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ABSTRACT

Plasma electron and ion heating due to a large-amplitude

oscillating electric field E applied normal to a steady magnetic

field B has been followed in detail, by one-dimensional computer

simulations. The large oscillating drift velocity (E /B >v ) at

low frequency (w <<a) =*o) ,«(o ) sets up instabilities due to the
M J ci o pi ce' K

periodic electron E/B drift through the ions, which then cause

rapid heatings. For waves propagating across B (k*B = k.. = 0),

the instability is a Buneman-type upper-hybrid two-stream insta

bility. Electron perpendicular thermal velocity is increased to

~ E0/BQ with little ion heating. For obliquely propagating waves

(kj, f 0)» there is an additional instability, the modified two-

stream instability. For small k.. (roughly, kii /k ^m /m. ), the

upper-hybrid instability dominates and the heating is similar to

the kjj = 0 case but with a small amount of electron parallel heat

ing. As kjj increases, however, the modified two-stream instabil

ity becomes dominant. Electron parallel thermal velocity is in

creased to - (EQ/Bo)(k/k„ ). Strong ion (perpendicular) heating

also occurs with the ion thermal velocity at wave saturation near

"i / / I/O

(Eq/Bo) (me/mi) ' (k/k|| ) . Comparison with similar work with

BQ = 0 shows that addition of B is best for ion heating, improv-

1/2ing KT± by (n^/n^) . Possible applications of these results to

laboratory experiments are also discussed.



I. INTRODUCTION

Many currently employed as well as proposed future plasma

heating schemes often involve an oscillating electric field

applied across the confining magnetic field. Hence there has

been considerable interest in the large-amplitude, nonlinear

behavior of such plasmas. Using one-dimensional (x, v , v , v )
x y' z

computer simulation, we have studied this problem and the results

of our investigations are presented in this paper.

The plasmas considered here have (x) ~ w » co . » u\
ce pe pi ci

(with obvious notations for the electron and ion cyclotron frequen

cies and plasma frequencies). Electrons and ions have

equal initial temperatures. The external electric

field, E = E sin a) t, is applied perpendicular to the magnetic

->•

field B and has driving frequency a) near U) .. Since

wci « w ~ 0)q « wce the electrons are strongly "magnetized" and

their main motion is the E x B oscillating drift with peak

amplitude Eq/B . Ions, however, are effectively "unmagnetized" and

mainly oscillate in the direction of E with an amplitude

eE E 0) E

:— = 7T" <<: ,^— • Thus the dominant electron-ion relative
m.O) B a) B
i o o o o

motion is the electron E x B streaming through the ions. If the

electron drift were steady and greater than some threshold value,

then instabilities might be excited. With an oscillating drift

therefore, we might expect the same kind of instability over a

fraction of the cycle, during which the drift speed is greater



than the threshold value. The growth of this periodic-streaming

instability may be accompanied by the increases in plasma tem

peratures and, hence, is the source of heating.

In our investigations, the applied electric field is of large

amplitude so as to make E /B large compared with the initial elec

tron thermal velocity v ; that is, we have E /B v ~ 5 to 10. Two

types of periodic-streaming non-resonant instabilities are observed

9
in the simulations: (1) Buneman-type two-stream instability with

2 2 1/2k EQ/Bo ~ uiyjj = (a) + wce) and instability threshold near v ,
13

and (2) modified two-stream instability with k E /B ~ 0) ^ and
o o pi

instability threshold near v., which only occurs when the wave

vector k has a non-zero component along B . When the wave energy

becomes large, strong plasma heating occurs. The observed heating

processes depend critically on which type of instability is domi

nant.

Recently Okuda et al have also investigated the plasma heat

ings caused by applying low-frequency electric field across the

magnetic field. They, however, are mainly interested in parametric

instabilities excited by a low-amplitude (E /B v < l)pump field
o o "

in contrast to our case where instabilities are due to drifts in

duced by a large-amplitude pump field and parametric effects are

expected to be relatively small.

As an example of possible experimental configurations,

we mention here the experiments of plasma (ion) heating by modu-

lated electron beams , which partially motivated this research.



In these experiments, an electron beam, modulated near u) ,

is injected into a mirror-confined plasma. In a simple

view the electron beam can be represented by a charged

thin line moving parallel to the magnetic field. The beam line

charge then varies in time according to the prescribed modulation.

Due to the lack of charge reservoir to neutralize the overall beam-

plasma system, a radial electric field oscillating near (0 . ap

pears . This electric field then produces electron oscillating

E x B drift in the azimuthal direction, while ions mainly oscil

late in the radial direction. Another possible application is

in microwave heating experiments. Further discussions relating

our results and laboratory experiments are in the last Section.

The numerical simulation model is described in Section II.

Section III contains the physical parameters of the simulations.

We have systematically investigated the heating processes with re

spect to the applied field strength and the orientation of k ,

and three representative simulation results are presented in

Section IV. In Section V linear and nonlinear theories based

on a steady drift and trapping arguments are developed to explain

and compare with the simulation results. In Section VI, heating re

sults with and without B are compared. The final conclusions and

discussions are in Section VI.



II. SIMULATION MODEL

The numerical simulation model is illustrated in Fig. 1. BQ

lies in the z - k (x) plane with an angle tt/2 - 9 between Bq and
«>\

k. 9^0 then allows k to have a component along B ; i.e., k

•> •>

= k.B /B ^0. The applied electric field E is in the y - direc-
o o o

tion normal to B . The self-consistent field of the ions and
o

electrons is obtained from a CIC code, which is one-dimensional

(x, v , v , v ), electrostatic, with periodic boundary conditions .
x y z

The charge clouds (slabs) have nominal thickness equal to a cell

length Ax. Charge density is known at the grid points and Poisson's

equation is then solved numerically by the method of Discrete Fast

Fourier Transform. Particles are advanced in time using "Cylrad"

particle pusher with the total electric field and a typical time

step CO At = 2tt/32. "Quiet-start" techniques and k-space smooth-

Q

ing are used in the computation to reduce the noise level. The

modes retained are initially excited to approximately the same

level but with random phases. The remaining parameters are

different for the 9=0 and 9^0 cases, as follows:

9 = 0. The system has 64 grid points and is 160 A,, (= v /oi .J or De e pe*

initial electron Debye length) across; i.e., A /Ax =0.4 . Usually

6400 electrons and 6400 ions are used. In one run we have doubled

the number of particles and no appreciable difference in the results

is observed.

9^0 . The system has 128 grid points and is 640 A across

(A /Ax = 0.2). 14,000 electrons and 6,060 ions are used in the



simulations. The mass and charge of each ion cloud are pro

portionately increased so as to have charge neutrality in the

system.



