

Copyright © 1972, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

STATE VECTORS: A PRELIMINARY SURVEY

by

W. D. Maurer

Memorandum No. ERL-M347

8 August 1972

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

STATE VECTORS: A PRELIMINARY SURVEY

W. D. Maurer

CONTENTS

Introduction •"•

1. State Vector Fundamentals ?

1.1 Definitions of State Vectors 6
1.2 Variables and Values 13
lo3 Structured Sets of Values 19
.1.4 State Vectors of Specific Machines 22

2. Program Components and State Vector Functions 27

2.1 General Commands |8
202 Expressions ^7
2.3 Assignments £°
2.4 Conditions and Conditionals ^

3. Models for Programs *$
3.1 Restrictions on Conditional Instructions M5
3.2 Directed Graphs and Statement Sets g£
3.3 Program Schemes and Interpretations ?£
3.4 Programs, Subroutines, and Blocks po

4© Program Syntax and Semantics °3
If.l Knuth«s Semantic Attributes 64
4.2 McCarthy^ Abstract Syntax and Semantics 68
4.3 The Vienna Method 72
4.4 Translation-Oriented Definitions /o

5. Proofs of Assertions about Programs 80

5.1 Correctness §1
865.2 Termination

5.3 Equivalence 91

Acknowledgments

References

96

97

STATE VECTORS; A PRELIMINARY SURVEY

W. D. Maurer

Introduction

We present here a critical survey of work done over the past

fifteen years on mathematical models of computational processes.

Central to much of this work is the concept of the state vector,

analogous to the instantaneous description of a Turing machine, and

the state vector function whose values are integers, truth values,

labels, elements of a set of variables, or further state vectors.

Any program, statement, expression, term, factor, or condition in

any programming language may be represented by a state vector func

tion, which may be said to constitute its meaning*

The study of computational processes has been marred by dif

ferences in terminology; state vectors themselves are known by at

least six different names. One of the tools in our presentation is

the use of glossaries of programming terminology expressed in tabu

lar form. By this means, similarities and differences among various

programming concepts may be observed. It is our hope that this sur

vey will provide the research worker with a means of giving proper

credit to the initial users of many of these concepts*

Many of the important results cited here may be stated without

any reference to state vectors. These include Floyd/s methods of

proving the correctness of a program, Knuth's discussion of semantic

attributes in programming languages, and Mannafs work on termination

of algorithms. However, in order to apply these results, we must

first make a specific model of the program to which the application

is made. We shall see that this may be done using state vectors or

their generalizations in all cases of interest.

By unifying, in this way, the work of McCarthy, Floyd, Knuth,

and Manna, we are able to provide a single theory encompassing the

subjects of syntax, semantics, and program verification for arbi

trary programming languages and computers. A program is verified

by using Floydfs methods and their extensions to prove partial cor

rectness, and Manna's methods and their extensions to prove termi

nation. In order to prove the statements demanded by. these methods,

we construct the derivation tree of each command in the language,

and associate semantic attributes, as introduced by Knuth, with each

nonterminal in this tree. These semantic attributes are functions

of the current state vector, as studied by McCarthy and others*

The existence of a unified theory by no means implies that

the subject of computation science is closed. For most large pro

grams, it is very difficult to apply directly the methods of Floyd

and Manna, even in the presently known extended versions. The pos

sibility of errors in proofs of correctness of programs, which are

usually even harder to find than errors in the programs themselves,

strongly suggests that we need many more computer aids to verifi

cation than we have at the present time. The extreme difficulty

of proving the correctness of even simple programs involving

floating-point numbers, and the fact that many well-known algorithms

of this kind are not correct in the mathematical sense, indicates

the need for mathematical theory to influence future hardware and

software developments with respect to real arithmetic. The proof of

correctness of programs admitting data structure is theoretically

possible, but practically almost unexplored. In particular, most

compilers remain unproved, thus preventing us from being certain

3

about the behavior of even a verified, program written in an alge
braic language.

Similar questions remain open with respect to language defi

nition. The syntax of FORTRAN is no more cumbersome, when described

in BNF, than is the semantics of almost all existing programming

languages when described in terms of state vector functions. Con

siderations of program correctness should be expected to have a

far-reaching effect on future language design. Many features of

existing languages, having to do with recursion, parameter calling

methods, order of evaluation, and so on, are defined informally and

then interpreted differently in different implementations. Any for

mal definition of such a feature implies a choice of interpretation

with which not everyone might agree.

What the unified theory does give us is the assurance that

work in the area of computational models may ultimately be applied

to the solution of real computing problems. With a little ingenuity,

state vector models may be built even in the presence of input-

output, dynamic types, multiple use of names, or self-modification.

In fact, any existing programming language may be described in state

vector terms, provided that it may be interpreted in a semantically

unambiguous way. Similarly, program verification techniques, al

though they were first developed for greatly simplified languages,

may be applied to any language containing commands, and even to

languages in which commands are created dynamically.

The plan of this paper is as follows. In Part 1 we consider

models of state vectors and computation sequences, entirely apart

from the programs which give rise to them. In Part 2 we treat the

association of state vector functions with various component parts

of a program. In Part 3 we consider mathematical models for pro

grams themselves. In Part 4 we show how to give relations between

the syntax of an arbitrary programming language and its semantics *

in state vector terms, and compare this approach to semantics with

others* Finally, in Part ?, we apply this notion of state vector

semantics to the problems of proving correctness, termination,

equivalence, and other assertions about programs.

The author is greatly indebted to Ralph London for his ex

haustive bibliography on proving the correctness of programs

[London 70a3, without which this survey would never have been com

pleted.

1 STATU VICTOR ? -INDAMtf? TaXS

We shall start by reviewing various published definitions

of what are essentially state vectors. These definitions are not

all quite the same, and they differ from each other not only ter-

minologically but in other ways, such as the restrictions placed

on the number of variables or the number of values* Provided that

the restrictions are properly chosen, we may construct state vec

tors for sequential machines, Turing machines, and the like.

