Copyright © 1972, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



A GRAPH-THEORETIC APPROACH TO

LINEARLY ORDERABLE SETS

by

Kapali P. Eswaran

Memorandum No. ERL-M369

28 November 1972



A GRAPH-THEORETIC APPROACH TO

LINEARLY ORDERABLE SETS

by

Kapali P. Eswaran

Memorandum No. ERL-M369

28 November 1972

. ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



(e

A GRAPH-THEORETIC APPROACH TO
LINEARLY ORDERABLE SETS
by

Kapali P. Eswaran

Department of Electrical Engineering and céaputer,S§iences
and the Electronics Research Laboratory
University of California, Berkeley, California 94720

ABSTRACT: This memo studies a family of sets which can be represented
by intervals in real-line. Such a family is said to be linearly order-
able. Relationships between the intersection graph of a family that is
linearly orderable and the interval graph have been developed. Necessary
and sufficient conditions for a family of sets to be linearly orderable

are detived. It is shown that the Consecutive Retrieval Storage

Organization is a direct application of the property of linear ordering.

Research sponsored by the Naval Electronic Systems Command, Contract
N00039~71-~C~0255.



Section l: Intervél Graphs and Linearly Orderable Sets

In this section we define as to what we mean by linearly orderable
sets. We will also show the relations between interval graphs and the
intersection graph of a family of sets that is linearly orderable.

Let Q = {qz, Qs +oes qm} be a family of distinct, non-empty,
finite sets. The intersection graph of Q is denoted by 2(Q) and is

defined as follows: for each set q i € Q, there exists a corresponding

node € Q (Q) and vice versa and for i # 3, is connected with
iff q; Mg # ¢

Example 1:

Let Q . {ql" 9y dg> g qS}
where q, = {al, a, a, a7}

1, = {a;, 3y, a5}

qq = {a;, aﬁ, a7}

q, = {a;, a5, a5, 2, as}
and a5 = {ay, a5, ag}

The intersection graph Q(Q) of Q is given in figure 1.

Let G be any graph. If it is possible to assign to each node of
G, a distinct interval I i in the real line such that I i overlaps with I i
iff nodes and are connected, then G is called an interval graph.
The intervals may be open or closed. In the sequel, we shall assume that

the intervals are closed. In particular, if 2(Q) is an interval graph,



then we see the family of sets Q may be represented by a set of intervals

on the real line.

Example 2:
The graph Q(Q) in example 1 is an interval graph.

Let I, = [0,4]

-
i

[2,7]

-
]

["'293]

-
it

[1,8]

Ig

[5,7] where I, 1 <i < 5 corresponds to node .

Hereafter Q will denote the family of sets {ql, Qys +ovs qm} and S

the set Uai = {al, 8y sees an}. Elements belonging to the set (S-qi)

a, € qj 4

quQ
are called foreign w.r.t. q- Suppose ﬁhere exists a 1-1 function £
that maps the elements of S into (points in) the real line R such that
for each 9 € Q;vtherevexists an interval Ii containing images of all
elements € 9 but not images of any foreign elements w.r.t. 9y- Then
we éay that the family Q possesses the property of linear orderihg or
Q is lihearly orderable. The intersection graph Q(Q) is called a linearly
orderable_graph (w.r.t. this particular family Q) or in short a L.O.
graph. Any interval that contains images of all elements € 9 is said

to correspond to 9



Theorem 1:

I1f (Q) is a L.O. graph, then it is an interval graph.

Proof: Let Q = {ql, Ays vees qm}. Since 2(Q) is a L.O. graph, there
exists a 1-1 function £ and intervals Il’ 12, ceesy Ii’ ceey Im where Ii =
[ Min(£(al)), Max(f(a_)) + 6,]. 1I,, for 1 < i < m, corresponds to q,.

P i P i
Further, for 61 small enough, Ii does not contain images of foreign elements
w.r.t. q,- (Note that the increment ¢ i is added to 1. to take care of the

i
situation that q; may be a singleton.) Then, I i overlaps with Ij’ j#1i,

iff q N a4 # ¢. But qy N qj # ¢ Lff @ and are connected in

2(Q) . QED

Theorem 2:
If G is an interval graph, then there exists a family of sets Q for
which G is a L.0. graph. In other words every interval graph is a L.O.

graph for some family of sets.

Proof: Let {@ s ,...,@} be the set of nodes of the interval

graph G and I = {Il, 12, ...,Im} be a set of distinct intervals s.t.
interval 1 i corresponds to node . We shall assume that the intervals

are finite, If 1 i is an infinite interval, we can always choose a finite

subinterval Ii of I, s.t. Ii overlaps with Ij iff I, overlaps with IJ,.

Ii may be replaced by Ii in I.

Define i nin = Minimum of interval Ii'

i = Maximum of interval I,.
max - i



We, now, define sets ql,.qz, cee Qe

Forl<izm,qy= {imin’ imax} v {jminlimin = jmin = imax}

<
maxlimax = jmax - imax}

U {j

i 3 j for i .
Since hmin’ imax} # {Jmin, Jmax}, it follows that qy # q:I o # 3
1f and are connected in G, then intervals I, and I j overlap.

Then we have {im } c q or {imin’ imax’ jm} Ga- Since

in’ imax’ Imin
. ¢ .
(i Jpax? €942 942 N9y £ 0
Let Q = {ql, Aps oo- qm}. We first observe that G is 2(Q). Let

S§ = U a,. Note that the elements of S are either minimum or maximum

i
€
a; €4q j
qy €Q
of some interval € I.
We need to pr;ve that Q has L.O. pr:-éperty: ‘Define § min = Min(a ) and
n . es i
S = Max(a,). Let f be the identity function that maps™S into points
max a €8 i .
in [S ol % S J. We claim that the function f and the set of intervals
n’ “max .

I imply that Q is linéarly orderable. To see this, assume to the contrary
that £ and I do not imply the L.O. property of Q. Then, there exists an

interval, say I i s.t. I, contains the image of at least one foreign ele-

i

ment, say k, w.r.t. 9> the set corresponding to I I, is [1i: n’ i 1.

i 1 max
Then k is s.t. 1in <k < 1o Since k € §, k is either Ipgn ©OF jmax for
some interval Ij’ j #1i. This implies that ]:j overlaps Ii and k € q-
Then k is not foreign to q i Contradiction. QED.

Example 3:

Let q = {b, ¢, g, h, a}



q, = {a, e, d}
@ {h,v a, e, d}
Q4 = {c, g, h, e, a}
and qg = {e, d}
Let Q = {ql’ qz’ q3’ Q4s qs}

The intersection graph Q(Q) is shown in figure 2. Q(Q) is an interval

graph. Let the intervals corresponding to the nodes be:

-
i}

(1, 5]

[
n

5, 7]

1, = [4, ?]

(=
I

= [2, 6]

Ig

The intervals are represented pictorially in figure 3. The node that

[6, 7]. Interval I, corresponds to node for 1 < i < 5.

an interval represents is given in parenthesis in the figure.

2(Q) is also a L.O. graph. Let a function £ be:

£(b) =1
£(c) = 2
£(g) = 3
£(h) = 4

.