III. PHYSICAL SIMULATION PARAMETERS

Initially the plasma is distributed uniformly across the

system. The particle initial velocity distributions as well

as other parameters are different for the 9=0 and 9^0 cases.

-v ->• ->• ->•

9 = 0. Since E .JL B and klB , there are no dynamics
ext o o ' J

in the B direction. The electrons and ions have two dimen-
o

sional Maxwellian velocity distributions, i.e., f (vx) =

9 1 2 2 2 2 2
(2w/) exp ( - vx /2v. ). Here j = e,i and vju « v + v .

j J y«
2 2For equal electron and ion temperatures, we have m v = m.vi .

Thus, electron and ion initial random energy densities are tiT
ox

2nm v . Here n is the spatial-average particle density. The mass
e e

ratio used is m./m =50. w ./co = 7 and hence U) -u .
i e pi ci ce pe

9^0 . In this case the self-consistent electric field has a

component along the BQ field. The electrons have a three-

dimensional Maxwellian velocity distribution; *0(Jy)± (2ir Ve ) *

exp (-v2/2v 2). Since not only instabilities with both the (real)

oscillation frequencies (a) ) and growth rates (u).) much greater than
r x

0) are expected but also the entire run is at least less than a
ci

half ion cyclotron period, we may treat the ions as unmagnetized

->• ->-

to facilitate the computations. Since kJL E , the only ion dyna

mics are caused by the self-consistent electric field and ion motion

perpendicular to fc (x) is ignored. Thus the ion velocity distri-

bution is a one-dimensional Maxwellian in the x-direction; i.e.,



A

Eext =E0sin(uJ0t)

Charge cloud
(slab)

A T p
XjK, t- self -consistent

Fig. 1 The one-dimensional numerical simulation model, x

is the direction of y x B



TABLE 1. Summary of numerical and physical simulation parameters

tt/2 - 9 is the angle between the wave vector k and the magnetic

field B .
o

9 = 0 9^0

L/Ax 64 128

ADeM* 0.4 0.2

N
e

6400 14000

N.
l

6400 6060

f
oe

2-D Maxwellian

perpendicular to B
3-D Maxwellian

f .
oi

2-D Maxwellian

perpendicular to B

1-D Maxwellian in

£ (unmagnetized)

m./m
1 o

50 100

to ./to .
pi ci

7 10

to /to
pe ce

=i 1

to At = 2tt/32. Nominal cloud width = Ax.
ce

E ^ = E sin tot. to = to . .
ext o o o pi



2 ~1/2 2 2 2
foi^Vx^ = (27rvi ^ exp (~ vx /2vl )# Initially we have mv =

2
mivj_ • Thus,the initial electron random energy density in the perpen-

— — 2dicular plane is nTQj^ = nm v . Electron parallel and ion initial
— 1—2random energy densities are nT ,. = r nm v . The mass ratio used

oil 2 e e

in this case is

to = to ,
pe ce

m /m = 100. Furthermore, to ./to =0.1 and hence
i e pi ce

At t = 0 the external electric field, E _ = E sin(tot) y >
' ext o o• • J

is applied uniformly across the system. Throughout our investi

gations, we have to = to .. The strength of E is indicated by

the ratio of the drift speed to the electron thermal speed;

E /B v .
o o e

Table 1 summarizes the numerical and physical simulation

parameters described in the present and the preceding sections.



IV. REPRESENTATIVE SIMULATION RESULTS

Using the model described in the previous sections, we have

investigated the dependence of plasma heating on 9 and the param

eter E /B v . For 9 = 0, we have E /B v = 5,7,8.5 and 10. A
o o e o o e ' '

small 9 is then introduced to see the effects of electron parallel

-*• 1/2
(to B ) motion. For 9 = (m /m.) = 0.1, we have E /B v =7

o e l ' o o e

and find the heating dynamics rather similar to those with 9=0.

With a larger 9(9 = 0.25), and E /B v =5 and 7, the dynamics

become entirely different from the previous ones. The results of

three representative computer experiments are described in the

following subsections.

(a) 9=0 and E /B v =8.5. Fig. 2 shows the time evolu-
Q P e 6

tion of the electrostatic field energy as well as the electron and

ion spatial-average (perpendicular) kinetic energies relative to their

respective spatial-average mean velocities, which we call (per

pendicular ) temperatures. (Note that this is a spatial-average tem

perature.) The field energy increases with several interesting fea

tures: (1) the over-all growth rate is exponential over about four

orders of magnitude with average growth rate 0.4to .; (2) the growth

rate is first rapid then slow, with the larger rate occurring at the

the peaks of the electron drift speed, and (3) there are high-fre

quency (~1.4w ) structures. These observations clearly indicate the
pe J

excitations of instabilities when the electron-ion relative stream

ing speed exceeds a certain threshold value. Further discussions on

the instabilities will be given in the following Section.

At about t = 12 T (electron cyclotron period), when the field

energy reaches an appreciable value e /n T ~ 0 (10~ ), both electron
w o X
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Fig. 2 Plots of (a) electrostatic field energy and (b) electron
and ion perpendicular temperatures versus time in semi-
logarithmic scales. The arrows indicate where the electron

isE fc x B drift achieves its peak value E /B . T ^
ext o o o ce

Here 9=0 and E /B^ v
o o e

the electron cyclotron period.

= 8.5.



10

and ion (perpendicular) temperatures begin to increase rapidly.

T , increases with a rate faster than that of T, . .e saturates at
ex i«L w

e /nT -10 at about t=26l ;T , /nT -65 and T , /nT ~8. At this
w,s ox ce ex,s oj. iJ-,s oJ-

time the rate of increase in temperature becomes much smaller.

Before the saturation, temperatures are well correlated with the

wave energy; that is, the rapid and slow increases occur together.

After the saturation, e stays more or less constant. Meanwhile,

T and T. increase at much slower rates,more or less linearly.
e± i±

The growth rates and the time evolution of the wave spectrum

of the first 15 significant spatial modes are shown in Fig. 3.

The growth rates are measured for t - 12 T where the fields are

- -2
small (£ /nT , ~ 10 ) so that these are considered to be the

w o-L

linear growth rates. The most unstable mode occurs at k E /B =
m o o

1.65 to. = 0.45 to .. Before the saturation occurs, the wave spec-
im pi

trum is sharply peaked at the most unstable mode. In the post-

saturation period the peak disappears and tie spectrum decays with

increasing wave number.

As shown by the phase-space (v vs. x) plots in Fig. 4, at

t ~ 18 T (e near saturation), the electrons are going rapidly into
ce w

vortex-like motion due to trapping inside the wave potential troughs.