1.1 Definitions pT \jtjrbn V^ct^ x

The first appearance of state vectors for an abstract machine

with infinitely many random-access reg:< sters is in [Xaphengst ?93,

the term MaschinenstelluriEen is used here. However, the first ap

pearance of the state vector concept in connection with a general

theory of programs and computers is in [McCarthy 63], and it is

from this paper that we take the term "state vector."

McCarthy's original definition.of state vectors is displayed

in Table 1, along with a number of others which have appeared since

'"—-7 •""-< ~-r-v, ---•then. KZ - -

Z1ZT\—"" -rv ':-7777H77" ' _.77L7_ -7"." -~.. i Conspicuous

- - T

ly absent from, this list are the "snapshots" of [Ifeur 66]; pro

grammers may visualize state vectors most easily as "snapshot"

dumps, but Naur's snapshots (as opposed to his General Snapshots)

are defined too informally and cursorily for inclusion here.

State vectors as functions first appear in [Slgot and Robin

son 6*+], where they are called content functions. A content func

tion k assigns to each variable x its current value k(x). The set

K of all content functions, applicable to a given computation is the

set of all functions from A, the set of all variables, to B, the

set of all legal values. McCarthy, since he does not use this func

tional notation, introduces a function c(v, ?) which gives the cur

rent value of the variable v when the current state vector is £.

By writing c?(v) for c(v, £), we obtain the content function c*

corresponding to the state vector £,. (Elgot and Robinson are con

cerned mainly with computers rather than programs, and thus they

use the term "addresses" Tor variables and "words" for valueso)

McCarthy 63 "We sliall dof?.ne the state vector ^ of a program
at a given tine, to bo the set of current
assignments of valu.es to the variables of a
program. In the car: a of a machine language
program, the state vector is the set of
current contents of those registers whose
contents change d;iri.ng the course of execu
tion of the program."

Elgot and - "We assign symbols an, a,, a2, a., ••• to the in-'
Robinson (h dividual storage locations. ."3 .We denote by b0,

b.., hp, K, ... the units of information thai*
can be stored in the a.«....]>t A =£a0, a,, a^,
...J, B = £b0, b-, fcg, •••V; then theucon=
figuration in the* memory at a specified time
can be represented by a function k(x) from A
into B."

Strachey 66 "The 'content of the store1....is a primitive con
cept and we shall always denote it by ^....as
sociated with each command i in the program
there is a (9"-> ff") operator Q such ,that obeying
the command ^ in a state where the store con
tent is o* produces a new state tf*1 = dor."

Maurer 66 "All computers have a memory, which is a finite
collection of *elements'. •. .We may now drop
the quotes and speak of tlie memory of a com
puter as a finite set 11....A particular state
(sometimes Icaown as an finstantaneous descrip
tion1) of the computer is then....a function
from M into the set of all integers from 0 to
n-1."

Engeler 67 "Each operation is intended to produce•••.a map
from A°* to A0* (where. A is the set of all se
quences <aQ, a,, ..•> of elements of A). The
following are t^e types of operations from
which the admissible ones are selected: x. :=c. ,
which transforms {an, •»., a*, ••♦> into x<aA,

Luchhav.i, ?ark "<T and ?(jr) denote,;'respectively, a possible so-
and Paterson quo.ncc of instructions of the schema P....and
70 the sequence of vectors of values assigned to

Vl*j* ..., 1^) wlien tf" is ex cuted. CT(i) is the
i-fe memberA"of <T, P(r)(i) is the vector after
g<i) is executed and P(<r)(i, 3) is its j-th
component."

Scott 70 "In the first place, what is a store? Physically,
we have several renarkahie answers, but mathe
matically it comes down to being simply an as
signment (a function) which connects contents
to locations. Gpoahi.ng more precisely, the
(current) state of the store, call it tf, is
mathematically a function T: L^>V which as
signs to each location fi. £ L (the set of all
locations) its (current) contents <T(t) £ V
(the sot of all allowable values)•"

8

The use of a separate set of legal values for each variable first

appears (in a state vector context) in [Maurer 663, although this

idea is also suggested, semi-formally, in [Ershov 6a3. Although

[Maurer 661 is also basically concerned with compters rather than

programs, it is clear that different variables often do have different

kinds of values in practical situations. In fact, the set of all

legal values of a variable may be identified with the type of that

variable, as suggested in the ALGOL report Dfaur et al. 603 and

elsewhereo It is also pointed out in [Maurer 663 that tape squares

may be variables in an infinite set of variables. The functional

notation S(x) denotes the value of x, and the state vector S is

called a state .

A concept known as the "content of the store" (the informal

nature of the definition of which is strongly emphasized) appears

in [Strachey 663, but it is clear from the context that it is ef

fectively a state vector* This paper is concerned with data struc

tures and functions acting upon them which may or nay not be de

fined at a given instant of time (because, for example, they may

go down a sublist which isn't there). Consequently the content of

the store is said to "contain" not only variable values but also

the values of all those expressions which are legal at the given

instant of time*

Explicit correspondences between ALGOL-like assignment state

ments and state vector functions (see also section 2.3 of this

paper) first appear in [Engeler 673, although they are suggested

in both [McCarthy 633 and [Strachey 663. Engeler is the first to

require that the number of variables be infinite; this is also done

in [Kaplan 683, which otherwise follows McCarthy,, No special name,

other than "sequence of elements of A," is given here to a state

vector, where A is the underling set (the set of all values).

