the noncommu-

tative ring of matrices of rational functions (polynomials, resp.) with

-4-



complex coefficients. An element A of (E (s) is said to be proper iff

A is bounded at infinity. An element A of IE [s] is said to be uni-

modular iff det[A(s)] is a nonzero constant. Let A and B be two elements

of <D [s]; a matrix M is said to be a common right divisor of A and B

iff there exist matrices A and B such that A « AM and B = BM where M, A

and B are elements of <E [s]; both A and B are said to be left multiples

of M; an element L of (D [s] is said to be a greatest common right divisor

(g.c.r.d.) of A and B iff (i) it is a common right divisor of A and B, and

(ii) it is a left multiple of every common right divisor of A and B. Two

elements A and B of C [s] are said to be right coprime iff they have a

unimodular g.r.c.d.. An element A of <EnXn[s] for which det A(s) ^ 0 is
n

said to be column proper, [16], iff degree (det A(s)) = 53 &i where 6.
j=l j 3

is the highest degree of the polynomials in the j-th column of A.

Fact 1, [17]. Two elements A and B of <CnXn[s] are right coprime if and

only if there exist elements P and Q in <EnXn[s] such that

P(s) A(s) + Q(s) B(s) = I for all s in <C.

Fact 2. Let R be a proper element of <C (s) , then there exist two

elements N and D in <EnXn[s] such that

R = N D_1

where (a) N and D are right-coprime; (b) det D(s) t 0; (c) p is a pole

of R(s) if and only if it is a zero of det D(s). Furthermore, if D is

column proper with 6. denoting the highest degree of the polynomials in
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the j-th column of D and with n±. denoting the (i,j)-th element of N,

then degree (n ) <_ 6 for all (i,j).

This fact is due to several authors, [18], [22], [19], [20], and

is closely connected to a proposition of [21].

III. Necessary and Sufficient Conditions for Stability.

With G defined by (3) ,let I+ FG(s) =F 53 \M + I+ FG (s) for
k=l

all s in £, thus

K ""he"*"01
Vs) = 23 ^a^-Pfc) for a11 sinC (4)

a=0

At each pole pfc, k = 1, 2, ..., I, consider the principal part of the

Laurent expansion of I + FG(s) up to and including the constant term.

This proper rational function can be represented as the product

Nfc(s) Dk(s) where Nfc and D, are right-coprime elements of <EnXn[s] and

det Dfc(s) £'0. In other words, for all seQand for k= 1, 2, ..., I,

-1 *
\(s) Dk(s) x=FRk(s) +1+53 ^V +FGP(Pk) (4a)

3=1

3#c

Hence we have for k = 1, 2, ..., £, and for all s e <n

I +FG(s) =Nk(s) Dk(s)"i + J] F[R3(S) . Riv)}
p=l

3^k

+F[G (s) - 6 (p^)]. (5)
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Note that (5) has the following form

I+FG(s) -[Nk(s) +*k(s)] Dk(s)"1 (6)

where the thus defined function \(') has the property that \(s) + 0 as

s -*• pk and if t/\f(p^ )denotes asufficiently small neighborhood of p, so

that p #u^(pk) for 3^k, then *k is continuous in c/T(pk) n<n .

Theorem 1. Consider an n-input n-output convolution feedback system

described by (1) to (3). Under these conditions,

the closed-loop impulse response H € ££nxn (7)

if and only if

(i)

inf |det [I + FG(s)]| > 0, (8)
Re s >_ 0

and

(ii) for k «= 1, 2, ..., I

det Nk(pk) j 0. (9)

Comment. If the system were open-loop stable, i.e. G € £lnxn, (hence

L [0,~)-stable for all p e [1,«]), then (8) would be the necessary and

sufficient condition for Hefl?Xn. The additional I conditions (9) can

be viewed as additional conditions required to prevent H(s) from mis

behaving at the unstable poles of G(s). This idea is made more precise by the
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following.