(Earlier, the electron v - x space simply oscillates in v with

no structure along x.) Around the saturation time both electrons

and ions are well trapped. After the saturation, particles grad

ually smear out the ordered structures in the phase spaces and

are, hence, thermalized. Throughout the run, electron (perpendic

ular) velocity distribution remains roughly isotropic.
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Fig. 3 Plots (a) measured linear growth rates and (b) wave
spectrum at three different time steps vs. wave numbers
Here 9=0 and E /B v =8.5.

o o e
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(b) 9 =0.1 and E /B v =7. The time evolutions of field
Q Q e

energy, electron perpendicular and parallel temperatures as well

as ion temperature are shown in Fig. 5. Heating occurs mainly

in the electron perpendicular temperature; T /T - 43. Ion

heating is small, T. /T - 10. As to the electron parallel

temperature, its heating rate is even smaller. Near the end of

the run, t = 40 x .we find T ,, /T „ -5.6. The dynamics are
ce ell oil

rather similar to the previous 9=0 case. There, however, is

a difference in the unstable modes. Fig.6 is a plot of the measured

growth rates versus the wave numbers. While most of the unstable

modes occur around k E /B = 15.1 to . = 1.51 to with to. = 0.37 to .,
moo pi pe im pi

there is an additional unstable mode in the low-wave-number regime,

kE /B - 0.7 to . and to. - 0.2 to ,. As one increases 9 and/or
o o pi i pi

decreases E /B v , the low-wave-number modes become dominant;
o o e' *

this is the next experiment.

(c) 9 = 0.25 and E /B v =5. Fig. 7 shows the field energy
one 6

as well as the various temperatures as functioiB of time. Contrast

ing to the previous two cases, the field energy exponentiated with

a constant growth rate (no rapid then slow growth) 0.3 to ., indi

cating that the oscillating drifts exceed the instability threshold

for a large fraction of the time. Also, the oscillating structure

is of low frequency (~ 2(0 .). As the wave energy grows, tempera

tures increase rapidly. Around t = 32 t waves begin to saturate,
ce

e /n T .. - 25. About the same time the rate of heating decreases
w,s oil

appreciably; Te|,yTo|| ~ 140, T^/T^ - 30 and T^/T,,, ~75.



(b)

32

Time(rce)

Fig. 5 Plots of (a) electrostatic field energy as well as electron
perpendicular temperature and (b) electron parallel and ion
temperatures vs. time in semi-logarithmic scales.

1/2
Here 9 = (m /m.) ' = 0.1 and E /B v =7.

e i o o e
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Fig. 6 Plot of the measured linear growth rates vs. wave numbers

Here 9 = 0.1 and E /B v =7.
o o e
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40

Fig. 7 Plots of (a) electrostatic field energy and electron
parallel temperature and (b) electron perpendicular and
ion temperatures vs. time in semi-logarithmic scale.

Here 9= 2.5 (m /m.)1'2 = 0.25 and E /B v ° 5.
o o e
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Thus, electrons are mainly heated up in the parallel direction

and there is also considerable ion heating. After the satura

tion wave energy stays more or less constant while temperatures

slowly increase.

The measured growth rates and the wave spectrum of the first

significant 32 modes are shown in Fig. 8. Dominant unstable modes

have relatively small wave numbers with k E /B = 2.45 to . and
J m o o pi

to, =0.37 .. There are also unstable modes at larger wave numbers;

kE /B-1.47to and to.-O.lto .. Before the saturation the spectrum is
o o pe i pi r

sharply peaked around the fastest growing mode. As the waves sa

turate the peak disappears and the spectrum decays with increasing

wave number.

Various phase-space plots of electrons and ions are illustrated

in Fig. 9. v v is the velocity component in the y x B direction

(referring to Fig. 1). Around the saturation both electrons and

ions are well trapped. Electron trapping and heating are mainly

along B . Before the saturation, the dominant perpendicular elec-

tron dynamics are in the y direction rather than in x'. As the

waves saturate, particles begin to smear out the phase space and aire

gradually thermalized. Meanwhile, electron perpendicular velocity

distribution becomes more isotropic.

We now summarize the contrasts among the above three represen

tative computer experiments:

(a) 9=0 and E /B v = 8.5. (Parallel motion is ignored.)
• q o e •

The instability has rapid-slow growth, with rapid growth occurring

when the speed of electron-ion relative drift is near its peak
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value, E /B . Unstable modes occur near k E /B = 1.65 to
o o moo pe

There is strong heating in the electron (perpendicular) temperature.

Ion (perpendicular) heating is small. Electron (perpendicular)

velocity distribution remains approximately isotropic.

(b) 9 = 0.1 and E /B v =7. (Ions are unmagnetized.) The

results are similar to those of experiment (a) except there is an

additional low-wave-number (kE /B - 0.7 to ,) unstable mode. Elec-
o o pi

tron parallel heating is rather small.

(c) 9 = 0.25 and E /B v =5. (Ions are unmagnetized.)
Q 0 e

The instability has a uniformly exponential growth. The dominant

unstable mode occurs at small k; k E /B =2.45 to .. There are
moo pi

also unstable modes at larger k; kE/B =1.47 to . Strong heat-
° o o pe

ings occur in electron parallel and ion temperatures. Before the

waves saturate, electron dynamics in the perpendicular direction

are mainly in the y(£ x B ) direction.

These results, thus, suggest the following pictures:

(1) instabilities are excited by the electron E/B drift through the

ions; (2) for small 9( S^m /m. ), the dominant instability is at

larger k and has a threshold in the drift speed near v£ ; (3) in

creasing 9 shifts the dominant instability to smaller k with a

much smaller instability threshold; (4) as the wave energy becomes

large , particles execute vortex-dike motion in the phase space

(i.e., they are trapped by the waves) and rapid heatings occur;

(5) the dynamics of particle trapping and, hence, heatings are

different for the two types of instabilities described in (2) and

(3).
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V. THEORIES AND COMPARISONS WITH SIMULATION RESULTS

In this section we seek to understand the simulation results

on a theoretical basis. First, linear instabilities due to a steady

electron-ion relative drift are analyzed. Then we examine the non

linear evolutions of the instabilities and estimate the relevant

physical quantities. In each stage, simulation results are compared

with the corresponding theoretical predictions and estimates.

A. Linear Instability. The theoretical model considered here

is sketched in Fig. 10. The plasma is Maxwellian with T ~ T. .