From 1967 on, several other definitions were made* The as

signments to the registers of a computer language and to the set

of bound names of a programming language as introduced in [Ilara-

simhan 673 are effectively state vectors, though informally de

fined. Machines with infinitely many storage locations, including

tape squares, are studied in [Wagner 683; the values of storage

locations range over a finite alphabet, and there are finitely

many tape heads, each of which is effectively a variable whose

values are tape squares. Composite objects, as defined for Pii/I

by the Vienna group [Lucas and Walk 693 can be made to look like

state vectors of structured variables; they are essentially more

complex than state vectors, however, and their study will be de

ferred to section Y«3« The condition for the correctness of a

control path (see section 5,1) is given in state vector terms in

[Cooper 693; here {Li is used for the set of values of the (finite

number of) registers. The isufcject of-verification is taken-&piln~

g*eat*detail;in-£King 693uand EGood-7Q3$ they use the term "state

vector" and specify a finite number of variables, each with its

own set of values. In [Luckham, Park and Paterson 703, a time

variable is explicitly introduced; P(<r)(i) is the state vector at

time i of the program P, and P(gO(i,j) is its j-th component, that

is, the value which it imparts to the j-th variable. Strachey fs

concept of the content of the store is put into explicit functional

form in [Scott 703; finally, Wegnerfs information structures

[Wegner 703 are informally defined but are suggestive of state

vectors, presumably in a data-structure setting. A partial glossary

of basic terminology used in connection with state vectors is given

in Table 2.

10

Kaphengst ?9 Maschinen-_
stellung 7fl

I a'cher Worte Tft«t>) helsst
der Inhalt
von <fr

McCarthy 63 State

vector £
Variables Values c(a, %) is

the a-compo
nent of %

Elgot and
Robinson &+

Content

function k
(or state
(k, a))

Addresses Words k(x) is the
content of x

Strachey 66 Content of

the store,
r

Generalised

addresses

Bit

patterns
(c(oO)«r) is
the V.-value
corresponding
to the

L-value OC

Maurer 66 State S Memory
elements

Elements of
the base
set

S(x) is the
state of x

Engeler 67 Sequence

of elements
of A

Variables Elements of
the under

lying set

Iferasimhan 67 Assignment
to a set
of regi
sters

Registers Elements of
the range
of a regi
ster

Cooper 69 Set {l] of
values
of the

registers

Registers Values L^ is a re
gister whose
current val
ue is also
denoted by L.

Luckham, Park
and Paterson
70

Vector of

values as
signed to

Location

symbols
Elements
of D

P(cr)(i,j) is
the J-th
con^onent

of the vec

tor Pftr)(i)

Scott 70 State of

the store,
r

Locations Values r(4) is the
contents
of X

TABLE 2

11

In most of these papers, statu vectors are represented either

as vectors, or as functions, or as trees, or as elements of a car

tesian product. There is a natural mathematical correspondence

between these notions. Any function f is completely specified by

the set of all pairs (x, f(x)), for all x in its domain. If the

domain is known, the first elements of the pairs may be eliminated,

and the function specified by a finite or infinite vector of its

values. Any vector, in tuxn, is an element of the cartesian product

of those sets to which its various components are constrained to

belong. The a-coraponent fft(x) bf the element x of a cartesian pro-

duct may equally as well be regarded as the value fx(a) of the

function f corresponding to x when applied to a. Finally, any

function f may be represented by a finite or infinite direeted tree

in which all links lead from the roottto terminal nodes5 each link

corresponds to an element x of the domain of the function, which is

its label, and leads from the root to a terminal node labeled f(x).

This representation is advantageous when f(x) is itself a tree, and

will be discussed further in section *f.3»

A computation is represented by a finite or infinite sequence

of state vectors. If the sequence is infinite, the computation is

endless; if it is finite, the computation terminates. There is also

an associated sequence of labels (or operators or statement numbers)

through which the computation passes in execution order; these may

also be thought of as values of a program co mter or control re

gister. Such sequences may be required to terminate when transfer

is made to an undefined label, or to a designated halt or exit, or

when the current operation is undefined, or even (as suggested in

[Elgot and Robinson 6hl in connection with "passive words") when

the current operation is a transfer to itself. A glossary of ter

minology relatiir: to co*T*"tatiori seqrarces ±r ^is^la^e n in Tabl' ?,•

Yanov 58

Engeler 67

Scott 67

Slgot 68

Luclzhaa, Park
and Paterson
70

Y/egner 70

Klnc 71

12

•o'V'onco o.
state vr<c-

.'."••• y,ncc oi : •e•«• »-•:ice

state vec- of opera
tors with tors without tions^iv-
p--oc-co'inter pvog-covnter volvecl

Application
see '.ence

..Ival.nation
seoience

Construction —

Co:t> vtation Track
of a
diagram

Computation
sen ienee

Vr.l -.o of
a schema

'Jrr.ce

:race

•x^cution

sequence

Co:nr-tation and trace are synonymous;
program co:mter not specified

!2Jxoc :tion
sequence

TABES 3

Criterion for
t or. i in.?.t ion of
a corrv.tr.tion

r.er.chirig a
teminal
operator

Transfer to
an undefined
label

T'T.nrfer to

a halt
instruction

transfer to
an .ler.ent

of the set
of exits

Transfer
to GTO?

.:o function
applicable to
the. Cerent
information
struct re

a?-'.nsfer
to hc.lt

13

1.2 Variables and Values

[McCarthy 633 uses the terms "variables" and "values" for

ALGCL-like programs, and "registers" and "contents11 for machine

language programs. It is clear, however, that a register may be

regarded as a variable, whose contents are its value. Also, on

most real computers, "register" refers only to the internal re

gisters and not to the memory, core or otherwise; and indeed those

state vector models which are concerned principally with computers

rather than programs are divided between the use of the terms

"register" and "storage location" (or "address"). We shall con

tinue, in this paper, to refer to variables and values in all cases.

A variable,, then, is anything to which a state vector assigns- a

value directly.