H
[ %]

f(a)

£(e) = b and £(d) = 7

The function f and the intervals I, Ié, 1, I, and I, imply that 2(Q)
is a L.0. graph. The pre-image of i for i = 1, 2, ... 7, is given in
parenthesis next to i in figure 3.

If G is any graph, then the complement of G, denoted by Gc, is a
graph that hés the same nodes as G with an edge connecting a pair of
distinct nodes in G iff that edge does not occur in G. Let G be an
undirected graph defined by [V, R], where V is a finite non-empty set
of nodes of G and R 1s a 1irreflexive relation on V s.t. ¥ R @E v,
iéij, R @ iff is connected with in G. An undirected
graph [V, R] is transitive orientable iff there exists a directed graph
G = [V, R] s.t. for ¥ € v, if then either
G0 O=0'0 0 6 06
R . iff there is an edge from to @ in G. In other words,

it is possible to assign directions to the edges of G s.t. G is tramsitive.

<13

A transitive orientable graph is sometimes called a comparable graph. The
following theorem is due to Gilmore and Hoffman and is given here for the

sake of combleteness. The proof may be found in reference [1].

Theorem 3:

A graph G is an interval graph iff every quadrilateral in G has a
diagonal and G® is transitive orie.ntéble.

Pnueli et al. [2] give an algorithm to check if a graph is transitive

orientable.



Example 4:

Consider the g’faph in figure 2. We saw that it was an interval

graph. The quadrilaterals ( , , . ). ( , ,
( ., , R ) have at least one diagonal and the complement

of the graph is transitive orientable. See figure 4.

Section 2: Singleton sets in a family of sets.

In this sectj.on we show that the singleton sets in a family of sets
do not influence the linear ordering property of the family.

We shall first introduce a notation. Q and S are as defined before.
Set f be a 1 - 1 function that maps S into R and Il’ 12, Im be a set
of intervals on R such that Ii corresponds to 9. Further let Ii’ for
l1<i<m, noﬁ contain images of any foreign elements w.r.t. q i Then

we say that (f; I 12, Im) implies that Q has L.O. property.

1’
Lemma 1:

If Q is linearly orderable, then Q' C Q is linearly orderable.

Proof:
Since Q is linearly orderable, there exists a function f and in-

tervals Il’ 12, Im implying the L.O. property of Q.
Let S8' = U a where Q' C Q
€
a, € q,
(=
qj Q

Now, define f': f'(ai) = f(ai) Vai €s'



' = (= 1
Ii Ii for ti Q
f' and {Iilqi € Q'} imply the L.O. property of Q'. QED.

Lemma 2:

Let Q = {ql, Qps oo qm}, S Ua, = {ai, 8ys een an}

i
€
ai qj

quQ

and E& = {a,} for 1 < j < n. Then 2(Q) is a L.O. graph iff Q) is a

3
L.0. graph where Q = Q U {E;}, i€ {1, 2, ... n}.

Proof: If Q is L.0O., then there exists a function f and intervals

Il’ 12’ .o Im s.t. they satisfy the L.O. property of Q. Let Ii =

[£¢a)), £(a;) + 6,] for ¥ Ei € Q. For &, small enough, Ti does not

i

contain images of any elements other than a Then f and {Ii} U

i.
{i;|5; € Q} imply that Q(Q) is a L.0. graph.
=, If'a is linearly orderable, then by Lemma 1,Q 5?6 is linearly order-
able. QED.

We can, therefore, assume that as far as linear ordering 1is concerned,

no set in Q is a singleton.

Section 3: Directed Semantic Graphs And L.0. Graphs.

In this section, we derive a number of results regarding -the L.O.
property of Q when Q(Q) is a complete graph. We establish necessary and
sufficient conditions for an intersection graph, that is complete, to be
a L.0. graph.

A graph G is complete iff every pair of distinct nodes is joined

by an edge in G; i.e. no more edge can be added to G.



Lemma 3:

I1f Q(Q) is complete and is a L.O. graph, then I = nq, $ ¢
q €Q

Proof: Let (f; Il, 12, ...,Im) imply the L.O. property of Q. As
2(Q) is complete, we have q, N a # ¢ for 1 <1, j < m. This implies

that I, NI, # ¢ and there exists an a,, € S s.t. f(aij) € (Ii NnNTt)

i 3 i3
fori, j=1, 2, ... m,

k|

We shall assume that all the intervals are finite (see proof of

theorem 2). Let Ii = [imin’ imax] for 1 <i <m. Let Ip be s.t.

P, =  Min [jmax] and I, be s.t. k = Max

3 ;.1
max 1<j<m k min 1<j<m min

We first

max mi

not overlap which would be a contradiction. Since 2(Q) is complete and

observe that kmin <P . For, if k n’ Ppax’ intervals Ip and-Ik would

is an interval graph and i > Poax for¥i=1, 2, ... m,

min = km:I.n and imax -

N
all intervals contain the subinterval [k nin’ pmax] which is Ip Ik (see

figure 5). But, we know that the intersection of every pair of intervals
contains the image of at least one element € S. Then there exists an

apk €8S s.t. f(apk) € Ip n Ik = f(apk) belongs to all intervals I,, L,

.ess I . Since Q(Q) is a L.O. graph, L
# 6.

is not foreign to any set

€Q, i.e. Ngq

q € 4

Define a directed semantic graph G = [V, R, I]. V is a finite non-

empty set of nodes. R is a irreflexive relation on V s.t. ¥ a, a €V,

3

i#ij3, aiR aj < there is an edge from a to a:i in G. R is called the

connectivity relation of G. An undirected edge between nodes a; and a, in

3

G means that ai Ra, and a, Ra,. I is a subset of V. Nodes € I are

h| i1

called direction~changer nodes and are denoted by an * mark in G. (ai, a,)

3

denotes the edge between a, and a,, ignoring the direction on the edge.

i

-10-



j ) denotes the directed edge from node a, to node aj. A path in

a directed semantic graph (DSG) Gis a sequence of distinct nodes 8y 8y, «-os

(ai, a

a5y @,0s +oo & Of Gs.t. for 0 <1 <k-1,(a;, a, ;) is an edge of

G when in direct mode and (ai+1, a, ) is an edge of G when in reyerse
mode, where the modes are defined as follows: if a path starts ﬁith a
non-direction-changer node, then the mode is direct; If it starta‘with

a direction-changer-node, the mode is reverse. Whenever a direction-
changer node is.reached from a non-direction-changer ﬁode, the mode is
switched. (If a direction-changer node is reached from a direction-
changer node, no change of mode occurs.) We shall enciose the sequence
of nodes defining a path in angle brackets, (and ). If P - (ao, 815 co0s
a ) is a path of'E, then a. is called the starting node of P, ak the end

0

node of P and a;s a a the intermediate nodes of P. Note that

2’ LN ]
if I = ¢, then our definition of a path is the same as the usual defini-
tion of a directed-path in a directed graph. Because of the presence of

direction changer nodes in'a, there is some semantics in the definitions

regardingia. Hence the name directed semantic graph.

Example 5:
Consider the DSG, G, shown in figure 6.

We have V = {ao, 15 8y, 855 8, 35, 8, a7}

and R is the connectivity relation. (ao, al, a, Y, (al, a,, a, Y,

(aé, az 2, ), (32’ a3, 8,, 85, 3¢ ), (ao, 315 8y, a4, 3,, 25, 3, 3, ),

(al, a,, a4, 8,, ag, 3, ) are some of the paths in G.