It is the same as the simulation model except that (1) for convenience

we choose here to work in the electron frame (electrons not drifting)

and (2) instead of having E to provide the drift, we assume that

the ions have a steady drift U in the xr direction (that of U =

"*• "*"
E . x B ). Here U is assumed to be much greater than v^. Electro-
ext o ° e

static waves with |to — k«Up» to . are considered; therefore ions

are treated as unmagnetized. This model (or similar ones) has long

been the attention of theoretical studies on drift-excited electro-

9-13
static instabilities in magnetized plasmas. Here we redo some

parts of the theory so that the results are more applicable for com

parisons with the simulation results. Specifically, we look for

(1) hydrodynamic non-resonant instabilities and (2) how the proper

ties of the instabilities change as 9 changes. Assuming kv /to < 1,

|to - k*u| > kv. and |to| > k^v ; i.e., ignoring resonant particles

effects, we can treat the plasma in the fluid limit. (These assump

tions are justified by the results obtained later.) The dispersion

relation then is



A

y Electron frame

k|| =k
kj_=kcos0

Ux'don drift)

Fig. 10 Theoretical model for drift-excited instabilities.
Electrons have no drift: T ~ T. .

e i



2 2 2

1-cosZ 9--Pe -sin2 9 §£.._ . P* , Q m
to2 - to2 a)2 (^k U cos 9)2 °' (1>

ce

This dispersion relation was first investigated by Buneman?
2The term cos 9 2pe 2 is due to the electron polarization

to - to o

ce « toZ
drift across the magnetic field, while sin 9-HS_ comes from

to

electron motion along the magnetic field. Corresponding to our

simulation parameters; m /m. = 0.01, to /to = 1, to = 10 to
e i pe ce » pe pi

and three different values of 9, (1) is solved numerically. The

unstable roots are shown in Fig. 11.

The existence of high-frequency (a>r £to^) instability (here
after called upper-hybrid two-stream instability) was predicted

9

by Buneman. The frequency and growth rate of the most unstable

mode for 9 « i are

? o 1/2
k U cos 9 ~ kU = toTm = (co Z+ to2 )
m m UH v pe ce7

1/6 1/3

% =°'69 V <VV (Wpe/V (2)

and "rm = %E - °'4 V <W (a,-/wim)
1/6 1/3

pi ^ 1- e> <VW

These predictions agree with the numerical solutions. With

"ce " V >6 K< 1 and ^2- w2 we have

15
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2 2 2 2
9 W«o 9 W«^ 9 W Wsin2 e-JBi .e2 -E| « cos2 9-g£—=• ~ -J2£

,2 2 2 2 2 2
to to to -to to -to

c ce ce

(Parallel motion term ) « (Perpendicular motion term).

Thus at least during the initial stage of the instability electron

motion is expected to be mainly in the perpendicular plane. Drop

ping the parallel term, (1) approximates as

to 2 to 2 (3)
1 - Pe - EL_ c o

2 2 2
to -to (to- kU)

Hence, for this instability there is little difference in dynamics

between 9=0 and 9 « 1.

As 9 becomes non-zero, a new branch of the instability begins

to emerge at low frequency (to ~ to .) and low wave number (kU ~ to .)

13
This instability was predicted by Krall and Liewer and has been

1/2
called a modified two-stream instability. For 9 - (m /m.) « 1,

the frequency and growth rate of the fastest growing mode are given

by

to
ce

to ~ to. - to .
rm im

and k U ~ to
m rm

piaJUH

(4)

Our numerical solutions agree with the above results. An attractive

feature of this instability is its low threshold for drift speed,



as follows. Unlike upper-hybrid two-stream instability which

requires U > vfi , modified two-stream instability only requires
T ")1/2 13 9U>^(Te +Ti)/mi J ~v± for Te ~T± . With 9Z « 1and

2 2
W " wDi » (1) is approximated as

2 2 2
^UH ,2 V_ e2 _££ _ El— - w -*- , * 0 . (5)

wce w (w - kU)z .

Hence electrons are free to accelerate only along the magnetic

14
field and, as recently pointed out by Ott et al., electrons

2/i 2 «-2
_ : /kii = m P

e e » e
behave as if they had an effective mass m^ = m^ k /kjj = m^9

17

Meanwhile, electron perpendicular motion is mainly E/B drift

induced by the wave electric field. Due to the effective increase

in electron mass, one then expects stronger ion responses. All

the above properties have been observed in the simulation works

of Ott and others.

As borne out by Fig. 11, m and the spectrum width in k

of the modified two-stream instability increase with 9, while those

properties of the upper-hybrid two-stream instability undergo little

change. Modified two-stream instability thus becomes more dominant

as 9 increases. However, in order to avoid electron Landau damping

(to > v k sin 9) , it is necessary to have 9 < 9 ~ tan (U/v ).

For U/v - 1, this condition can be satisfied for a wide range of 9.
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Based on the above discussions, we can begin to understand

the linear instabilities observed in simulations. For 9=0 the

instability excited is the upper-hybrid two-stream instability

with theoretically kU- toTTTT and ULm and Ui. - 1.2 to . . For
J m UH UH lm pi

a sinusoidally oscillating electron drift (as in the simulations),
E

U(t) - — sin to t , one then expects that this instability will
o

be excited during the fraction of the cycle when the drift speed

exceeds the instability threshold value (see Fig. 12). Since

•^ji£i = 0at|u(t)| =Eo/Bq, therefore |u(t)| = Eq/Bo
for the longest period during each oscillating cycle. Thus, only

the waves with waves numbers |k| ^to B /E will have the longest
UH o o

growing time during each cycle and, hence, will be the dominant

mode, i.e., k E /B -to is expected. Furthermore, the insta
rn o o UH

bility will grow in a stepwise fashion as observed in the simula

tions. Since the two oppositely-propagating waves with k= i^mr

B /E will grow only during each half cycle, the growth rate is
° ° TT-29

expected to be to. =0.5 ( °- ) 1.2 ui 4+0.05to . Here 9 =sin
lm 7r pi o o

(v*.u i,Aj)> anc* ln our case we have q _ v /U«l and uk ^0-65o)
tnresn o e im pi.

Fig. 13 is a plot of k E /B and to. vs. E /B v , respectively. The
moo im o o e r J

average measured value of k E /B is 1.6 to . The discrepancymoo pe r j

with the theoretical value, 1.4 to , may be due to the discrete-
pe

ness of the wave numbers. For E /B v >8, to. approaches a cons-
o o e ~ im

tant value, 0%45 w . ; which is close to the estimated value,

0.65to j. As E /B v decreases below 8, to. decreases, more or
pi o o e im '

less linearly toward zero. That waves propagating in opposite

directions are excited may create certain standing waves and,
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Fig. 13 Plots of measured (a) k E /B and
mo o

(b) ^im^pi vs' We ' Here 0"°-
The solid line indicates the theoretically

estimated value.
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therefore, explains the oscillating structures seen in the simu

lations.