What sorts of things can be variables? Clearly, simple vari

ables in algebraic languages, and registers and memory cells in

machine languages, are variables. What about subscripted variables,

however? If we have an array of n numbers, should this be a vari

able whose values are sequences of n numbers, or should it be n

variables, each of whose values are numbers? Clearly either point

of view is possible; we should be able to go back and forth between

one viewpoint and the other, as the occasion arises. In the same

way, we can regard an n-bit word in a computer as a variable whose

values are patterns of n bits, or we can regard it as n variables,

each of whose values are 0 or 1.

A general construction which is applicable to this situation

is given in [Maurer 661. If M is the set of all variables, we may

let (8 be a decomposition of M, that is, a partition into disjoint

sots. If Mi'1 sots nf'p& .'<ro riov ro/.a^l/ui as variables, oach of v/h\se

set oP values Is itself a (mstriotod) state voctor, the state vec

tors over M are effectively the same as tho state vectors over jj.

This idea is further generalized in tho definition of comnosite

objects [Lucas and Walk 693 as trees; each level of such a tree

corresponds to a level of decomposition. Thus we may treat arrays

whose elements are structures, whose elements are arrays, et cetera,

as is allowable in FL/I.

One quantity which certainly varies during the course of a

computation is the program counter, or current statement number,

as discussed in the preceding section. [McCarthy 661 calls this a

"pseudovariable"; [Elgot and Bobinson 0+1 distinguish between

content functions k and states (k, a), where the address a is clear

ly meant to represent the current address. [King 713, however, treats

the program counter as an actual variable, and'his state vectors

all have program counter components. It will become clear in part

2 of this paper that this should not invariably be the case; we

need state vectors without program counter components as the ar

guments of certain state vector functions. However, there is a cer

tain advantage in not having to treat the program counter as a spe

cial case.

Can the squares of a tape, the cards in a deck, the lines on

an output sheet, and so on, be regarded as variables? This question

is directly related to two more fundamental questions. The first is

whether the next state in a confutation should be dependent only

on the current state, and on nothing else. This is certainly not

true in automata theory, where tapes are treated on a different

basis from internal states, but it becomes true if we substitute "in

stantaneous description" for "state." Thus either point of view may

15

be tahen, clepondinj ou whothor a state v.ctor is considered as

analogous to a state (of a Turing machine, say) or to an instan

taneous description. The more restrictive point of view appears in

[Park 681: "if the command is an 'output1 command, it has an ef

fect not reflected in the state as envisaged here. On the other

hand, the effect of an 'input» command is determined by some 'en
vironment' which again is not specified in the state." In an ope
rator algorithm CErshov 6a3 or in aHASP [Slgot and Robinson 6h3,
on the other hand, the current state clearly depends on the pre
vious state, and on nothing else. The restricted viewpoint may
clearly always be expanded to the general one; any quantity which
affects the next state may be treated as a variable in an expanded
model.

The second question is whether the total number of variables

is allowed to be infinite. Most authors who refer to variables as

"registers" specify that their total number is to be finite. If a
tape is regarded as a single variable whose values are the possible
contents of the tape, this causes no difficulty, provided that a
Urar-iable -.Is allowed to have .an .infinite number of values. However,
if each tape square is a variable, TOchuatmodeloeffectively re
stricts the total length of a tape to be finite. Some authors £e-
£nire the number of variables to be infinite, which is a bit un

natural when dealing with subroutines which perform no innut-o-tput
operations. On the other hand, [McCarthy 633 and" manjrhothers leave

the total number of variables unspecified; CElgot and Robinson 6W
specifically state that it may even be uncountable; and [Scott 703
actually studies the topological properties of certain uncountable
data types.

16

Whenever the number of v triables is infinite, a state vector

is apparently not a finite object. This logical difficulty may be

overcome, however, if we specify that each operation on state vec

tors must change only a finite number of variables (this is part of

what CElgot and Robinson 6hl call being "finitely determined"). In

this case, it will always be true at any stage of a finite or in

finite computation that only a finite number of variables have values

different from their initial ones* and state vectors may then be

formulated to give values only to these variables. This may require,

of course, that different sets of variables be used at different

stages of a computation; this question will be taken up again in

section 2.1.

We pass now from variables to values. The computer languages

of [Narasimhan 673 and the computing machines of [Orgass and Fitch

69a3 specify that the total number of values of a variable must be

finite. Under these conditions, no machine or program involving in

finite tapes may be modeled. In all the other work which we have

been considering, however, there is no restriction of this kind.

A point of greater controversy is whether different variables should

be allowed to have different sets of values. It is quite common for

this to be forbidden, and, in consequence, for different kinds of

variable quantities to be treated oh diffesent bagesI Thus in

CWagner 683 the tape heads, which have infinitely many possible

positions, are distinguished from the storage locations, wliose values

range over a finite alphabet. A much more common distinction of this

kind is between the program counter and the other variables; this

may or may not be desirable, but if all"Variables must haveTtne

game1 set of values, it is apparently required, since the values of

the program counter are statements or their labels, while the values

of other variables presumably are not.

17

If each variable has its own set of values, it is always

possible to take the union of all these sets and form a universal

set of values. A distinction must then be made between "legal11

state vectors and others; explicit allowance for this possibility

is made in CClgot and Robinson 6}f3, [Maurer 663, and CWagner 683.

State vector functions, in turn, must be partial functions (which

they usually are anyway). Whenever an expiicitnrangevir..'speclfie&

for (iontenttfunctions^ this range effectively beeomesrthe set of

all legal values of any variable. On the other hand, from the

cartesian product viewpoint, it appears ffidr.e:natural to work with

the cartesian product of arbitrary sets (each of which is the set

of values of some variable) than specifically with the cartesian

product of several copies of the same set. This is reinforced by

the fact that cost bro^ramming languagesr-Jharve.' type declarations^

tfhosevpnrpose, mathematically, is to specify, for certain variables,

the set of all values which they may assume. S5.nilarly, most com

puters have registers of various sizes, together with input-output

devices assuming v&ri-.hlec from a character set.