~11-



A Hamiltonian path in a directed semantic graph G is a path that

passes through all the nodes of G,

Example 6:

Consider the graph G in figure 6. G has only one Hamiltonian path
which is (ao, a;s 8y 35, @,, 85, 8¢, 3y ). e L TR E TR

We now define the DSG of a family of sets. Let I = Nq

Let R be an irreflective relation defined on S as follows: a; R ay iff
i # 3 and for qu € qQ, a, € QY = aj € q - Note that R is transitive.

The directed semantic graph of Q is G(Q) = [S', R, I']. S' is the set

of nodes of G(Q) and is { , ceey ,_ Cees .} where node
corresponds to element a, € S and vice versa. R iff a; R a;-

We use the same symbol R for a relation between two elements of S and two
elements € S' since there is no confusion. R is the connectivity rela-

tion of E(Q). I' is the set of direction~changer nodes of E(Q) with

eI' iffapex.

Example 7:

Let q = {az, a, }
q2 = ‘{al, 32’ 83}
q3 = {323 33: 34}

and q, = {a3, a,s as}

-12-



we have Q = {ql,‘qz, dg5 q4} and S = {al, 8ys 855 85 a5}

l- “q a{a}
EQ 3

1

R: a Ra2, alRa3

a5 R 34’ a5 R a3
G(Q) = [S', R, 1I'] where

s! ={. , , , }and I'={‘}.

R is the connectivity relation. G(Q) is given in figure 7. (. .

, € ) are Hamiltonian paths
@& C® & ®
in G(Q).
et b = ((@)s @) s (@) ’ @ @’
be a path in a DSG. A subpath h' ofhis(. @ s eees @ , )

where 1 > 0 and j < k. A set of nodes I" is said to be between (3,) and

in a path P in a DSG iff all and only the nodes € I" are in the sub-

path of P from to . For example let P = (-, , , ) .

The set of nodes between 4 and (a3‘) is {az} and the set of nodes between

and @ is null.

Lemma 4: Let G(Q) be the DSG of Q and h be any Hamiltonian path in G(Q).

Then, there does not exist a subpath h' of h s.t. the starting and end

-13-



nodes of h' are direction-changer nodes and the intermediate nodes are

non-direction-changer nodes. -
Proof: Let I = N q,- is a direction-changer node of E(Q) iff =
€
Q
a; € I. is a non-direction-changer node of G(Q) iff a, € (5-1).

Assume to the contrary that there exists a subpath h' of h s.t. h' =

(. ‘ s e )where . and . are direction-

changer nodes and s eees are not. Since a, €1
and a. i+l € (S-I) we ave a, R ay where R is the connectivity relation
of E(Q) . Similarly a -1 R a 'k Hence we have edge ( )

directed from @ to . and edge ( .) directed from
to - i.e, ( ’) and ( .) are edges of G(Q).

(see Fig. 8)

In the subpath h', since there are no direction-changer nodes between

and we should have either (i) edges ( R ) and (
) or v(ii) edges (, ) and ( , ) . In either case,

we have a situation that contradicts the earlier statement that (,

) and (, ) are edges of G(Q). QED.

Corollary 1: Any Hamiltonian path in the DSG of Q should have a subpath

of the form(. ., cees ‘ .) where {ai, 8,15 <00 aj-i-l’

a,} =1-= nq,.
i°
J 1 €Q

Lemma 5: If there exists a Hamiltonian path in E(Q) , then i # ¢,

q
€Q

i.e. there exists at least one direction changer node in G(Q).

14~



Proof: Suppose to the contrary that the set of direction-changer nodes

10 G(Q) = ¢. Let h =<, , ees > be a Hamiltonian path of
G(Q). Then(, ),(, ), (,' @) are among

the edges of E(Q). Relation R is transitive. Then for 0<pz<n-il,

( ) is an edge of G(Q). This means that a_ € q, for ¥q, € Q =
G n - j
N q, # ¢. Contradiction.

€ Q:l
qj
The following theorem gives another necessary condition for the

existence of a Hamiltonian path in G(Q).

Theorem 4: Let there exist a Hamiltonian path in E(Q) . If Sl CSis a

set of incomparable elements (w.r.t. R), then # {Sl} < 2.

Proof: By contradiction. Suppose there exists a set 8, = {ai, aj, ak}

of incomparsble elements and S, C S. Si = {., , .} is the set

of nodes of G(Q) that correspond to Sl. Let h be a Hamiltonian path of
G(Q).

Llet I = n q- Since all the elements of S are R - related with
q; €Q
i

the elements € I, we have S, N I = ¢, i.e. none of the nodes € S! is a

1 1

direction~-changer node. Without loss of generality, we shall assume

that in the Hamiltonian path h of E(Q) ’ precedes and precedes
Gy ™ &

By lemma 4, in any Hamiltonian path non-direction-changer nodes are
not present between any two direction-changer nodes. We then have only

the following cases for h:

Case (i) h passes through all the direction-changer nodes after leaving

-15-



. Then(. ‘ . ‘,..., ‘ ‘> are all

edges of G(Q). R is transitive. Thus we have that ( . .) is an edge
of G(Q) But this is not possible since a, and aj are not comparable
w.r.t. E

Case (ii) h passes‘ through all the direction-changer nodes before
reaching . After an argument similar to that of case (i), we get

( , ) which again contradicts the incomparability of a, and aj.

Case (iii) h visi‘ts all the direction-changer nodes between and
. After visiting , h needs to visit and this is the same
as case (ii) which leads to a contradiction. |
By cases (1), (ii) and (iii), we see that h can not visit all
, and . Then h is not a Hamiltonian path which is a contra-

diction. QED.

Corollary 2: For all a;, a:i €s,14%#j, a, and a:i are incomparable
(w.r.t. R) only if in any Hamiltonian path of G(Q), and exist
on the opposite sides of the subpath which passes through all the direc-
tion-changer nodes.

The following lemma leads us to the connection between the linear
ordering property of a familyl Q and the existence of a Hamiltonian path

in E(Q), when 2(Q) is complete.

Lemma 6: Let h = (@, ,. ,. ., cees .)

be a Hamiltonian path of G(Q). If {ai, a } c q € Q then {a a.19

C .
8 s oo aj-l’ aj }_qp

-16-



Proof: Let I = Nq
1 €Q

i We have three situationms.
(1) Both . and ‘ are direction changer nodes. By lemma 4, all

the nodes between . and . are also direction-changer nodes. Then

the elements corresponding to . ., ey . belong to I.

Hence the lemma.

(2) Both _ and are not direction-changer nodes. For this situationm,
we have the following possible cases similar to the ones we had in the

proof of theorem 3.

ase (i): h visits all the direction-changer nodes after leaving ‘

Then(. ‘ . . s ...,(. .) are edges .of

G(Q). Since ¢ . .) = (a, € q = a € q, for ¥q in Q), we have

ai, ai+1’ es ey aj-l’ aj e qp.

Case (ii1): Let h visit all the direction-changer nodes before reaching
. A similar argument as in case (i) leads us to the conclusion that

j’ §-1° cees 3. g5 A €quhena,a

e .