For non-zero 9 ,the emergence of low-wave-number instability

in the simulations is due to the presence of modified two-stream

instability. For small 8 , e.g., in experiment (b), this insta

bility has relatively small growth rate and narrow spectrum and,

therefore, the dominant instability is still the upper-hybrid two-

stream instability. As one increases 9 and reduces E /B v

(i.e., the growth rate of the upper-hybrid two-stream instability),

modified two-stream instability will take over and become the

dominant instability. This is what we have observed in experi

ment (c). The measured value of ^Q/^0 is 2.45 topi ,while the

estimated value is 2.25 to . . The agreement is rather good.
pl

Furthermore, due to its low threshold ~ v^Fig. 12), this insta

bility has a constant growth rate and the observed maximum growth

rate is 0,37 to which is close to the estimated value, 0.5x0.54to .

+0.05(0 =0.32to ..
pi pi

B. Nonlinear Evolutions. As suggested by the simulation re

sults, the nonlinear evolution of the excited instability is

strongly associated with particle trappings

by the observed rapid heatings as well as the saturation of the

instability. For each instability, the trapping dynamics and heat

ing are different. Using trapping arguments, we therefore have

constructed nonlinear theories for the two types of instability

mentioned above.
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!• Upper-hybrid two-stream instability. Since, as suggested

both from the simulations results and the linear dispersion rela

tion, this instability interacts with electrons mainly in the per

pendicular direction, we take the wave vector, k, to be perpendicu-
i "*" -friar to BQ and ignore electron motion along B . The approach used

here is similar to that of Forslund et al.,15 except here we have

kre = kve/toce « 1 (i.e., the instability is non-resonant).

A sketch of wave and particle force potentials in the elec

tron frame shown in Fig. 14, for use in modelling electron trapping.

The model is not wholly self-consistent. Let us consider those

electrons which have guiding centers at x = 0 and temperature T =

2
m v . The electrostatic wave, <|>(x,t) a $ cos(kx-tot), propagates

in the x-direction. Here $ is assumed to be a constant. Since the
o

spectrum is sharply peaked at the fastest growing mode, we take

to = to - to.— and k = k = bL-./V. Thus the wave phase velocity

is to/k - U » v . The motion of electrons then can be determined
e

- 2 2
from the combined potential, <|> = -etj) + m to x /2, due to the wave

potential and the magnetic field. Away from x = 0, the Relative

effect of the wave potential becomes weaker due to the increasing

v x Bq force and, eventually, the combined potential troughs vanish
o

at |x| = xv * ek<J>0/meWce <v here stands for vanish) where, physi

cally, the wave electric force equals the magnetic force due to B .
o

Since kr£ « 1 electrons sample only a small portion of a single

potential trough. The time during which an electron sees a single

trough is T - A/2U ~ ir/to - ^/^yu' In the absence of B , an electron

will be trapped if during this time period T it can execute several



ITUGuL X2/2

Fig. 14 The non-self-consistent model of electron trapping by a
longitudinal electrostatic wave propagating perpendicularly

to S The model is in the electron frame. T is the
e

electron random kinetic energy before the electrostatic wave
is imposed; thus, the intersection between T and the magnetic

well indicates the Larmour radius. That the wave through
is in phase with the magnetic well is for the convenience
of illustrating the concepts.
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bounce oscillations inside the trough. With the magnetic field

present, however, a trapped electron can only stay in the travelling

trough for a period x /U before it is released from the trough to
v

execute cyclotron motion. Thus efficient electron trapping happens

only if

T > x (electron bounce period) < x /U . (6)

2 1/2Here Tfie = 2ir(me/ek (j)Q) is the unmagnetized bounce period and

a justification of its use is that for |x| - x wave electric force

dominates over the magnetic force. The condition T ~ T requires

e*o *V2 (7)

while x /U £ t_ requires
v Be n

e(J>0 - *eU (a)ce/a)) <8>
4/3

The required trapping potential is hence the larger one of the

above two values. In the case here with (j) ~ ol we have

2
e(j>tr~ meU ; that is,the trapping potential is the same as if the

magnetic field were absent. It is interesting to note that for

a low-frequency (to < toce) wave the required trapping potential is



4/3 ->(wce/co) times larger than that without B . With relation (6)

satisfied, an electron will then be trapped inside a wave trough

and carried by the wave to climb up the magnetic force potential

until x - x . At x - x , the combined potential trough vanishes

and this trapped electron is released with an increased kinetic

energy

1 2 1 , x2 1 2 /Qv
2 me Vrel = 2me(u)cexv> - 2meU ' (9)

For Maxwellian electrons and U » v , therefore, it is ex-
e

pected that the bulk of the electron population will be trapped

when, phenomenologically,

e<j> =i in U2 . (10)
e,s 4 e

-1 -1 -1
Since at e<j> , T_ ~ Oi. « to. ~ to . the linear instability

will be stabilized by the significant number of electrons executing

nonlinear trapping orbits inside the troughs. Meanwhile, the

electron perpendicular temperature at the saturation will be

-f**2- =(U/ve)2 (11)
OX

T
ceSince . ~ ^tjtt/w = 1.4 ~ 1 and the released electrons execute

v

cyclotron motions, the velocity distribution will be roughly iso

tropic.

22



As to the effectively unmagnetized ions, the usual trapping

arguments predict ion trapping when

e*l,s=|mi (a)rm/km-U)2 • <12>

Using (2) and (9), we have

e*, _ 2/3 1/3

6 * S

23

For m./m = 50 and 100, e<J> /e* ~ 0.35 and ions, therefore,' e,s 1/2
will be trapped before the electrons. However, T /t = (m./m )

and trapped electrons execute many more nonlinear bounce oscilla

tions than trapped ions. Therefore it is mainly electron trapping

that stabilizes this instability. The wave energy at the satura

tion then is

2 2 2

Gw s £ e * l 2 2 2ff~ «-? ^ =i6- (V/to ) (U/ve) =0.13(U/ve) . (14)
n i n m v r

oJ. e e

•1 I r\ .

Fig. 15 plots the measured (e /n T ) and (T /T 'J
w,s oj. v el,s oxJ

versus VBoV The agreements with (11) and (14) are rather

good, considering the many uncertain constants involved.



8 12

E0/B0ve

1/2
Fig. 15 Plots of the measured (a) (T 4 /T ) and

el s o j;

1/2
(b) (e /n T ) ' vs. E /B v . Here 9=0.

w,s ox o o e

The solid lines indicate the theoretically estimated
values.