A summary of the properties given to state vectors by various

authors appears in Table *f. In this connection we should mention

one peculiar property not mentioned in this table: the reluctance

on the part of some authors to use' the^concept of a set. McCarthy,

Strachey, and Engeler carefully avoid saying that there is a set of

all v-riibles with which a biven state vector associates values;

Burstall speaks of "sorts," rather than sets. If mathematical logic

is taken to underlie set theory [Suppes 573 rather than the reverse

CEhlers 683, it might seem that mathematical logic should directly un

derlie computation science, without set theory in between. Other

workers in mathematical logic, however, use sets of variables and

sets of values without hesitation ([Elgot and Robinson 6^3, [Scott 703)

18

]Formal or

informal
definition?

Total --umber

of variables
Total number
of valuer

Separate values
for each
variable?

McCarthy 63 Informal Not specified Not specified Not specified

Elgot &
Robinson 6h

Formal Unrestricted Uhrestricted No

Strachey 66 Informal Not specified Not specified Not specified

Maurer 66 Formal Unrestricted unrestricted Yes

Naur 6$ Informal Not specified Not specified Not specified

Engeler 67 Formal Must be

(countably)
infinite

unrestricted No

Narasimhan 67 Informal MusT be Yes

Kaplan 68 Formal Must be
(countably)
infinite

Not specified No

Wagner 68 Formal Must be
(countably)
infinite

Must be
finite

No

Cooper 69 Formal Must be

finite
Not specified No

Orgass and
Fitch 69a

Formal Must be
finite

Must be

finite
No

Luckham, Park
and Paterson
70

Formal Must be

finite**
Unrestricted No

Scott 70 Formal Not specified Not specified No

Good 70 Formal Must be

finite
Unrestricted Yes

King 71 Formal Must be
finite

Not specified Yes

TABIE If

** Accord*** To TAe tUfUlTie* W P*4}* a^V *f tkis f*P*r* Aa.

19

1.3 Structured Sets of Values

The set of values of a variable is normally provided with struc*

ture of various kinds. The most commonly encountered sets of values

are the real numbers and the integers, and their counterparts, the

one-word floating point numbers and the one-word integers. These are

provided with binary operations of addition, subtraction, multipli

cation, division, and exponentiation, the unary minus, the ordering

relation <, and various other functions such as sines and cosines.

The set {true, false^> which is the set of values of logical or

Boolean variables, is provided with the unary operation NOT and the

binary operations AND and CR, and, in ALGOL, with-* and E as well.

From the mathematical point of view, we may study "ideal"

algorithms in which any real number, or any integer, can be the

value of a variable, or we may study "actual" algorithms in which

the values of variables are constrained in the usual way by the

limitations of finite storage space in real computers. The only

difference between the mathematical models in the two cases is in

the sets of values and the properties of operations on these sets.

In particular, addition and multiplication of real numbers are as

sociative, whereas addition and multiplication of floating-point

numbers are not, even in the absence of overflow and underflow.

This must be taken into account when proving the correctness (see

section 5«1) of an algorithm involving floating-point numbers. For

integers, the difference between ideal and actual algorithms is

purely a matter of overflow and zero division; if an ideal algorithm

involving only integer variables is correct (so that, in particular,

it involves no zero division), then the corresponding actual algo

rithm is always correct whenever no overflow occurs.

20

Other kinds of structure have been proposed for data types,

or sets of values. In [Scott 703, a complete lattice structure and
a topological structure are proposed for data types. Each data type
is assumed to have a countable, computable dense subset, and thus
its topology is separable. Mappings between data types are assumed
to be continuous and monotonic. All of these conditions are automa

tically satisfied by finite data types. If D and D« are data types,
then the set of all functions from D to D» is also a data type; such

types are further studied in CMilner 723.
A number of programming languages constructed in the last ten

years have used data types of considerable complexity. We have al
ready mentioned the structures of PL/I, which were originally de
rived from COBOL structures. Similar features are found in AIGOL 68
[van Wijngaarden et al. 693, PASCAL CWirth 711, and elsewhere. A

different kind of data type is encountered in L3&P, SNOBOL, EUIER,

and APL, where the type of a variable may change dynamically. Thus
*he\saane variable, within the same job, may be an integer and a list

in L3SP, a string and a pattern in SNOBOL, an integer and a real
number in ETHER, or a two-dimensional and a three-dimensional array

in APL. In such cases the type of a variable is itself a variable,

and has its own component within the current state vector. Alterna

tively, the value of any variable may be given in the current state
vector as a pair (t, v), where v is the actual value and t is the

type*

All of these structural considerations may be thought of as

slight generalizations of the concept of a state vector. That is,

instead of a simple function from one set to another, we have a

function whose domain (the set of values) is provided with some

further structure. Another kind of generalization of state vectors

21

is suggested by the problems of storage, allocation. A programming

language with variable array dimensioning may be defined with re

spect to an infinite sequence x^ Xg, ..., of cells and a storage
allocation mechanism which assigns to each variable, including each

element of each array, one of these cells• This assignment changes

as the program progresses, and we may therefore speak of the current

storage allocation, as well as the current state vector. Thus

CKaplan 683 defines the program state vector fctf a program 1T to be

the ordered pair (M^, £), where M^ maps program variables into the

positive integers and % maps the positive integers into values.

In a similar way, [Park 683 defines the state of a computation to

be a pair <£ , C>, where £. maps the currently legal expressions

(among which are the variables) into some set of locations, while C

maps each location into its current value. In Park*s model, the set-

of :C&rr6ntly legal expressions also changes as the program progresses,

because an expression may refer to sublists of a list, and is legal

only if the sublists are currently present.