3 9

Case (iii): The direction~-changer nodes are betweeh . and . in h.
Let . and ‘ be the starting and end nodes of the subpath of h

that consists only of the direction—changer nodes (by lemma 4). Then

the path h is(, cees , cees , cees , , )

direction-changers
By case (i), all the elements that correspond to nodes between and

in h belong to qp and by case (ii), all the elements corresponding

-17-



to nodes between and in h belong to q_ . The direction-
P

changer nodes correspond to the elements of I which is a subset of all

sets in Q. Hence we have the lemma.

(3) Either or is a direction-changer node. Suppose is.
Let be the end node of the subpath of h that consists only of the

direction-changer nodes. Then the path h is ( ., cees . cees ‘
. -, cees .) By case (ii) of (2), {a > 851 cees
1+k+l} a4 We know that {ai, 3 110 vees ai-f-k} c1c q,- Hence,

{ai, 35,10 coes a5_1° aj} -

1f is a direction~changer node and ' is not, a similar
argument as above can be applied and the lemma proved. QED.

The theorem that follows gives the necessary and sufficient condi-
tions for an intersection graph of a family Q, that is complete, to be

a L.O. graph.

Theorem 5: Let Q(Q) be complete. Q(Q) is a L.O. graph iff there exists

a Hamiltonian path in E(Q) .

Proof: The sufficiency part of the theorem is easy to prove. We have
Q= {ql, Qps oee qm} and S = {al, g5 ee an}. Let h be a Hamiltonian

path of -G_(Q). We can consider h as a n-tuple. Define a set of functioms,

th

(k. Koy oeey kn}, where ki» 1 <i < n, maps any n-tuple to the i member

1’ 72
of the tuple, i.e. ki ((xl, Koy sees Xy eeny xn)) =X .

Corresponding to Hamiltonian path h, let fh be a 1-1 function that
maps S into R s.t. for ¥a, € s, fh(ai) = j where ,kj(h) = - (Note

that fh maps elements of S onto integers from 1 to n.)

-18-



Now, for ¥q, € Q, define I, = [ Mén (], (a,)), . ﬁgx (£, (ap))]
a, € q o €9y

It can be observed that Ii # ¢ and contains the images of all elements

€ 9y- Ii’ for i =1, 2, ..., m, does not contain images of foreign elements
w.r.t. q4. To see this, suppose to the contrary that there exists an
interval Ii containing images of foreign element(s) w.r.t. q,- Then

there exists ay» gél, acé’ cees ack, ey acj, ay belonging to S

with ack #qi and fh(ack) between fh(ab) and fh(ad) and {a.b, ad} = q-

This by the definition of fh implies thais between and

which contradicts Lemma 6. Hence (f, ; Il’ 39 s Im) implies that

Q has the L.O. property.

Before we prove the necessity part of the theorem, we shall give

an example to illustrate the above proof.

Example 8:
Let ql = {829 a 4’ 6
q, = {2, ay, aj, ag, ag}

=:{a

qa, = {a;,

and q, = {al, a
we have Q= {ql, qz, q3, Q4}

1!
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The intersection graph of Q is given in figure 9. We note that Q(Q) is

complete. The DSG of Q is E(Q) = [S', Ti, I'] where S§' = {., ,

’ , , .} I'= {., } and R is the connectivity
relation. G(Q) is given in figure 10. h = ( , R . s

, ) is a Hamiltonian path of G(Q) and is shown in solid lines

in Fig. 10.

Define £, : £ (a,) =1 as k;(h) =
£ (a) = 2 as k,(h) =
f,(a;) = 3 as ky(h) =
£, (a;) = 4 as k,(h) =
£, (a;) =5 as kg(h) =
and £ (a;) = 6 as ky(h) =
we then define the intervals I,, I,, I, and I,.
I, = [ Min (f(a))), Max (£ (a)))]

a € 9, a; € 9
= [£,(a,), £(aQ] = [1, 4]

Similarly 12 = [2, 6], I3 = [3, 5] and 14 = [1, 5]. The intervals are
shown pictorially in figure 1l.
To prove the necessity part of theorem 5, we need the following

lemma which is a counterpart of lemma 4.
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Lemma 7: Let Q(Q) be a complete and L.0. graph. Let I = N q and
q; €Q
i

(f£; Il’ 12, cevs Im) imply the L.O. property of Q. Then there does not

exist a,a, a s.t. a, a, € I and a, € (S-I)and f(ac) is between f(ab)

d
‘and'f(ad).

Proof: Assume to the contrary that there exist such a s a, and a- Since
a, & 1, there exists a set qy € Q s.t. a, ¢ q- Since {ab, ac} C1, the
interval Ii corresponding to 9y contains f(ab) and f(ad). 1f f(ac) is
between f(ab) Ahd f(ad), then Ii also contains f(ac). But a, is foreign

to q,- This means that (f; I 12, ey Im) does not imply the L.O.

l’
property of Q. Contradiction.

We are ready to prove the necessity part of theorem 5.

Proof: As 2(Q) is a complete and L.O. graph, we have by lemma 3,

I = Nq, # ¢. Let I = }. There exist a function
i

a L LN ] a
qi e Q {ap) p+l, . ] p_,_z

fh and a set-of intervals {Il, 12, cees Im} s.t. (fh; Il’ 12, ceny Im)
implies the linear ordering property of Q. For all a,, aj €s, 143,

either fh(ai) < fh(aj) or fh(aj) < fh(ai)' Then we can define a total
)'

ordering on the elements of S s.t. a, precedes a, iff fh(ai) < fh(a

i h| k|
o ) e -

By lemma 7, there does not exist 3, 3, a4 8.t. ay» 84 € I and a, (s-1I)

and fh(ac) is between fh(a.b) and fh(a d). Without loss of generality we

can assume thatbfh is s.t.

fh(al) < fh(az) < e < fh(ap) < fh(ap+l) < ..o < fh(aP+2) < ves < fh(an)
O ‘

>
images of elements € I
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All the intervals contain the images of elements belonging to I.
Hence, whenever an interval Ii contains fh(al) it has to contain fh(az),

fh(aB)’ cees fh(ap+2,)' Then, alG 9 = {az, 835 e @5 ous aPH'J Eqi.

P

For, if any of the elements € {az, B35 ooy ap-l} is foreign to qy, we
will have a contradiction that (fh; Il, IZ’ ooy Im) does not imply the
L.0O. property of Q.

Thus we have a; R a,, a R a R a In particular,

e R T
¢ s ) is an edge of G(Q). By considering intervals that contain
fh(az), fh(a3), fh(ap-l) and repeating the same argument as above,

we see that(, ),(, ), ...,(, ) are among

the edges of E(Q).

A similar argument as above shows that ( . ‘ ‘
.> s eees - .) are also edges of G(Q). Since the

relation R is symmetric for I, every pair of nodes belonging to I' =

{. R , cees } is connected and directed both ways. But

the nodes € I' are precisely the direction-changer nodes of E(Q). Hence

<. ., . ., . -, cees .)

is a path of G(Q) which is Hamiltonian.

