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ON CHANNEL CAPACITY*

by E. Eisenberg

Summary-- Necessary and sufficient conditions are given

for a set of input probabilities to achieve capacity in a memory-

less, discrete, constant channel. These conditions are then

applied to show that optimal output probabilities are unique and

all positive. With respect to the problem of calculating the

capacity of a channel, two approaches are discussed; the first

method considers the dual of the given problem, and in that case

the solution may be obtained by standard convex programming

techniques. The second computational method is heuristic and

is known to converge (in a finite number of steps) only when the

number of output symbols is two, yet there is strong evidence

to believe that with some modifications it can be made conver

gent in all cases with finite output (and input) alphabets.
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The problem of computing the capacity of a discrete, constant

channel is the following: given an m x n matrix P = fp..]> where

each row of P represents a probability distribution, to

find

maximizes

subject to

y = (y,. • • • »y ) which
1 m

F(y) = X y^ij loS
i»J

m

> o. 2. y. •=!•

P:
IJ

L? yspsj-l
(i)

In order to avoid inessential arguments we assume that each column

of P has at lease one positive entry. It should also be noted that the

logarithm is taken with respect to an arbitrary fixed basis b > 1.

We shall find it convenient to use the following abbreviation:

n

r. = J p..
1 j=l 1J

log p
ij

In these terms, the function F may be expressed by:

m n

F(y) = I y.r. •-•• 2
i=l x x j=l

m

1
i=l

y.p.-
i ij

log
m

Z ySP8is=l s SJ

(2)

(3)

That the problem described by (1) is nontrivial in general can be

seen from the fact that in Ref. 4, p. 136 it is stated incorrectly that

y is a solution of (1) if, and only if,
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and

n

C=r4 - X Pii loS

m

y > 0, £ y = 1.
itl *

m

£ yspsi
s=i s J

for i=l,-.. . , m

That (4) need not hold for any optimizing y can be seen by

taking

P =

1 I
2 2

(4)

It is readily checked that in this case y =(1753)"1 (1163, 590, 0) is
the only optimal y and the first condition in (4) is violated when

i = 3. Furthermore, a procedure advocated in Ref. 4, p. 139 for

finding a solution of (1), and based on (4), may yield an incorrect

answer. The procedure in question is this: solve (4) without re

quiring y > 0, (it is not clear that a solution will always exist); if

it turns out that y > 0, then we have a desired y. The difficulty

arises in case some y. turn out negative. It is then suggested in

Ref. 4 that one solve the m problems generated by (4) when let

ting one y. = 0 at a time. If any of the y's thus obtained satisfies

y > 0 then the one with largest F(y) is accepted as a solution to

(1), otherwise set two of the y.'s equal to zero, etc. It is not clear

whether the first relation in (4), for that y. which is zero, is re

tained or not. If it is retained one is certainly going to be in trouble
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as can be seen from the example cited above. If the particular rela

tion is omitted one may get into difficulties too in case two of the y's

must be zero at an optimum. This will be the case when:

P =

1

2

1

2

1 2

3 3

3 5

8 8

3 5

8 8

With respect to (4) the correct statement is:

Theorem 1: The vector y is a solution of (1) if, and only if,

m

y > 0, £ y =1
i=l

m

7 yp.: >o , all j = 1,. . . , n

n

F(y) > r - X p..lQg
1 j=l *J

m

^ ysPsi
8=1 . SJ

(5a)

(5b)

, all i = 1, ... ,m.

(5c)

A proof of Theorem 1 will be found in the appendix.

In order to relate conditions (4) (which are sufficient, but not

always necessary, for capacity) with Theorem 1 we observe that if

one multiplies (5c) by y. and then sums over all i one obtains
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F(y) > F(y), thus equality must hold in (5c) whenever y. > 0, but the

crucial point is that when y. = 0 (5c) must still hold, though it may

turn out to be a strict inequality.

A fundamental tool needed to establish Theorem 1, as well

as other pertinent results, is the following well-known

Lemma 1: Let a., b. (j = 1, . . . , n) be given (real) numbers
11
J J n

which satisfy a. > 0, b. > 0, all j, and Si=1. a. >. 0. • Then, .•
J - J J J

n

]> a log
b.

n

lb,
k=l

n

< ^ a log
~>1 J

a.

J

n

I ak_k=l

(6)

Furthermore, equality holds in (6)£f, and only if, there exists a

number X. such that a. = \b. for all j = 1, . . . ,n.
J J

One of the important consequences of Theorem 1 and Lemma 1

is that if y and y' both solve (1). then,, even though y need not

equal y', we must have:

Theorem 2: (Uniqueness of optimal output probabilities): If

the vectors y and y' both satisfy (1) and if we let

then

m

q. = z. y-p••» <i'.-

m

= Z y1. P. » for a11 j = 1, • . • , n,
i=l

r- ij

q. = q! for all j.
J J

The proof is immediate: by Theorem 1 we know that

For details the reader may refer to Lemma 1 on page 13 and remark 2.i
on page 20 in Ref. 5.
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m n m

F(y) =F(y') £ £. yr - £ X Y^ lo8 *•
i=l j=l i=l J J

n n

i=l j=l J J

by Lemma 1. Thus, again by Lemma 1, there exists a scalar X

such that q. = \q! for all j =1, . . . , n. But S* q =S , q! =1,
J J J-1 J J"1 J

and thus X = 1, as required.