22

l.*f State Vectors o£ Specific Mr-hinos

Any real computer, and any real programming language, has

state vectors. In addition, automata of various kinds may be re

garded as machines with state vectors. Automata, in the present

context, are specific machines with specific rules, rather than

being general models for all computers. It is true that we oould

choose, ;as the set of states of a sequential, or Turing machine>

the set of all state vectors (without input-output components)

of some digital computer} then, provided that we were willing to

live with a restriction to a single input and output tape (for a

sequential machine) or a single scratch tape (for a Turing machine),

we could model a computer as a sequential machine or a Turing ma

chine. However, as we shall see in part 5 of this paper, the proof

of assertions about programs and computers generally requires that

computers, and programs, be modelled in other ways.

As an example, let us make a state vector model of a Turing

machiney In doing this, there are two arbitrary choices to make.

The first is whether to model the tape as a single variable, whose

values are sequences of symbols, or to model each separate square

as a variable whose values are symbols. The second way is clearly

more natural, but, as we have seen, it is incompatible with the

model restrictions of CCooper 6^3, CGood 703, and [King 713. (No

method of modelling a Turing machine is compatible with the re

strictions of COrgass @§Ht anJL frlcK &%!.}

The other choice is whether to model a moving tape and a

fixed head or a moving head and a fixed tape. In the first case,

3 the i-th square of the tape is defined to be that square which is

currently i squares to the right of the head; the (-i)-th square

23

is i squares to the left of tho head* Liach "move left" or "move

right" operation sets the value of each such variable to the cur

rent value of the variable on its right or left respectively. In

the second case, no square changes its value unless it is directly

under the head, but the head is also a variable whose values are

positions on the tape. (This variable is distinct from the vari

able whose values are the states.) Although an extra variable is

involved, the moving-head model is much easier to manage than the

fixed-head model when each square is a variable, since only three

variables can possibly change (in the most general form of Turing

machine) at each stage. Writing Q for the state variable, P for

the variable representing the head, and T. (-» < i < a?) for the

tape squares, passage from tne current state vector S to the next

state vector S1 is given, in this model, by

S*®±) = SC^) for all i * S(P)

S(P) +1 for "move right"

S*(P) « -< S(P) for "no motion"

S(P) - 1 for "move left"•{
S»(Q) « f(S(Q), S(T<wpx)) for "let the next state

&u^ be f(x, y), where x is
the current state and y
is the contents of the
current tape square"

S»(TsrpJ a g(S(Q), S(T (J) for "print g(x, y), where
v ' »wv x ana y are as above"

Those who are familiar with simple Turing machine program

ming will be well aware that, as CMinsky 613 points out, the state

variable, which we have called Q here, normally plays the rSle of a

program counter. This may cause some confusion concerning the term

"state vector" for a set of current "states" of variables; it should

be clear from the preceding discussion that a state vector is not,

2lf

as this analogy might suggest, a vector of program counters, but

rather a vector of variable values in the ordinary sense.

Other specific abstract machines than Turing machines may

also be modeled using state vectors. For the complete sequential

machines of [Ginsburg 623 (which are adaptations of the finite

automata of Moore and Mealy), using an input variable, state vari

able, output variable, and fixed read-write heads, if the machine

is (K, Z, A, S, A) and the current state vector is {input = (i^

i2* ...)♦ state =k, output =(o^ o2, ...)£, where ij €fand o^
6A for *ach 3* then the next state vector is {input = (i2, i^,
...), state =$(k, i^, outpijfc = (XOc, i^, o±9 og, ...)1. The
strings upon which a Markov algorithm [Curry 633 operates are ef

fectively its state vectors; likewise, pushdown automata and other

special-purpose automata have their state vectors, as noted in

[Engeler 673 and also informally in [Scott 673.

Besides automata, a number of other computational models

have been constructed. We have already mentioned the Maschlnen-

stellungen of [Kaphengst 593; KaphengstfsirPM, or program-controlled

computing machine, is similar to the Q-machiie of [Melzak 613, the

"infinite abacus" of [Lambek 613, and the Uttfe, IRMs, and SRMs of

CShepherdson and Sturgis 633, although only Kaphengst gives an ex

plicit description of the state vectors involved. Two other compu

tational models are developed almost, but not quite, to the point

of introducing state vectors; these are the program schemata of

CYanov 583 aid the operator algorithms of DErshov 6&3.

Yanov, whose work is well summarized in CRutledge 6*f3, in

troduces evaluations,« which are almost, but not quite , state vec

tors. Each evaluation contains the current values, not of the vari

ables in the computation, but of certain expressions (specifically,

?5

Boolean expressions or predicates). Thore are presumed to be only

a finite number of these, so that simply choosing for our predicates

all expressions of the form <{var=*vall will not fit Yanov1s model

when there are an infinite number of either variables or legal val

ues. Experience with modelling programs in this way suggests that

it is not always clear, even for a completely deterministic algo

rithm, what the values of all predicates will be after a given com

mand, presuming that all their values are known before that command.

Yanov therefore allows an operator (= command) to specify, far each

incoming evaluation, a set; of possible outgoing evaluations. This

feature of Yanov1s model allows it to handle the nondeterministic

case directly, without alteration, whereas in the state vector model

a state vector and a command specify the next state vector uniquely

if and only if the command is deterministic (as noted in [Burstall

723). Yanov also introduces the "argument domain of an interpretation"

which acts somewhat like a set of all state vectors, although the

state vector structure is not spelled out.

The operator algorithms of Ershov are modeled after digital

computers, rather than programming languages; the value of a variable

may be an operator, as happens, for example, with the inst ruction

words of a computer. His definition is informal, and does not in

volve state vector s explicitly; he represents variables by

non-italicized letters, and the current value of any variable is

represented by the corresponding italicized letter. Ershov does

point out, however, that different variables should be expected to

have different sets of values.