Leth:(. ., cees . ‘, cees .) be a Hamiltonian

path in G(Q). We say that each . in h, for i = 2, 3, ..., (n-1), has

both left and right neighbours. The left and right neighbours of .

are and respectively. has only the right neighbour
namely and ‘ has only the left neighbour which i. The left

neighbour of is said to be empty and so is the right neighbour of

.
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Two paths Pl and P2 are equal (or non-distinct) iff the starting

and end nodes of P1 are the starting and end nodes of P2 and for ¥ a, €

P, s.t. is not the starting node of P, the left neighbour of

= € .t.
in Pl the left neighbour of in }E‘2 and for ¥ a, Pl 8.t is

not the end node of P., the right neighbour of in P1 = the right

1

neighbour of in P,.

Let £ be a 1-1 function that maps S into R. We know that f totally

(linearly) orders the elements of S s.t. ¥ a;, a €5, 1i+# j, a, procedes

3 i

aj iff f(ai) < f(aj). Let the linear ordering defined by f be 0. If

there exist intervals I 12, eves Im s.t. (f; 12, ooy Im) implies that

1’
Q has the L.O. property, then we say that the linear ordering O implies

the L.0. property of Q. The following assertion is stronger than theorem

S5, but the proof is essentially the same.

Theorem 6: Every distinct linear ordering of the elements € S, which
implies the L.O. property of Q, corresponds to a distinct Hamiltonian

path in G(Q) and vice versa when 2(Q) is complete.

Proof: 1In the proof of the necessity part of theorem 5, we observe that

the function £ defines a linear ordering, say O, of the elements of S.

h
We found a Hamiltonian path in G(Q) that corresponded to O.

Let (fh,; Ii, Ié, ees Ié? satisfy the L.O. property of Q and fh'

be different from fh' fh' then gives a total ordering O' different from

0. Applying the same arguments as in theorem 5, we get a Hamiltonian

path h' corresponding to 0'. h' is different from h.
In the proof of the only-if part of theorem 5, we defined a function

fh and intervals Il’ 12, ceey Im corresponding to a Hamiltonian path h of
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G(Q) s.t. (fh; I - Im) implied the L.O. property of Q. Any

1° IZ’ .o
other Hamiltonian path h' would have resulted in a function fh" fh' # fh’

and a set of intervals I!, I!, ..., I; s.t. (f Ii, Ié, ces I;) implied

l h';
the L.0. property of Q. Since fh and fh' are distinct, the linear order-

ings defined by them are distinct. QED.

Lemma 8: If h = (. ., cees . , cees .) is a Hamiltonian
path in G(Q), thenh (. ‘, cees ., ., cens ‘) is a

Hamiltonian path of G(Q)

Proof: Since there exists a Hamiltonian path in'E(Q), by Lemma 5

1= N q, # ¢. - By the direction changing property of the nodes cor-
q, €Q

respo%ding to I and by Lemma 4, we have that h is a Hamiltonian path of

G(Q).

Corollary 3: Let 2(Q) be complete. Then 2(Q) is a L.O. graph iff there

exist at least two Hamiltonian paths in E{Q).

Section 4: Union of Linearly Orderable Families.

In the sequel, Ql and Q2 denote two distinct families of sets.
Q1 n Q2 need not be empty. ‘E(Ql) and E{QZ) represent the DSG of Ql and

Q, respectively. S, denotes the set U a, and S, the set Ua..
2 1 a € i 2 a € qi
i 9 1
€ c
qj Ql qj Qz

~ . U
S indicates (S1 Sz).

Lemma 9: Let SZ(Ql v Q2) be a L.0. graph and Q(Ql), Q(QZ) be complete.

Let I = Sl N S2 and £ be a function that defines a linear ordering of the
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elements € S implying that (Q1 LY QZ) has L.0. property. Then there does

not exist ap, ai, a, s.t. a_ € (S-1I) and {ai, a

3 P j} C I and f(ap) is between
).

f(ai) and f(aJ

Proof: By contradiction. Suppose that there exist such ap, a, and a,.

i 3

Without loss of generality, we shall assume that f(ai) < f(ap) < (8j)'

Since 2(Q, V-Q,) is a L.0. graph, by Lemma 1 2(Q,) and 2(Q,) are
L.0. graphs. Then by Lemma 3, I, = Naq, # ¢ and L= N q # ¢.
q €Q qy €Q,

€ € (S R
As a;s aj Sl’ there exist sets U 9y € Q1 s.t. a; €q, and aj 9y

C C
L, =9, and I, =49,
Case (i) a, € I.. Then the interval I1 corresponding to 9 contains

1 d
f(ai), f(aj) and hence f(ap). Since the linear ordering defined by £

implies the L.O. property of Q1 U QZ’ ap is not foreign to qy°
Case (ii) aj G'Il' By the same arguments as in case (i), we have ap € q,-

Case (iii! I1f ai, a, & Il then there exists an elemeht a2 €I, s.t. either

h| 1
f(ag) < f(ai) or f(ai) < f(az). In either case, ap € q, °or q,- For, if

ap is foreign to both q. and Q40 We will have a contradiction that the
linear ordering defined by f does not imply the L.O. property of (Q1 v QZ)’

By cases (i), (ii) and (iii), we see that there exists a qy E:Ql s.t. apea
i
1° This means

that ap € Sl 0 S2 = I. Contradiction. QED.

€ .
Then, ap S 2°

By similar arguments, we can prove. that ap €'s

Lemma 10: Let Q(Q1 v Q2) be a L.0. graph and Q(Ql), Q(Qz) be complete.

Let I = S1 N 82 # ¢, Sl or SZ' Let £ define a linear ordering of the
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elements € § implying the L.0. property of (Q1 v QZ)‘ Let a, and 8, be

s.t. f(ac) = Min f(ai) and f(ak) = Max f(ai). Then

xS €
81'C I ai I

(i) for ¥ a, € (Sl—I) either f(ai) < f(ac) or f(ai) > f(ak)
i.e. there does not exist ap, aq € (Sl-I) s.t. f(ap) < f(ac) and f(aq)
> f(ak).

(ii) ¥ a; € (Sl-I), f(ai) < f(ac) ® ¥ aj € (SZ—I), f(aj) > f(ak)

Proof: We shall prove the lemma by contradiction.

Part (i) Suppose there exist ap, aq € (Sl—I) s.t. f(ap) < f(ac) and

f(a) > f(ak). bBy Lemma 1 and Lemma 3 we have that I. = MNq, ¢ ¢
q 1 € i
4 ©Q
= N q q q. N (8.-1) = q .
and I, - ;gi#q‘:. For ¥ q, € Q,, q (Sl 1) ¢andq12_>_12
i 2

3 - = ) - = ¢, €
Hence 12 { (S1 I) = ¢. Similarly I1 (82 I) ¢. As a, 82,

q. € q 2 Ul,. q
there exists a q; € Q, s.t. q; __{ak} I,. Since as 8 ¢ 9, for
¥ E@ € Q2 and the linear ordering defined by f implies the L.0O. property
of (Q1 v QZ)’ we have that f(ap) < f(aj) < f(aq) for all aj € 12. This
further implies that for ¥ a, GSSZ, f(az) is between f(ap) and f(aq),

Thus we have:

<This interval contains images of all elements € Sz+

veo < f(ap) SIREEINPRN £(ay) < aeee S f(ak)j< ceee ees % f(aq) <

N
images of elements € I

(By Lemma 9)

i > U] - v .
Now there exist q, qj € Q1 s.t. q4 __{ap} I, and 1y __{aq} L,
Since I1 N (SZ—I) = ¢, the interval corresponding to q or the interval

corresponding to qj contains images of elements € (SZ—I) which are foreign
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to all sets in Ql' This means that the linear ordering defined by f£

does not imply L.O. property of (Q1 v Qz). Contradiction.