Lemma 1. Let ^(pR) be asufficiently small neighborhood of p. Under
these conditions

[I +FG]"1 is bounded inc/f(pfc) n<E (io)

if and only if

det \(pk) f 0. (9)

Proof. By construction K and B, are right-coprime elements of CnXn[s],

hence by fact 1 there exist elements P, and Q, of <EnXn[s] such that

Pk(s) Nk(s) + Qk(s) Dk(s) » I for all s in <E.

We obtain successively

Pk(s)[Nk(s) + (&k(s)] + Qk(s) Dk(s) = I+ Pk(s)*k(s)

or, for all s in JH(p.) n a

Pk(s) +Qk(s) Dk(s) [Nk(s) +^(s)]"1

= [I + Pk(s)*k(s)] [Nk(s) + *k(s)]-1

Finally, by (6), we have for all s^cAfiVr.) e ®+>

Pk(s) +Qk(s) [I +FG(s)]'1 =[I +Pk(s)$k(s)] [Nk(s) +^(s)]"1.
(11)
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Observe that I + P. <t> is continuous and tends to I as s •> p. , hence

from (11), we obtain the following successive implications:

(I +FG)"1 is bounded in cY*(Pk) ^<C+

=> the right hand side of (11) is bounded in ^Pfc) nG+

=• (Nfc +O^"1 is bounded in ^(p,) nG+

=> det \(Pk) * 0. (12)

The last implication is established as follows: Suppose det N, (p, ) = 0.

By assumption s» [Nfc(s) +^(s)]"1 is bounded in ^V(Pk) nG+, hence so
is

sh- det{[Nk(s) +^(s)]"1} ={det[Nk(s) +^(s)]}"1

This however is contradictory since, as s + p. , the last determinant

tends to det Nfc(p.) which has been assumed to be zero. So we must have

det Nfc(pk) $ 0. Hence by (12) necessity has been established. To prove

sufficiency, observe that from (6), for all s in ^(p. ) n <E
k T

[I +FG(s)]'1 =Dfc(s) [Nk(s) +^(s)]"1. (13)

Now [Nk +t^]"1 =Adj[Nfc +*k]/det[Nfc +*fc], where Adj [Nfc +$k] and
det[Nfc + $fc] are continuous functions, and det[N + * ] is nonzero in

a sufficiently small neighborhood c/lCp ) n <E. Since by assumption,

det N(pk) ^0, [Nfc +d^]"1 is bounded in JT(pk) n<E+. Finally, Dfc, as
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apolynomial matrix, is bounded in JT(vk) nG+. Therefore sufficiency
follows from (13). n

We now generate conditions which are equivalent to the conditions

(9). With G defined by (3), let I + FG(s) = R(s) + I + FG (s) for all

s in d , thus

Z

R(s) = 53 F Ms) for all s in d (15)
k=l *

where ^(s) is given by (4). Then there exist two right-coprime elements

N and D of <CnXn[s] such that

R(s) = N(s) D(s)"1 for all s in <E, (16)

Since R has poles only at p., p., ... p

det D(s) - c ir (s -p)k (17)
k=l K

where c is a nonzero constant. Now by appropriate column operations, D

can be made to be column proper, thus for that case

I n

E Yk = E «. (18)
k-1 R j-1 d

with the 6 defined in Fact 2.

Finally if

Nk(s) £N(s) + [I +FG (pk)] D(s) (19)
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then for all k = 1, 2, ..., I and for all s e <E

I+FG(s) -Nk(s) D(s)"1 +F[G (s) -G(pk)]. (20)

As before, (20) can be written in the form

I+FG(s) =[Nk(s) +4'k(s)]D(s)'1 (21)

where ^(s) is acontinuous function in e^(p )n (C and \(a) +0 as

s-Pk.

Lemma 2. Let Nfc and N be the elements of <DnXn[s] defined by (4a) and

(19), then

det Nk(pk) 4 0 (9)

if and only if

det \(Pk) t 0 (22)

Proof. By (19), since N and D are right-coprime elements of <DnXn[s],

so are Nfc and D. A reasoning analogous to that of Lemma 1 establishes

the following equivalence:

[I + FG]"1 is bounded in Jf(p, )n <D (10)

if and only if

det \(Pk) 4 0. (22)
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Hence Lemma 2 follows by transitivity.