Mention should also be made of the SECD machine [Landin 6*f3

and the sharing machine [Landin 653. These machines have a con

struction (the environment) which is much like a state vector, but

26

the role it plays in the model is distinctly secondary. The philo

sophy here is that recursive functions of conditional expressions

should be used in computing whenever possible, and manipulation of

variables in the ALGOL sense resorted to only when necessary.

27

- .VJvx. .. -ti v>.;. ..j j.... . 'J •_.. .. 4 ». !'.>...»•-. ..' J .OJL — / •Uj

Any co:vvi.ter or ^rograr.ni:-^ language is r^prosentable either

as a co"vtext-froe language in standard BIIP or rts a subset of such

a language as d^-t-irninnd by certr.in "io.-».-I>7'IF restrictions (such as

that nvery wrip.bl~ used must br declared). It is with the nonter

minals in such a representation that we now concern ourselves. With

certr.in of these nonterninals (or "metaling-iictic Vc?riables" [Ilaur

et al. 603) we may associate functions of the current state vector

whose values may be state vectors, real numbers, integers, truth

valuos, members of a set of variables, statements in a program,

etc. These functions pre generally partial; however, in proving the

correctness of a program, conditions are inposcd with respoct to

which the functions are total (see also section 5*1)• Such associa

tions h-~ve been made by various authors; wo now discuss the nost

common ones.

28

2.1 General Commands

Passage from one stage of a computation to the next is made

by instructions or commands in computer languages and by operations

or statements in programming languages. Each of these may have a -

statement number or a statement name or a label or something simi

lar. Table 5 gives the terminology used by several authors with

respect to these concepts.

A command may be associated with a function which takes state

vectors into state vectors. This is the easiest of our associations

to make, and it has been remarked upon by a great number of authors,

as displayed in Table 6. (Sea also the similar comments by Strachey

and by Engeler from Table 1.) If S is the current state vector and

we execute the command C, then f (S) is the next state vector in
Li

the computation. The function fQ corresponding to C has various

names; we shall call it the effect of C, following [Park 68] and

others. This name includes as a special case the term "side effect"

of earlier vintage; side effects arr> discussed in the next section.

In the nondeterministic case, the effect is multi-valued; this is

studied in [Burstall 72]#(W

What happens when an instruction or command is modified by

a program and then later executed in modified form? The answer, as

noted semi-formally in [Ershov 6Q.1 and fornally in [Elgot and Robin

son 6*fD, is that the instruction itself becomes a value of a vari

able. Thus we may have variables whose val les are state vector func

tions. Or, to simplify things a bit, we can have a distinguished

set of "operators," a map from operators into state vector functions,

and variables whose values are operators. With such a variable we

may always associate a single state vector function which is ap-

29

F.lrot and Pobinson fh

McCarthy 66

Strachey 66

Enpeler 67

Elgot 68

Good 70

Luckham, Park and Paterson 70

Burstall 70

King 71

Igarashi 71

instruction

statement

command

operation

command

node operation

instruction

statement

statement

statement

TABIE ?

instruction location

statement number

label

numeral

occurrence

node

prefix

point

statement name

label symbol

McCarthy 63

Elgot and
Robinson 6k

Orgass and
Fitch 69a

Scott 70

30

"When a block of -...•o^am V.ving a single entrance
and exit is executed, the effec* of thlf. e*e-
cution on the state vector may be described by
a function £,' = r(g>) giving the new state vector
in terms of the old."

"For any b6 B then, hb defines a transition from
one state (element 8f E0) into another state....
hvwill be called an (atomic) Instruction....We
also speak of an arbitrary mapping of %Q into
2^ as an instruction»"

Maurer 66 "An instruction then, is a method of passing from
one state to another state, i. e., a map I.
is -» X, where J is the set of all states under
consideration,"

Park 68 "It is necessary to talk about the effect of a
command. The device adopted here is to refer to
an instantaneous state of a computation. The
state <£, C> consists of two mappings £ and C
....The effect of the given command produces
the new state ^X-p 0y •"

Cooper 69 m\\^^.T".J*?!,"«ft> 2^™l
1 c~ n xj

set of values of the registers, ^L$ being the
set of values at the start...."

"As a result of our definition of the state of a
commuting machine, we are able to assume that
an instruction is a partial recursive -function
from V-tuples of nat iral numbers into Y-tuples
of natural numbers."

"The ({current)Estate of the store, call it J,_is
mathematically a function fr: L-» V....Let X oe
the set of all states....a command is a func
tion y: £ -» £ which transforms (old):;states to
(new) states o"

(Further examples of effects include the function next(s) of
[Burstall 703, which produces the new state (= state_ vector; s
in terms of the current state s, and the function JUU of
CIgarashi 713, which associates with each statement A a map
from l#l into \b\ ,where l&l is effectively the set of all
state vectors under consideration©)

TABLE 6

31

plied whenever that variable operator is executed. The value of

this function applied to the state vector S is ^(S) whenever

S(v) = f., where v is the variable operator.

In associating effects with commands, problems arise v/ith

domains and ranges. If the command C involves a subscripted vari

able, the associated function fc is inapplicable to any state

vector which specifies the given subscript as being out of range.

If C involves the square root of X, then fc(S) is not defined if

S(X) is negative (unless X is complex). In general, the precise

domain of f may be difficult to determine. In uractice, however,

it usually suffices to specify fc:.i-»&as a partial function,
that is, to determine some set X of state vectors which contains

the domain of L. In proving the correctness of programs, we also

determine a subset of & which is contained in the domain of such a

function, as will become clear in section £.1; the restriction of

fp'to this smaller subset is then a total function.