Part (ii) =. We have f(ai).< f(ac) for ¥ a, € (Sl—I). Assume to the

contrary .that there exists an aj € (SZ—I) s.t. f(aj) < f(ak). By Lemma 9,

f(aj) < f(ac). Since aj is foreign to all sets containing elements
€ (Sl-I), we have f(a,) < Min (£(a_)). There exist a set E' € Q, s.t.

h| a €5 b . i 2

T 1
r aq. N - = (] .
9 2 {a,} VU I,. As q; N (5)-1) = ¢, £(ay) < Mé“ (£(a)) for ¥ a, € I,
a S
r 1

Now consider the set E; € Q2 s.t. E;IQ_{ak}L) 12. The interval correspond-
ing to E; contains the images of elements € (Sl—I) which are foreign to

all sets in QZ' This leads to a contradiction.

<, The same arguments as above direct us to the conclusion that if for

¥ aj € (Sz-I), f(aj) > f(ak), then for ¥ aj € (Sl-I), f(aj) < f(ac). QED.

Let h, and h, be Hamiltonian paths in E(Ql) and EKQZ) respectively.

1 2

Let I = S1 N SZ' We see that h1 induces a subpath in the set of nodes

that correspond to I in E{Ql). The starting and end nodes of this subpath
are nodes that correspond to some elements in I and the subpath contains

all the nodes which correspond to the elements € I, Let hi denote this

subpath., Similarly h% is the subpath induced by h2 in the set of nodes
that correspond to I in‘E(QZ). We say that the Hamiltonian paths

h1 and h2 are consistent (hz~ -h2) iff exactly one of the following holds:

e ————— —
—_— . e ————

(1) s, Ns,=1=4%

1
1

I
in hl or h2 and the right neighbour of the end node of hl 1s empty in h1

(ii) h; = h% and the left neighbour of the starting node of hi is empty

or hz.
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Example 9: hl=(, , , , )

Sp = {a), ay, a3, 3, ag}

S, = lag, a,, ag, ag, a;, ag)

[ ]
[}

b =
S5, NS, = {ag, a, a5}

1 <, ,> = by

The starting node of hI = and the end node of hl = . The left
1 1

neighbour of is empty in h, and the right neighbour of is empty

in hl' Hence hl ~ h2'

=
LI}

Theorem 7: Let Q(Ql) and Q(QZ) be complete. If Q(Q1 U Q2) is a L.O.
graph, then there exist Hamiltonian paths hl in EKQl)~and h2 in E(Qz)

s.t. hl and h2 are consistent.

Proof:
By Lemma 1, Q(Ql) and Q(QZ) are L.0. graphs. Since Q(Ql) and Q(QZ)
are also complete, by theorem 5 there exist Hamiltonian paths in E(Ql)

and in'E(QZ).

Case (i): I = ¢. Any Hamiltonian path in E{Ql) is consistent with any

Hamiltonian path in E(Qz).

Case (ii): I # ¢. Let f be a function that defines a linear ordering of

the elements € § implying the L.O. property of Q, U Q,. We have the follow-
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ing situations:

(1) I=38,, l.e.8, Cc S, and § = §,

Define fl(ai) = f(ai) ¥ a, € Sl

fZ(ai) = f(ai) ¥ a, € S2

Clearly, f , of the elements € S, which

1 1 1
implies the L.0O. property of Ql" So does fz w.r.t. Q2° Let the linear

defines a linear ordering, say O

3 . t—3 e
ordering defined by f2 be 02. Since fZ(ai) fl(ai) for ¥ a; Sz, we

e L]
have that, for ¥ ag, a Szlba2 precedes a, in 02 1ff ak precedes a, in 01

d 2
and hé be the Hamiltonian

By Lemma 9, there does not exist an ap € (Sl—Sz) and a,a € S, s.t.

fl(ap) is in between fl(ac) and fl(ad). Let h1

paths in'E(Ql) and EKQZ) corresponding to 01 and 02 respectively (see

proof of theorem 5). Then h2 = h; = hi. The left neighbour of the start-

2 and the right neighbour of the end node of h2 are both

empty. Then hl ~‘h2.

ing node of h

(2) 1= Sl, i.e. S1 E;Sz. The proof is similar to that of (1), above.

(3) I4¢or §, or 8,. Let 1= {al, 8y eees ak}. Without loss of

generality, we can let £ be s.t. f(al) < f(az) < 4. < f(ak). By Lemma
10, we can assume without any loss in generality that for ¥ a; € (Sl-I),
f(ai) < f(al) and ¥ a; € (SZ-I), f(ai) > f(ak).

Now, define £_, f

1° 52t

fl(éi) = f(ai) ¥ a; € S1

= (S
f2(ai) f(ai) ¥ a; 82
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Clearly, f, and f, define linear orderings, say O, and 02, of the elements

1 2 1
belonging to S1 and 82 respectively s.t. the L.0O. property of Q1 and Q2
are implied. Let h1 and h2 be the Hamiltonian paths corresponding to
0. and 02 in E(Ql) and E(QZ) respectively (see the proof of theorem 5).

1

Then hi = , , @) = h;. is the starting node of

hI and its left neighbour is empty in h2' The right neighbour of @ s

the end node of h is empty in h,. We thus have h, ~ h,. QED

1 1 1 2
Let Q = {Ql, QZ’ cees Qm} be a set of distinct families of sets

with Qi n Q.'i not necessarily empty. For 1 < i <m, let~Q(Qi) be

complete and Si denote the set U aj. S indicates Us =
aj € q i=1,2,7..,m

q€0Q

{al, By ooy an}. Let hl’ h2, cees

tonian paths in E(Ql) . E(Qz) s sees E(Qm) respectively where E(Qi) is the

hm be pair-wise consistent Hamil-

DSG of Qi' Let Ol’ 02, ey 0 be the linear orderings corresponding

oh hz, ooy h . Define a directed graph G = [S' R] S' is the

1°
set of nodes of G(Q) and is {@ @ ‘, cees .} where
node corresponds to element a; €3 and vice versa. R is an
irreflexive relation defined on S s.t. for ¥ a;, aj € S, i#j, a:i R aj
iff there exists a linear ordering Ok, 1 <k <m, in which a; precedes
@ R iff a; R ay- We use the same symbol R for a relation
between two elements of S and two elements of S' since there is no
confusion. R is the connectivity relation of G(Q) and R ﬁ'
<‘ , @ ) is an edge of G(Q). G(Q) is called a Partial Order
(P.0.) graph of Q corresponding to Ql’ Q2, ooy Qm’ defined by 01’

0 ..,h.

1’ m

20 v 0 or h

An undlrected path or simply a path in a dlrected éraph G is a

sequence of distinct nodes , , cees @ s.t. for i =1, 2, ..., (k-1),
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( . ) are edges of G. Note that we ignore the direction
of the edges in G. A connected-directed graph 1s a directed graph
in which there is a path between every pair of distinct nodes. A com-
ponent G' of a directed graph G is a subgraph of G s.t. G' is a connected-
directed graph and is not properly contained in any other connected-
directed subgraph of G.