Proof of Theorem 1.

*=. By assumption, condition (8) holds and, for k = 1, ..., £, condition

(9) and its equivalent (22) hold. Observe that F is nonsingular and

that I- FH = [I+ FG]"1 hence

He dnXn if and only if [I +FG]"1 G &nXn. (23)

From (3), (4), (15) and (16)

I+ FG =ND"1 + I+ F6 = [N + (I + FG )D]D~1
P P

=LD"1 (24)

with obvious notation. The matrix-valued function L is continuous in

Re s > 0 and analytic in Re s > 0. In the analysis below we may assume

that D is column proper: indeed if it were not, it could be made so by

elementary column operations. (Of course the same elementary column

operations have to be applied to N so that (16) be still valid). Con

sequently condition (18) holds. Define the matrix multiplier M by

M(s) = diag{(s+l) \ (s+1) 2, ..., (s+1) n} (25)

where the 6 are defined in Fact 2. Observe that because D is column

proper and because of Fact 2, DM"1 and NM-1 e 0LnXn n <Enxn(s). With

(23) in mind, we write (24) as follows
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1 1 1 -1
[I + FG] • [DM ] [LM ] . (26)

Since G £ CL we have

LM"1 = NM"1 + (I + FG )D m"1 e £Lnxn
P

From [3], [LM-1] e fl. nxn if and only if

-1.inf |det[L(s)M(s)"X]| > 0. (27)
Re s > 0

Thus sufficiency will be established if we show that (8) and (22) imply

(27). By (26) we have

det[L(s)M(s)"1] - det[I + Ffi(s)]. det D(s) • [det M(s)]"1

and, by (17), (18) and (25), we obtain for all s in <t

Yk.. I ( s-p, \
det[L(s) M(s)"J"] = {c tt \TZr) ><iet[I + FG(s)].

k=l 8 ±

By assumption (8), the right hand side is bounded away from zero every

where in (E , except possibly in some neighborhoods of the p, fs. To in

vestigate the behavior in these neighborhoods, we use (24) to write

det[L(s) M(s)"1] = det{[N(s) + (I + FG (s))D(s)] M(s)"1}
P

and we use (19) and (25) to obtain as s •> p,

-1 ~ n "61det[L(s) M(s) x] -> det[Nk(pk)]- tt (pk+l) J.
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Assumption (9) and its equivalent (22) guarantee that the right hand side

is nonzero. Therefore the continuous function s *• det[L(s) M(s)" ] is

bounded away from zero in sufficiently small neighborhoods of the p, 's.

Therefore (27) is established.

nxn s,-l=*. By assumption, H e (L ", hence, by (23), [I + FG] <= 0Lnxn and

is bounded in <C . Hence (9) follows for k = 1, 2, ..., I in view of

Lemma 1. Finally det[I + FG(s)] = {det[I + f6(s)]} € (£ , hence is

bounded in <B , so (8) follows, [9]. n

Example. Let Re p- > 0 and F = I; assume that

[I + G(s)] <=

Immediately

s-p.

s+1
.5e

-s

-8 S+1

s-p.
,2e

det[I + G(s)] = 1- .1 e"2s,

hence (8) holds by the graphical test [10, 14]. However we see that

Vp,) =
-P-

.2e 1 + p.

, hence det N-(p.) = 0 and (9) does not hold;

hence H is unstable. This can be checked by direct calculation: indeed

[I + G(s)]
-1

1 - .le
-2s

s+1

s-p.

-s
- .2e
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is unstable since Re p > 0. For this case I + G(s) , H(s) and [I + G(s)]

have a pole at p^. We emphasize that the condition det N-(p ) ^ 0 is

required because det[I + G^)] O is not sufficient to prevent H(s)

and [I + G(s)] from having a pole at p..