Since heating is a consequence of particle trapping, simula

tion results suggest that a possible explanation for the small-

ness of the observed ion heating is due to the large ratio,

TBi^TBe* Therefore a rough estimate of ion temperature at the

saturation is

T. . T , m 1/2-J^lS b ex,s (_e.
T 2T V; » U^
ox ox i

24

which gives values in the same orders of magnitudes as the meas

ured values.

b. Modified two-stream instability. In this instability elec-

trons mainly move along the magnetic field and, for 9 « 1, can
_ 9

be considered as having an effective mass, m = m /9 . Corres-
e e

ponding to experiment (c), numerical solutions of the dispersion

relation indicate that the fastest growing mode has

to = 1.54 to .
rm pi

k U = 2.2 to .
m pi

(16)

and hence a phase velocity 0.7 U in the electron frame. Since

Bq does not affect parallel motions, electron trapping potential

is



ecj> =y m (to /k )2 = 2 m U2 . (17)
Te,s 4 e v rm me v '

For ions we have

25

i, s 4 1 rm m e

Thus ecj>. /ecf) ~ 1, and electrons and ions get trapped at about

the same time; this is in contrast with the early case where

e<J>. < ecj) and ions get trapped first. Furthermore, because
X y S 6 y S

- 1/2
TT>-t/Tu = (m./m ) ^ 2.4 electrons are still more "responsible"
ci ise i e

for saturating the instability than the ions. The ions, however,

play a more important role in the stabilizing process than in the

earlier case where t_./t_ ~ 10. From (17) the electrostatic field
Bl Be

energy at the saturation then is about 2 times higher than the

earlier value

e 9
-^- = 0.4 (U/v )Z . (19)
n Toll e

Meanwhile, the parallel electron temperature at saturation is ex

pected to be

T„ m (to /k )2 =8(U/vJ2 . (20)
ell 9 s e rm m e'

T
oil

Again, t_,./t_ - 2.4 suggests an estimate of ion temperature is
ci be

T. T M ml/2 9
tT^« (i—^-) (~) = 3.3 (U/vJ2 . (21)
Toll Toll mi e
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1/2 1/2Fig. 16 shows (ew>s/n T0„ ) ,(T.H ,./!„,, ) and
(T /n T .>1' for E /B v =5 and 7. Although the data are
i,s oil o o e

insufficient to completely confirm the above estimates, they

appear to suggest that the temperature estimates are reasonably

good ; the actual values of e are about twice large than
w,s

the estimated values. (The whole procedure was only meant to be an

estimation anyway.) Since to « to , kr « 1 and electron trapping

is dominantly in the parallel direction, electron motion in the

perpendicular plane is then mainly the E xB drift.

For both instabilities, the post-saturation period is charac

terized by further thermalizations of the particles accompanied by

gradual smearings in the phase spaces as well as the disappearances

of sharp peaks in the wave spectra. So far we have developed no

clear understanding about this part of the heating cycle.



0 4 8
(a) E0/B0ve

i 1 r

0 4 8
(b) E0/B0ve

4 8
(c) E0/B0ve

1/2
Fig. 16 Plots of the measured (a) (e /n T ., ) ' .

w,s oil '

(b> <Tet. (STC>>1/2 and <<=> <Ti,s/T° )1/2 vs- Eo/Bove •
1/2Here 9 = 2.5 (m /m±) ' =0.25. The solid lines indicate

the theoretically estimated values.
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VI. COMPARISON OF HEATING WITH AND WITHOUT B
o

As the heating without B has already been investigated in

simulation by Kruer et al., it is desirable to compare their re

sults with those with B . This Section is only a cursory compa

rison, not meant to be exhaustive.

In both simulations, the heating is done by a large-amplitude

E applied at frequency to -to .. The major comparisons sought are

(1) the threshold valuesof E needed to excite the instability and

(2) the value of nKT ,nKT. at wave saturation. The results show
e i

that ion heating is largest with B present and the modified two-

stream instability excited. The details of the various heatings are

shown in Table 2 , which will now be described.

16
For B =0, the simulation of Kruer et al. shows that the or-

o

dinary two-stream instability is excited and at wave saturation the

electron thermal velocity reaches the maximum drift velocity (i.e.,

2 2
KT * m (eE /m to ) , or nKT ^ (m./m )e E with to -to . as given in

e,s e o e o e,s i e o o o pi °

the table). The ion thermal velocity at wave saturation is estimated

to be v. * (eE /m to )(m /m.) from T. /T = t_ /t« .;
i,s oeoei i,se,s Bounce,e Bounce,i

which quantatively agrees with the result given by Kruer et al., in

their Fig.l. The threshold value of E here is E _. , ssv . .^. ,•
° o o,thresh e,initial

(metopi/e)-Bove>in±tial(topi/toce)> f{)r uge later where B^ 0#
1/2For B ^0 and 9*(m /my , we have found that the upper-hybrid

two-stream instability is excited. At wave saturation, electron



TABLE 2. Summary of various heating results using large-amplitude
low-frequency electric field with and without B . If we choose
r\ / O
9 - m /m^ for the modified two stream, then the electron and ion

temperatures come out to m./m ; the ion heating is better by y/m./m
than for B =0.

o

B = 0
o

Ordinary
2-stream-

instability

e < £*•
V mi

upper-hybrid
2-stream

instability

Bo^0

1 > 9 >V —
m.

i

modified

2-stream

instability

Driving
Frequency

to
0

to ^ to .
o pi

Maximum

drift velocity
U
max

eE
o

m to
e o

E
o

B
o

E
o

B
o

Threshold

conditions
U > v
max e

U > va
max e

1

U > v.
max l

me

mi
e«E? *.u u/nKT .. .o o,thresh e,init

me
mi

Electron tempera
ture at wave

saturation

(nKT le E 2)
e,s o o '

m.
l

m
e

perpendicular

1

parallel

e~2

Ion tempera
ture at wave

saturation-

(nKT. /e E )
1,S o 0

(perpendicular) [Perpendicular)

/ me "3

V^ e\K \fY

2 2
E . = E sin to t. to =: to . Initially, m v ^ m.v.
ext o o pece -"ee ii
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2
perpendicular thermal energy is increased to nKT a e E and

ex,so o

1/2 2
nKT „-(& /m.) e E . Here we have assumed to -to .In this

ix,s e i o o pe ce

case, E ^B v ..,..-.
o,thresh o e,initial

1/2For Bq^0 and l>9>(me/mi) , our simulations show that the

modified two-stream instability is excited. At wave saturation,

2 2
electron parallel thermal energy is increased to nKT ase E 6

en,s o o
9 _o

and ion (perpendicular) temperature increased to nKT. ^e E 0 •
i,s o o

1/2
(m /m.) . Here,again, we have assumed ui ^to .If we, optimis-

e i pe ce

tically, assume 9* y/m&lm± ,we then have nKT =;nKT =(m./m )•
2

e/A»# The corresponding E . , is about Bv, . . ,=B v ... ,
° o r o,thresh o i,intial o e,initial

1/2 2 2
(m /m ) -B v . ,(w„.|/to Jfor m v . ... ,=an.v. . _. - and
e i o e,initial pi ce e e,initial i i,initial

^pe'^ce*

From the point of view of maximum temperature obtained at wave

saturation, we see the following comparisons:

(a) For B =0, the electrons are heated more than the ions by a
o J

1/2
factor of (m /m ) , implying production of a hot electron plasma.