It should be re-emphasized here that the optimal input proba

bilities, i.e. , the y satisfying (1), need not be unique; this can be

illustrated by the almost trivial example when each p.. is indepen

dent of i (or equivalently, when the capacity of the given channel is

zero), and consequently any y satisfying y ^ o, 2i=1 y =1will

solve (1).

We now turn our attention to the problem of finding a solution

of (1), or of (5), in practice. It is known that the function F(y), in

(1) is a concave function, thus (1), its constraints being linear, is a

convex programming problem, and may be treated by standard methods

(Ref 2). However, we may wish to make use of a convex programming

method which requires that all functions in question possess gradients,

and clearly F is not necessarily differentiable at points where some

y. = 0. It is possible, though, to state a convex programming problem

which is, in a sense, equivalent to (1) and which enjoys the property

that all its functions are differentiable. The problem is:

find a and co =(<*>..,..., co )
1 n

which minimize or, subject to
n

a > r. - >_ co .p.. ,
1 j=i J1J

n a)

I e J <.l.
j=l
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The correspondence between (1) and (7) is: If y solves (1),

then a =F(y), co. =log (s^ y p .) solve (7). If or, co solve
CO . f" -- ^i*-"! -1"

(7), then let x. = e J sk=1 e and any solution y of

y = (y,.....y )> °1 m —

m

y y.p.. = y.» j = i»... »n
i=l

will then be a solution of (1). The important point is that, providing

a, co solve (6), there will always exist a solution of (8). The proof

of the above described equivalence between (1) and (7) is not diffi

cult, it may be established by using duality results for convex-

homogeneous programming (Ref. 1); in the appendix a direct proof

of this equivalence is provided. The interest of (7) lies, among

other things, in;the fact that in order to solve it one may apply any

convex programming technique which requires that all functions

entering the problem be differentiable, a convenient description of

some pertinent methods may be found in Ref. 6> : These methods,

being quite general, only guarantee that a solution is obtained as a

limit of a convergent process. Providing the convergence rate is

reasonable such methods are quite satisfactory from the practical

point of view. At the same time it would be of interest, both theoreti

cal and practical, to have a method which yields a solution to (1) in a

finite number of steps. We will now describe such a method, which is

(8)

In the appendix we use another form of (7) to prove Theorem 1; in fact,
it appears, and the reasons are not quite clear, that the most direct
way to prove Theorem 1 is to consider (7) rather than (1).
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known to yield a solution after a finite number of steps when n, the

number of output symbols, is two; it also may, with some slight

modifications, do the same for any n; this last is still an open ques

tion, and one of the purposes of this note is to draw attention to this

problem.

The algorithm is as follows: take any x = (x., . .., x ) such

that x. > 0 all j, and 2. , x. = 1. Next calculate
J J=l J

M = min - r. + T p.. log x. ,
l *- *ij j

1=1, . . . ,m L. j=l " -J

I=«U M =

n /p..

- I P.. log (-a
j-1 IJ \xj

(9)

The next step is to solve the following linear programming problem

find y = (y , . . . ,y )
l m

n

i
which maximizes ^_ y., subject to (10)

i=l

m

£. 0, 5 y.p..<x. all j =1, . . . ,n, y. =0 if i£ I.
f^iiii ii=l J J

m
Problem (10) always has a solution with y ^ 0 and 0 < 2 y. < 1.

If 2 y. = 1» then yP = x and we have a solution to (1). Otherwise,

u = 2. , y. is strictly between 0 and 1, and 2. , y.p.. < x. for some j,
r i=l 7i 3 i=l 'rij j J
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Let

where

j=- j

m

Z. y.p.. = x!
i=i *« J

j€j •> j€j J

\ = max

i m

•v ^—

X = max

i€l, s£l
or < (r.

s 1

X = max <VV2>

n

i=l

exp

y.p..i^ij

M - d"~
s

o\ ~
i

cr

s

__

a. = - I p.. log Mi .
1 j=i 1] \V

We now modify x according to the formula

x'. =
J

i-lx. [x + (1 - X)e]~ if j€J

x.x[x +(i - x)e] -1 if j^j

Next one recalculates M with the new x', then proceeds to (9), (10),

etc. This process will yield the answer [i. e. , a maximum of 1 in (10))
in a finite number of steps providing n = 2.
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APPENDIX

In order to prove Theorem 1 and to establish the correspondence

between (1) and (7) we require:

Lemma 2: Consider the following problem: find, if possible, the

minimum of the set

=V Hq =(q , •..,q.) >0with ^ q <[" | J 1 ^ j=l J-
n

and u > r. - > p..log q., all i=l, . . . ,m

J=l J J

We conclude that S always has a minimum \i and, furthermore,

if q = (q . . . , q ) are the corresponding quantities given by the

definition of S then there exists a vector y = (y,, . . . , y ) such that
1 m

m

^ 0> I Yi =
i=l ' 1

F(y) = \i and (11)
o

m

q\°' = 7 Y.p.. > 0, all j=l,...,n.\0,= 1 y.P..>o,
J i=l X 1J

Proof: We first show the existence of a minimum. Let \i be
o

the infimum of S» |x is well defined because S is nonempty and

bounded below; there must then exist sequences
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and .(*) _ , Jk) .(k)q = (q, t • • • »q )» for k = 1, 2, . . . satisfying
1 n

">
n

l(k)>0, 5qJk) <1

u > r - 2 Pii loS ^ ' a11 x
j=l J J

lim u, = ix
k o

k->co

V k = l,2,...

(12)

It is clear that every limit point of the sequence (q )k=l must be
strictly positive, because otherwise we would have |x = co; taking

q to be any limit point of the sequence in question it follows that

(12) holds for k = 0 as well, which establishes the existence of a mini

mum for S.

We next consider the system of inequalities in \i and

q = (qx. •• •»qn):

q. > 0 , j=l, . . . ,n
J

n

i- I q,>o

n

u - r. + > P..log q. > 0, all i=l, . • • ,
1 jil *J J

u - u > 0.
o
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SinceuistheminimumofS,thesystem(13)cannothavea
o

solutionn,q.ApplyingthefundamentaltheoremofFan,

Glicksberg,andHoffman,onthesolvabilityofconvexinequalities

(Ref.3),itfollowsthattheremustexistscalarsV,X_anda

vectorp=(p,...,|3)satisfying

m

VX2'^i=°*^+X2+2-h>°and i=l

nmn

forallscalarsuandallvectorsq=(q,...,q)>0

-r.+2p--losq.
j=l

Onededucesfrom(14)that

m

x=1P>0,
i=l

becauseotherwiseX?=0and|3=0,thusX>0and,by(14)

<0

2.,q.>1forallq>0,whichisobviouslynotthecase.Letting
J=l_xJ"

y=\|3andusingtherelationbetweenX?and|3,weobtainfrom
-1

(14);(withX|=X2Xxl)

m

i=l

m

^<2.y-r--2^ *o=.,11.,
j=i i=l

wheneve

m

5y.p..

rq=(qx,...,q^>0.
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In (15) let q = q De tne minimizing vector obtained earlier in

the proof; then using the fact that q satisfies (12) with k = 0 we find
•n - 0 """ " —that Xl [-1 + 2n q°]= °» and either X' =0 or 2 ._. q. =?.l. It can

not be that X! = 0 because then, from (15), we would obtain \i- = - oo,

consequently

n

Next, let e be a positive number and let

V €

m

+ 2 y-p--it 1 «
all j=l, . . . , n.

(16)

If we substitute the above values of q. in (15) and then let c approach

zero, we find that [i < F(y); at the same time, since (12) holds for
o —

k = 0, we find that

m n

F(y) > u > ]> y.r. - ^
— o — . , 1 1 . ,

i=l J=l

m

z_ yp-
i=l x 1J

(o)

j
log q

m

> y y-r -
- i=1 X1

n m

z. y.p..

if1 X1i
log

m

y y p •
_s=l s S_i

(17)

= F(y),

The second part of the above inequality is obtained using Lemma 1; since

equality must prevail in (17) Lemma 1 tells us, because 2. , 2. , Y.p..
i \ / \ J=l 1=1 * *J

2., q: = 1, that y and q satisfy conditions (11), as required.
J J

A straightforward check reveals that the y described in the

statement of Lemma 2 [i.e. , satisfying (11)J satisfied conditions (5). We
thus have:
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Corollary 1: There always exists a y satisfying (5).

The proof of Theorem 1 is now immediate: The fact that if

y satisfies (5) then it solves (1) is a direct application of Lemma 1.

Conversely, if y solves (1) then, comparing y with the y given

by Corollary 1 (or Lemma 2) we see that F(y) = F(y); if we multiply

(5c) by y. then sum over all i and apply Lemma 1 it follows then,

as in the proof of Theorem 2, that

m m

i all j=l,..., n5 y.p.. = y y.p.-%
i=i *« ifi i»

and thus y must satisfy (5).

Asa final result we demonstrate the relation between (7)

and (1). First, it is clear that (1) and the finding of the minimum of

the set S in Lemma 2 are equivalent in the sense that the minimizing

q of S is precisely the unique output probability distribution des

cribed by Theorem 2. If, in addition, one observes that (7) is simply

a restatement of the minimizing problem for S with co. = log q., the

correspondence between (1) and (7) becomes obvious.
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