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ABSTRACT

The concepts of pseudo-Boolean matrix multiplication and pseudo-

Boolean matrix adjoint are reviewed. For a given symmetric matrix T

to be realizable as the terminal capacity matrix of an unoriented com

munication net, it is necessary and sufficient for T to be idempotent

with respect to multiplication. Another equivalent condition is for T

to be self-adjoint.
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Introduction

Let T = (t )be the matrix of terminal capacities'-1'2^ of an n-

node (oriented or unoriented) communication net G. By convention we

set t±± =«for i-l,2,....,n. It is known[3,4] that the following
"triangle inequality" holds

t±j >.min{tlk, tfej} for all i,j,k - 1,2, ,n. (*)

This same condition is also sufficient for any n x n symmetric matrix T

with infinite diagonal elements and nonnegative real off-diagonal ele

ments to be the matrix of terminal capacities of some unoriented net.

In a paper dealing with a different topic, Zadeh'-5-' described a

simple test for the condition (*) within specified ranges. We make ap

propriate extensions here, and point out a further equivalent test.

Preliminaries

By the extended real numbers we mean the reals together with two

symbols -«,«>. By the nonnegative extended reals we mean the nonnegative

reals together with ». For our purpose we need only know how to perform

the following operations on the extended real numbers.

If a is an extended real number, we define

min{a,°°} = a

min{a,-°°} « -»

max{a,«>} • «

max{a,-»} « a

Let A •» (*£,), B• 0Vj)> and c" (c^) be nxm, mxp, and nxp

matrices respectively with extended real entries. We define the pseudo-
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Boolean product of A and B (written AoB) by

C = AoB <=> c.. = max min{a.. ,b. .}
ij ik'Tcj

Various properties of this operation are mentioned in [5].

Let T be an n x n matrix with extended real entries. The pseudo-

Boolean determinant of T is

T| =max min{t.j. ,t2i , t^}
o 12 n

where the maximum is taken over all possible permutations

o* = /l ,2 , 3, •••,n

Example If T
5 2

4 3
, then

|T| = ** «max|min{5,3},min{4,2}) =3,

We will denote by T.. the matrix obtained from T by eliminating

row i and column j. The pseudo-Boolean adjoint of T is the matrix

adj T = (t..) defined by

Tij = lTjJ for a11 ±9*'

In the following, entries in a matrix will always be extended real

numbers.

Results

The following lemma is an extension of a result in [5].
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Lemma 1 Let T = (^4) be an n x n square matrix.

If t±1 j> max{ti4,t41} for all i,j = l,2,....,n, then we have

t±j >min{tlk,tkj}

for all distinct i,j,k

taking values in the

set {l,2,....,n}

Proof

<=> for all i,j taking values

in the set {1,2,....,n}

(t)

(<=) Trivial.

C*) Due to the restriction t±± >. maxCtj. ,t.±} on the diagonal ele

ments of T, consideration of cases shows that the left-hand side

of (+) is equivalent to

t±. >^min{tlk,tk.} for all i,j,k, « 1,2,......,n<

Thus we have

t.4 > max min{t.. ,t. 4}
*ij ik,takj

To show the reverse inequality, we note that

max minCt^tj.} j> min{ti;L,t14}

But t^ >_ max{ti4,t..}

So m±n{tii'tij} = fcij

Hence (2) and (3) yields

max min{t.,,t, .} >^ t..
k IK Kj lj
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(1) and (4) yields the desired equality. |]

T31Lemma__2L J An n x n symmetric matrix T with t.. = °° for i - l,2,....,n

is the terminal capacity matrix of an unoriented communication net if and

only if

ty >,nln{tik>tkj}

for all i,j,k « 1,2 ,n.

Lemma_3.'" ' •" If T is the matrix of terminal capacities of an oriented

communication net, then

'iji^'ik'V

for all l,j,k = 1,2, ,n.

Combining lemmas 1, 2, and 3, we arrive at the following two theorems.

Theorem 1 An n x n symmetric matrix T with t.. = °° for i = l,2,...,n

is the terminal capacity matrix of an unoriented communication net if and

only if T = TOT.

Theorem 2 If T is the matrix of terminal capacities of an oriented

communication net, then T = ToT.

A further characterization is possible. This is due to the following

T6 71
result of A.G. Lunts ' (see also [8,9]).

Lemma 4*- ' •* Let T be n x n with t.. » « for i = l,2,....,n. Then
ii

X = ToT *=* T = adj T.

Applying this lemma to theorems 1 and 2, we get the following two

results.

Theorem 3 An n x n symmetric matrix T with t.. • °° for i = l,2,...,n
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is the terminal capacity matrix of an unoriented communication net if

and only if T « adj T.

Theorem 4 If T is the matrix of terminal capacities of an oriented

communication net, then T = adj T.
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