A directed-cycle C in a directed graph'G 1s a sequence of distinct
nodes, ., ees .s.t. for 1 = 1, 2, vu., (k-1), ¢ , )
and ( @,‘ ) are es of G. The length of a cycle is the number

of nodes in the cycle.

Example 10: Consider the graph G in Fig. 12. It has two components.
If R is the connectivity relation of G, then the components arg [{‘ ’
, . }, R] and [{, }, R]. , , is a directed
cycle of G and is.of length 3.

Let G be an undirected graph. Gl’ G2, cees Gm be a set of complete
subgraphs of G(i.e. Gl’ GZ’ Gm are subgraphs of G and are complete)
s.t. every node and edge of G is in at least one of them. Then G is said
to be covered by Gl, GZ’ Gm' This is exemplified in example 11. We
are now ready to prove a result concerning the L.O. property of an arbi-

trary family of sets.

Theorem 8: Let Gl’ G2, Gm be a set of complete subgraphs of Q(Q) that

cover 2(Q). Let Qi € Q be 8.t. G, = Q(Qi) for 1 <1 <m. 9(Q is a L.O.

i
graph iff there exists at least one P.0O. graph 5((2) corresponding to Ql’

QZ’ cees Qm and any é(Q) is directed~cycle free.
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Proof: The if-part of the theorem: We first show that there exists a
P.0. graph G(Q) of Q. Let E(Qi) be the directed semantic graph of Gi
which is Q(Qi)° If E(Qi) does not have a Hamiltonian path, then Q(Qi)
is not a L.0. graph. By Lemma 1, this implies that 2(Q) is not a L.O.
graph which is a contradiction. Hence evez?y one of E(Qi) s 1 =1, 2, «uuy
m, has a Hamiltonian path. If —GT(Qi) and E(Qj) , i # j, does not have
Hamiltonian paths that are conéistent, then by theorem 7, Q(Qi ) Qj) is
not a L.O. graph. Again by Lemma 1, Q is not linearly orderable which
is not true. Hence there exist Hamiltonian paths hl’ h2, cees hm in
E(Ql), E(QZ), cees E(Qm) s.t. they are pair-wise consistent, i.e. a
G(Q) exists.

Suppose to the contrary that there exists a G(Q) 'containing directed

cycles. Let C = , , cees , , cees be a directed

cycle of minimum length in G(Q).

If the length of C is 2, then , ) and ¢ , ) are

edges of G(Q). This implies that there exist linear orderings O,, 0.’]
among the linear orderings used to construct 5(Q), s.t. 1 # j and al

precedes a, in 0:.L and a, precedes a; in 0,. Then Hamiltonian paths hi

k|
and hj which define 0i and 0j are not consistent. Contradiction.
Then let the length of C > 3. Let sz, = v aj for 1 < £ <m and
a, € ay
; (S
i € Q
S = us .NotethatforVa,aGS,i?‘j,1<£<m,either
_ 2 h | L -7 -
2=1,2,...,mn

( , ) or . ) is an edge of G(Q). Since C is of minimum

" length a'é and 2, do not simultaneously belong Eo'S'g; for 1<p, q <k, q# ptl

or p-1 and 1 < & < m. (see figure 13.) Further for 1 < i < k, 1 <2 <m,

a5 849 €5 TRy 354 % S¢
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where j # 1, and i+l, j+1 are modulo k. Hence w.2.g. we can assume that

a0y 8140 € S1 for it =1, 2, ..., (k-1) and 8., 8 €S

1 k*
Since Q(Q) is a L.O. graph, there exists a function f that defines
a linear ordering of the elements € § implying the L.O. property of Q.
Consider Q(Qi). Since a1y @y cees By 15 3,0 ceey @ are foreign to

all sets in Qi and a f(a ) is not between f(a ) and £(a

12 341 € Sy 1+1)
for ¢ =1, 2, ..., i-1, i+2, ..., k. This can be seen by similar argu-
ments as in Lemma 9.

Applying the above contention to Q(Ql), Q(Qz),...., Q(Qk_l) and
Q(Qk), we get a contradiction that f(a3), f(aa), cees f(ak-l) are between
f(al) and f(ak) and f(a3), f(aa), cees f(ak_l) are not between f(ak) and
f(al).

To prove the sufficiency of the conditions, we shall show how to
construct for any graph Q(Q) satisfying the conditions, a function f

and a set of intervals implying the L.O. property of Q.

Let Gl Gz, cees ép be the components of G(Q). Define function £:

(1) for ¥ ., . € ék’ 1<k <p, f(a)) < f(a.) iff there

exists a directed path from@ to. i.e. (. @ )

is an edge of Gk or there exist s sees ’ @ s eses
a € G s.t. (1'I’ ‘lll’ s eees ) are
d
> * @
edges of G

(ii) for ¥ ay € Ck and ¥ aj € Gz, k <2, f(ai) < f(aj). Since G(Q)

is directed cycle free, such a function exists. For each 9 € Q, define

= [ Min (f(a,)), Max (f(a ))]. Interval I, corresponds to q,.

1
i 3 i
€
aj 9 aj € 9
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To see that I 1 does not contain images of any foreign elements

w.r.t. q;, we suppose to the contrary that it does and shew that it

leads to a ¢ . €
o ontradiction. Let there exist 3 ad, qi, ac s &

c ’ C..’
: 2

ac:i € (S—qi) s.t. for 1 <k < j, f(ack) is between f(ab) and f(ad).
Further let a.b, ad be s.t. there does not exist ap € qi and f(ap) is

between f(a.b) and f(ad). W.%.8., we can assume that f(a.b) < f(ac ) <i.e<
1

f(a j) < £(ay). Then, (. .) is an edge of G(Q) and is the

right neighbour of . in some Hamiltonian path h i used to define G(Q)

9 belongs to at least one complete subgraph, say sz,’ that was
chosen to cover 2(Q). Let QR. be s.t. Q(Qz) = GJI, and hz be the Hamiltonian

path in E(Qz) that was used in the definition of G(Q). If precedes

in h,?,’ then ( _,) will be an edge of G(Q) and hence , R
cees , cees R will be a cycle of G(Q) which is not possIble.

Hence, let @ précede . in h Since a, is foreign to 95 by

Lemma 6 is not between . and . in h Hence h, # h .

“The right neighbour of . is not empty in both h and h ‘and the right

neighbour of . in ht = which is not the right neighbour of .
i i ) b and
in h, since precedes @ in h, and is not between

in hl' This leads us to the contradiction that hz and ht are not

consistent. QED.
Example 11:
Let q; = {al, a,s a3}

1, = {ay, a;, a,, ag}
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qq = {az, ags aa}
q, = la,, ag, agl

a5 = {a,, a5, a5, by}

q6 = {bla bz}
1; = {a;, ag)
and qg = {a7, ag}

Q= {ql’ q2> Q3’ Q4’ q59 q6’ q79 q8}~
Q(Q) is given in figure 14. Let R be the connectivity relation of Q(Q)
Let G, [{., , }, R]
) [{@,,,},RI
37 @) @ ©
= 1@ (3g)}> &I

Gl’ G2, G3, G4 are complete subgraphs of Q(Q) that cover Q2(Q). We have

(2]
]

(2]
]

Y]
=]
(=%
@
il

Ql = {ql’ qz’ Q3}, Q2 = {qz’ q3’ Q4, qs}’ Q3 = {qs’ q6} and Q4 = {q7, q8}‘
E(Ql),'E(QZ), EKQB) and EKQ4) are given in figures 15, 16, 17 and 18

respectively.