-1

IV. Interpretation of Condition (9) in Terms of McMillan Degree Theory.

Let Re pfc > 0. Let ft [det[I + FG]; pfc] denote the order of the pole

Pk of det[I + FG]. Let R denote the strictly proper element of <EnXn(s)

defined by (15). Let i|;[R](s) be the least monic common denominator of all

minors of R, let A[R] denote the McMillan degree of R and A[R; p ]

denote the maximal order of the pole p, in all minors of R; A[R; p, ] is
i k

the McMillan degree of the pole p, of R and A[R] = T* A[R; p. ], [24],
k»l

Corollary 1. Let G be defined by (3) and let N, be defined by Fact 3.

Under these conditions, for any k 6 {1, 2, ..., A} for which Re p, > 0,

det Nfc(pk) j 0 (9)

if and only if

^(iil-I) •*• "kl \oLmk
/o

fl[det[I + FG]; pfc] » A[R; pfc] - rank /

//
C29)

\l /
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where in the triangular Hankel matrix, the R fs are the coefficient

matrices of R, defined by (4).

Proof. From (17) and (19) - (20):

c tt (s-p3) pdet[I +FG(s)] -det[Nk(s) + F(G (s) -G(pk))D(s)],

hence

Y I ' Y
lim (s -p)k det[I + G(s)] ={c v (p, -pj 3} det N, (p. )
s+ Pk 3-1 P

3#c

and for any integer e, > y.

lim (s - p ) K det[I + FG(s)] - 0.
8-Pk

Hence by Lemma 2, (9) is true if and only if fi[det[I + FG]; p ] = y .

Let [A, B, C, 0] be any minimal realization of the strictly proper

element R of C (s) defined by (15) then, because of the coprime factor

ization (16), det D(s) = c det(sl - A), [18, 20]. Now det(sl - A) =
^ A[R; p ]

*[R](s) = tt (s - p,) , [25, 23, 24]. Comparing with (17) it
k=l K

follows that Yk = A[R; pfc]. The last equality of (29) is established

by observing that in (15) F is nonsingular and by using a result of

[26].

Remarks. (a) The conditions of Theorem 9-10 of [25], are a special case

those of Tt

n nxn ^ *nxn, N ,
U. nt (s), we have

of those of Theorem 1 above: indeed for the lumped case, i.e. G (s) €

-16-



MG; pk] - A[R; pk] for k - 1, 2, ... A

and Chen's conditions are equivalent to (8) and

fl[det[I + FG]; pfc] = A[G; pfc] for k = 1, 2, ... I.

(b) The conditions of Theorem 3 of [11] can be shown to be equiva

lent to (8) and (29) (for details see [15]).

(c) The equivalence of Corollary 1 is stated only for interior

poles (i.e. Re pfc > 0). It is still valid for poles on the boundary

(i.e. Re pk = 0) whenever G (s) is meromorphic in a neighborhood of

such pfc. This will always be the case for differential delay systems.

(d) Graphical interpretation. Consider the case where Re p, > 0,
k

for k=1, 2, ..., lt and Gp(-) e L^fO,") C£Lnxn5 then the necessary
and sufficient conditions for stability, i.e. (8) and (9) for k = 1, 2, ... £,

will hold if and only if the Nyquist diagram of wh- det[I + F6(jw)], (from
A

w = _ oo to to = «>) , encircles the origin of complex plane T* A[R; p ]
k=l k

times in counterclockwise sense. This graphical interpretation can be

extended to cases where G(-) € 0LnXn.

V. Conclusions

For the continuous-time, multivariable, linear, time-invariant,

feedback system described by (1), (2) and (3), the conditions (8) and

(9) are necessary and sufficient for stability. The conditions (9) can

be replaced by either (22) or (29) and prevent the closed-loop transfer
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function to be unbounded in small neighborhoods of the unstable open-

loop poles. The nature of the proofs makes it clear that the same type

of conditions apply to the discrete-time case.
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