(b) For B #) and the upper-hybrid two-stream instability ex

cited, the heating is smaller by a factor ofJm /m. for both elec-
v e i

tronsand ions than the B =0 case.
o

(c) For B ^0 and the modified two-stream instability excited,

the electron heating is the same as in the B =0 case, but the ion

1/2
heating is (m./m ) times better and T sT, .

i e e,s i,s

(d) As to the threshold value of E , the heating with B ^0

and upper-hybrid two-stream instability excited requires a value

1/2
(m./m ) times larger than that for the B =0 case as well as the

J. c O
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case with B ^0 and the modified two-stream instability excited. The

threshold values of E for the B =0 and the modified two-stream in-
o o

stability heatings are about the same .

Hence, based on the conditions chosen, it appears that much

more effective ion heating can be obtained by adding the steady mag

netic field and ensuring that the modified two-stream instability is

1/2
excited. The advantage is roughly (m Im.) in ion heating over the

B ^0 case, an advantage well worth taking.

It is also worthwhile to put in some numbers in order to get a

feeling for the magnitudes involved. Taking a gaseous deuterium

,14plasma with n^lO (cm ) and^m. /m -60, then the driving frequency
9

required is f =f .-1.5x10 Hz. The condition thatto -to means B
o pi pe ce o

=* 30 kG. In order to heat the ions, the modified two-stream insta-

2
bility heating is chosen, which produces nKT -(m./m )e E .at

2 5
wave saturation. Using KT -10 keV, this requires e E =10 Joules/

3 _ ? 6
m or l =10*' V/m (=10 V/cm). Since the heating is generally

accomplished within several ion plasma periods, say, 5x ; the

-9
required pulse duration is roughly 3x10 sec. This implies deli-

5 3-9 13
vering 10 Joules/m in 3x10 sec or about 3x10 Watts per cubic

7 3
meter of plasma (3x10 Watts per cm ). The next steps (not taken

here) would be to choose a possible pulsed reactor size and con

figuration, working out method of producing E within the plasma

(by electron beam or wave propagation); however, without these

answers it stil. appears that these parameters ( K -10 V/cm, a ~

30 kG, f ~1.5GHz, nlasma size not clear) are not terribly bevond
o

present canaM lilies.



VII. CONCLUSIONS AND DISCUSSIONS

We have shown with one-dimensional computer simulations

that a large-amplitude (E/B > v ) low-frequency (to ~ to .)
o o e ^ J o pi

electric field E = E sin to t when applied across a constant

magnetic field B can efficiently heat the plasma (electrons

as well as ions) to high temperatures. The heatings are the

30

results of instabilities excited by the electron E x B
ext o

oscillating drift through the ions. The plasmas considered here

are Maxwellian, with initial T * t and to = to
e i pe ce .

»For waves propagating perpendicularly to B (9 ~ -r— = 0),

Buneman-type upper-hybrid two-stream instability (kE /B ~ ol )

is excited. This instability has periodic growth with maximum

growth when the drift speed is near its peak value E/B . As
o o

the wave energy increases, electrons become trapped and their per

pendicular (to B ) thermal speed is rapidly increased to ~ E /B .
° o o

While the ions are also trapped, their perpendicular temperature

1/2is relatively small, about (m lm±) \ that of the corresponding

electron value.

For waves propagating obliquely to B (9^0), the ions are

treated as unmagnetized in the simulations and in addition to the

upper-hybrid two-stream instability the modified two-stream in

stability emerges at low wave numbers (k E /B - to .). This in-
oo pi

stability has nearly a constant exponential growth due to its

low threshold, ~ vi . As 9 increases, the maximum growth rate as

well as the spectrum width (in k) of the modified two-stream in

stability increase. These properties of the upper-hybrid two-stream
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instability, however, have little change. Thus, with 9 small

(roughly 9 <^m /m.) the upper-hybrid two-stream instability still

dominates and the dynamics are rather similar to the 9=0 case

with little electron heating in the parallel direction. As 9

becomes larger, however, the modified two-stream instability be

comes dominant. For this instability electrons mainly respond

in the parallel direction and can be thought of as having an

_ 2
effective mass, m = m /9 . As the waves get stronger, electrons

become trapped in the parallel direction and their parallel thermal

speed is increased to - 0,7 E /B 9 ~ 0.7 (k/k,| ) (E /B ) for

1/2
9 = 2.5 (m /m.). Ion "perpendicular" heating is about

1/2
(m /m.) of the electron parallel heating.

We also compare the above heating results with B ^ 0 with

those of B =0. The comparisons indicate that ion heating is

largest if B ^ 0 and the modified two-stream instability is

excited.

In real laboratory experiments, waves propagating in all

directions can be excited. Because the modified two-stream is

active for a range of 9 wider than the upper-hybrid instability,

and its maximum growth rate increases with increasing 9 at least

when 9 « 1, it therefore, is expected to be dominant over the

upper-hybrid two-stream instability. Thus, efficient electron

parallel and ion heating can be expected. That electron heating

is mainly in the parallel direction might be a problem for mirror

confinement.



Since the instabilities discussed here are excited by

large-amplitude drifts and not by parametric effects, we expect

the results obtained here with to = to . to hold also for to 's
o pi o

other than to . ; that is, the pump frequency need not be finely

tuned as in parametric excitations. This expectation, however,

remains to be verified.
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Note: Sometimes one wishes to find a name that describes the

phenomenon being used, simply to avoid long titles like that of

this paper. The process described herein is that of making an

oscillatory drift which then sets up an instability, which then

causes heating. So, one could name it Drift Instability Heating,

DIH. Or, one could call it Heating by Oscillatory Drift, HOD.

Indeed, in Webster's Third New International Dictionary, 1964,

under "hod", one finds the root of the first meaning to come from

"to shake", "to shake up" and the second meaning "to bob up and

down". Hence, if a name is to be chosen for this form of heating

(e. g., to go along with other forms of heating, like ECRH,

electron cyclotron resonance heating), then it is suggested that

HOD be used.