SlCHCHNCRCR)
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@O OO ®

h,, h,, h,, h, are pair wise consistent Haﬁxiltonign paths in E(Ql), E(Qz) s

1° 722 73 74
G(Q3) and G(Q4) respectively. Let hl’ hz, 3 4
figure 19. For the sake of clarity, we have not shown in fig. 19 all

h, and h, define G(Q). See

the edges of G(Q) which is directed-cycle free. Hence Q is linearly

orderable. Let R be the connectivity relation of G(Q). We note that

2

@O @O OO G =L &
}, R]. Let £ be: £(a;) = 1, £(ay) = 2, £(ay) = 3, f(a,) = 4
£(ag) = 5, £(ap) = 6, £(b)) = 7, £(b,) = 8, £(a

there are two components of G(Q), namely él and G, where él = [{ R

8) = 9, f(a7) = 10 and

f(ag) = 11. The intervals corresponding to q 4 1 <1i < 8 are shown in

figure 20.

Lemma 11l: Let Gl and G2

cover Q(Q). Let Ql CQ Q2 C Q be s.t. Q(Ql) = Gl and Q(Qz) = G2° Let

be complete subgraphs of 2(Q) s.t. G, and G,

hl and h2 be consistent Hamiltonian paths in E(Ql) and E(Qz). Then

G(Q) defined by hl and h, is directed-cycle free.

2

Proof: Suppose that G(Q) is not directed-cycle free. Let C = s
, O be a cycle of minimum length in G(Q) First, we observe

that the length of C < 3. This can be seen by arguments similar to the

ones in Theorem 8. If the length of C is 2, then (‘® ‘)

(‘ .) are edges of G(Q). Thia implies that . precedes in

hz(hl) and . precedes . in hl(hz) We then have a contradiction

that hl and h2 are not consistent. If the length of C is 3, then in hl(hz)
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@ precedes and and @ precedes . In h,(h,),

precedes ’. This also leads to the contradiction that h1 is not
conslstent with h2. QED
Theorem 9; ;f Gl and G2 are complete subgraphs of Q(Q) s.t. G1 and

G2 cover 2(Q), then Q(Q) is a L.O. graph iff there exist consistent
Hamiltonian paths in E(Ql) and E(QZ) where Q1~ cq, Q2 C Q and Q(Ql) =

le s'2(Q2) = Gz'

Proof: The necessity is by theorem 7 and the sufficiency by theorem 8

and lemma 11.

Section 5: An Application of the L.O. Property to Information Retrieval.

We shall consider a particular form of file organization in the
field of data management. A record in a data structure is a set of
elements where each element is a two tuple, called a field. The first
member of the tuple is called an attribute and the sécbnd its value. A
file is a collection of records. Normally a field (or a combination of
fields) of a given file uniquely identifies each record of the file.
Such a field is.called a primary field and the attribute of a primary
field a primary key. Fields other than the primary field(s) are called
data fields.

File organization is the arrangement of the records of a file F on
a storage medium S so that a family of querries Q can be answered. A
storage medium S is called "linear" if the storage locations of S‘can
be arranged linearly and the access time between any two storage loca-
tions is an increasing functioﬁ of the distance between tﬁem. Tapes and

tracks of a disk are some examples of linear storage media. We restrict
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our attention to file organizations with linear storage media.

When the querries belonging to Q are based on a primary key, a
simple hash coding scheme constitutes a good form of file organization.
When the querries are based on data fields, one resorts to inverted (and/
or a multilist) file organization. If the questions are related to only

one field fi’ then all records in which the attribute of f, takes a par-

i
ticular value can be stored in consecutive storage locations so that mini-
mum retrieval time is guaranteed for each querry. However if the querries
relate to more than one field (primary or data), then to achieve minimum
retrieval time records may have to be stored redundantly, i.e. a record

is stored more than once.

Suppose that a querry family Q is such that there exists a 1-1 func-
tion f which maps the records belonging to the file F into storage loca-
tions of a linear storage medium satisfying (i) for each querry 9y € q,
there exists a sequence Si of consecutive storage locations containing
all records pertingnt to 9 and (ii) Si does not contain any record not
pertinent to q- We, then, say that the family of querries Q has the
Consecutive Retrieval property (C.R. property) [4], which in other words
means that Q is linearly orderable. A file organization having this
property is called a C.R. organization. Note that a C.R. organization
precludes redundant storage of records. By knowing the first and the
last pertinent records of a querry in a C.R. organization, all relevant
records of all querries can be retrieved in minimum time.

Our results regarding the L.O. property of a family of sets (i.e.

the C.R. property of a family of querries where a querry is a set of
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reply records) do not require any restrictions on the family of sets and
are most general in nature. Till this memo, there have been no results
to check if an arbitrary family of querries Q has the C.R. property and

to construct a C.R. organization if Q is consecutively retrievable.

ACKNOWLEDGEMENTS :

The author would like to thank Prof. L. A. Zadeh and R. M. Karp

for their comments. He is also grateful to Dr. S. S. Reddi for many valuable

suggestions.

-39~



References.

[1] P.C. Gilmore and A.J. Hoffman, "A characterization of comparability
graphs and of interval graphs". Canadian J. Math. 16 (1964), 539-
548.

[2] A. Pnueli, A. Lampel and S. Even, "Transitive Orientation of graphs
and identification of permutation graphs". Canadian J. Math. 23
(1971), 160-175.

- [3] F. Harary, “Graph Theory", (Addition-Wesley, Reading, Massachusetts,
1969). |

[4] S.P. Ghosh, "File organization: The consecutive.retrieval property".

Comm. of the ACM, Vol. 15, No. 9 (1972), 802-808.

-40-



Figure 1



Figure 2



Iﬁ

I3(@)
I,(®)

'- L(®) +

) - % * £ He -

1(b) 2(c) 3(q) 4(h) 5(a) 6(e) 7(d)
l‘ ' 14(G9) ’l‘ls(@)

Figure 3




Figure 4



' "1“rlnin I ?max

i I )
v l ) ) BN
. |
I |
: P;)in :lpmox
| I
kmin : kmox'
: .
_-,
”m}min ' ' | , mmax ‘

" Figure 5



Figure 6



Figure 7



Figure 8



Figure 9






l: I4(q,) ! ﬂi

I(qy) |
Iz(qa) : ‘ "
-

% *—
1(a,) 2(a,) 3(03) 4(05) 5(0, 6(as)

I3(Q3)_——‘|

Figure 11



| Figure 12



Figure 13






Figure 15



Figure 16



|

Figure 17

o -
ON



Figurev18



Figure 19



F—Ta)—

‘_—12(02)

1, (q,)— Y elag) ,‘|I7‘“7’f Toag)

& .

o)) 2(a,) 3(az) 4(a,) 5(a;) 6log) 7(b) 8(by) 9Mag) I0(a;) Hlag)

“—14((14)
'"—__—-Is‘QS)

Figure 20



	Copyright notice 1972
	ERL-369