APPENDIX 1. Further Descriptions of the Simulation Techniques.

(a) Poisson's Equation. Poisson's equation, in its three-point,

one-dimensional difference form is

Vr2VVi=-(Ax) pj/£< (A.l)

Here j is the index for the grid points and Ax is the dis

tance between two neighboring grid points. The self-consistent

electric field then in

E. =-«J+1 "Vl)7 ^ (A.2)

Applying Discrete Fast Fourier Transform to a system with

2N grid points and periodic boundary conditions, we can express

<b. and E. as
J 3

N-l

P = £ p (k)cos(7Tjk/N) +p (k)sin(7Tjk/N),
J k=0 s

N-l
> j=0,..,2N-l. (A.3)

E = E g (k)cos(7Tjk/N) + g (k)sin(TTjk/N);
J k=0 s J

Substituting (A.3) into (A.l) and (A.2), one obtains the following

relations



p8oo
Ec(k)~" 2tan(irk/2N) •

P. 00
E_(k)=-

sv ' 2tan(irk/2N)

In our simulations, we use

k=l,...,N-l. (A.4)

p (0) = E (0) = p (0) = E(0) = 0.
o o C C

To reduce the short-wave-length noise, we do k-space

smoothing by multiplying E (k) and E (k) with a smoothing function

defined as

Sm(k) =exp [-(k/kQ)4] ; k=1,...,N-1. (A.5)

For 9 = 0 and N = 32, k = 20. For 9 ^ 0 and N = 64, k = 35.
o ' o

(b) Equation of Motion. The Cylrad Particle Pusher in its general

form is

v]_ = v(t-At/2) + qAtE(t)/2m,

*2 = *1 + flVV
"*• "*"...-•-»•

3 1 2 2' (A.6)
v(t+At/2) = v, + qAtE(t)/2m ;

where f =tan^At/2) and f. =2f/(l+f2B2) .
n Z ± 1



-»•->•-»• *

In our one-dimensional model withB=B ,E ^=E ^ y and
o ext ext J

Ett = Er x = E cos 9 x' + E sin 9 B we have using (xr, y, B )WW W W O O \ 9 J 9 Q/

coordinates

v ,.. = v f(t- At/2) + qAtE cos9 ,
x 1 x w

v - = v (t-At/2) + qAtE /2m ,yl y ' i ext

v t(t+At/2) = cos (to At) v t1 + sin(to At) v . + qAtE cos9 /2m,
x c x 1 c yl n w

v (t+At/2) = -sin(to At) v ,. + cos(to At) v .. + qAtE /2m, (A.7)
y c x jl c j cxl

vg (t+At/2) = vg (t-At/2) + qAtE sin9 /2m .

(c) Initial Particle Loading. For 9=0, the 6400 electrons are

divided into 32 groups. In each velocity group 200 electrons are

used to represent a 2-dimensional isotropic Maxwellian with 25

available speeds. The 32 velocity groups are then uniformly dis

tributed in space. The ion loading is similar to the electron

loading except ions are placed on top of electrons so that initial

noise is minimized.

For 9^0, the 14000 electrons are divided into 35 velocity

groups. In each group 400 electrons are used to represent a 3-

dimensional isotropic Maxwellian with 25 available speeds. The

35 velocity groups are distributed uniformly across the system.

For the 6060 ions, there are 60 velocity groups; that is, 101 ions



are used to represent a 1-dimensional Maxwellian. The ions are

then distributed uniformly in space.

In our simulations, the initial fluctuations are rather small,

£w(0)/nKT(0) a0(10"3). Although Eext is applied at t-0when
the plasma is not at thermal equilibrium, however, since the driving

field is so strong that we expect the results will have little dif

ference from those with E applied when the plasma is at true
"At

thermal equilibrium.



APPENDIX 2. Further Discussions on the Upper-Hybrid and Modified

Two-Stream Instabilities.

In this Appendix we analyze the dispersion relation in more

detail and show the results cited in Section V.

(a) Upper-hybrid two-stream instability. The corresponding

dispersion relation is

2 2
to to .

i - Pe - PJL_ K o t%\
2 2, itix2 U ' <3>to -to (to— kU)

This instability, therefore, arises due to the interaction between

the ion beam mode and the electron upper-hybrid oscillation:

to = kifTTT. As shown by Buneman, in this instability ions can be

treated as if they had an effective mass m. = m. w /^m* With

the effects of the magnetic field absorbed in m. , we then can,

in analogue to the usual two-stream instability, obtain the rela

tions expressed in (4).

Let us check the conditions on the validity of the fluid

approximations. The condition k v /to < 1 requires

v /U < to /to.m ~ 1 for to £ u) . (A-8>
e ce UH ce pe

The condition |to/k - u| > v. requires

v±/U <(me/m.)1/3 (w^/o^)473 • (A.9)

2 2
Corresponding to our simulation; m V ~ m.V. and to ~ to ,

e e l i pe ce*
we have (A.9) as

ve/U <(m./me)1/6 (to^/to^)473 . (A.9)'



(b) Modified two-stream instability. The corresponding

dispersion relation is

2 2 2
W TTO W 1 tO .-jSl ES_ sin2 e--JSL =o; (5)'
to to (to-kU)
ce

which can also be written as

- 2 - 2
to to .

l--f*--*^-9 =0 . (A.10)
or (to-ku)

> -22 2 222
Here, for to - ixi , to = to sin 9(to. /to.-.) - to sin 9

ce pe ' pe pe ce \JR pe
- 2 2 2 2

and to . = to . (to /toTTTT) ~ to ,, . Therefore, this instability
pi pi ce UH pi J

arises due to the interaction between the ion beam mode and a

modified electron plasma oscillation: to = to ~ to sin 9
r pe pe

Furthermore, (A.10) is the same as the dispersion relation for the

usual two-stream instability with an effective electron mess

- 2 2m = m /sin 9 = m (k/k|, ) ; and, therefore, we can ex

pect the following relations

to^^ ~|to-ku| ~wpe (mjm±)1/3 - tope(me/mi}/3(k|| /k)1/3 (A. 11)

and to ~ kU ~ to (k„ /k). (A.12)

(A.11) contains the dependence of growth rate on the angle

9=sin~1(k /k) ~k„ /k .



From (A.11) and (A.12), the conditions on the fluid approxi

mations are for k r /to < 1
e ce

v , to
e < JL- . _ce . (A.13)

U k„ to
11 pe

for to/kM > v
H e

U k„

and for |to-ku| > v.

^ < (me/m.)1/3 (k/k|( )2/3 (A. 14)
1/2 v*with k„ /k - (me/mi) , (A. 14) then becomes ~ < 1.
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