The set $ generally consists of all state vectors of a cer

tain form, and we must also be concerned with their domains and

ranges. Each such state vector must obviously have a component for

every variable appearing in the command. (CIgarashi 713 uses VGA]

for the set of all variables occurring in the command A.) But what

about a variable that does not so appear? Such a variable may al

ways be included by specifying that it does not change; that is,

if v is the variable and fQ the function, then S(v) = Sf(v) where

S' = f (S). Th« problem arises when we ask how many variavl^s should

bo included in this wny. At one extreme, ve co'il'l specify thrt

every conceivable legal variable name ourht to be included; t::is

solves the problem of specifying a unique domain and range for f«,

but in a rather unnatural way. At the other extreme, we could re

quire that there be no such extraneous variables; but th"*s i*=? a

32

bit awkward when we seek to find the offV,::t .of a succession of

commands.

The most reasonable middle ground seems to be to determine

all variables occurring in the program which contains the given

command. (In some languages, such as SNOBOL, in which variable names

may be constructed dynamically, this may not be possible, and we

may have to go back to the first alternative.) The effect of a

command then involves state vectors having a component for each

program variable. This also takes care of the case in which function

calls in the command may cause changes in variables which do not

appear directly in it.

A related problem concerns whether to allow a command to

specify the next command. If tho state vectors in the range of

the effect of the command have program-counter components, this

can be done directly, as in [Ring 713. Otherwise, we may introduce

a new state vector function (such as the direct transition func

tion of DElgot 683) which gives, for each current state vector,

the next statement or its label. This subject is taken up further

in section 2.^. If a command does not specify the next command,

the only allowable commands are assignments, function calls, and

the like; these may be combined to form straight-line urograms,

which have been studied by a number of authors.

The state vectors in the domain of the effect of a command

do not, normally, need program-oo unter components, since a com

mand does the same thing no matter where it appears in a program.

This suggests that instead of writing fQ: JI ->J we might write
fc: %*» 3, where the state vectors in ^ have program-counter com
ponents and those in & do not. This is a special crse of the use

of different sets of state vectors for the domain ar/' range of the

state vector function of a command. General treatments of this kind

33

include thnt of [Ershov 6&J involving the "o^rating region" of an

algorithm, which may change as the algorithm progresses, allowing

new state vector components to nopear, and the "directions" of

[Elgot 683 (see al*o section 3.If), [Scott 673 and [Manna 693 are

concerned with different domains (effectively sets of state vectors)

for input, program, and output variables; while [Park 683 allows the

set of legal expressions to change when a command affecting data

structure is executed.

3*

2«2 Expressions

A unified theory of state vector functions starts with the

observation that they may be associated with other program com

ponents than instructions or commands. Of these, the simplest is

the arithmetic (or Boolean) expression. Given a state vector and

an expression, with or without side effects, we can find values

for all variables appearing in the expression and then evaluate

the expression using those values, producing an arithmetic or

Boolean value as output. This was apparently first noticed in

DteCal?t}ry 633, where the notation value(t, £) is used; here t is

a term (= expression) and £ is a state vector. If we write i*t(f)
for value(t* £), we: obtain -the state .vector .function ft correspon-

aingvtb the term• t•

Expressions are built up from terms and factors, and simi

larly their state vector functions are built up from the state vector

functions of the terms and factors. McCarthy gives a four-way eon-

flitioiial expression defining value(t, %) when t is a variable, a

constant, a sum, or a product. Similarly, Burstall defines

plus(e, e1) as the sum of the two expressions e and e1; he then

gives the equation val(plus(e, e1), s) = val(e, s) + val(e», s),
where val(e, s) is the value of e given the state vector s [Burstall

703. Strachey writes R(£, CT) for the value of the expression € given

fas the content of the store, and makes the further point that if

£ appears on the left-hand side of the assignment symbol (which

might happen with a subscripted variable, for example) then a dif

ferent function, which he calls L(£, <r), should be used; the values

of this function are addresses.

It is interesting to note that these points have been missed

3?

by a number of other authors, who treat all expressions in func

tional form. Thus Cooper treats a fixed collection of functions

whose arguments are register values [Cooper 693; also in [King 713

the arguments of the various-functions are variable values• An

extension of this system, found in [Igarashi ?13, can be made to

give the full generality of arithmetic expressions; here, however,

the arguments of the various functions are not restricted to values

of variables, but may, recursively, be values of other expressions

as well.

Expressions with side effects have given several authors more

trouble than was really necessary* and some of them seem to have

been dimly aware of this. Thus we find [Floyd 673: "Consider the

statement a:=c + (c:=c + 1) + c, which has the effect of assigning

3cQ + 2 to a, where cQ is the initial value of c, and assigning

cQ + 1 to c....Let us reluctantly postulate a processor, with a

pushdown accumulator stack S...." Later, the handling of side effects

is attempted in [Burstall 703 by attaching "points" (effectively

labels) to the middle of an expression with side effects, thus

separating out its evaluation over, several "statements." A key to

the true solution of this problem is found in [Strachey 663, where

Rf(€, or), for the expression (with side effects) £ and the content

of the store (T, gives as value a pair ({*, <Tf), where p is the value

as before and g-' is the new state vector. Strachey, however, does

not give combination rules for the state vector functions of expres

sions. By combining Stracheyfs work with Burstallfs, one obtains

an analogue of Burstallfs value formula given above:

sideeffeet(plus(e, e1), s) = sideeffect(e«, sideeffect(e, s))

val(plus(e, ef), s) = val(e, s) + val(e», sideeffeet(e, s))

which reduces to the original formula if sideeffect(e, s) = s.

36

2.3 Assignments

An assignment without side effects is a special case of a

command. The assignment of the constant & to the variable y, corre

sponds to the'state vector function f(S) = Sf where S'(z) = S(z)"for

all z $ v (this is abbreviated S1 o. , S in [McCarthy and Painter 673

and S» « S|| M1 in [Wagner 683, where M1 is the set of all variables

except v) and S«(v) = k. This is called a(v, k, S) in [McCarthy 633;

by writing this as aQ(S) where C is -£v<-k}, we may Obtain the effect
a„ of the assignment C« This notation, along with the earlier men-
c

tioned c(v, S), continues to be used ([McCarthy 663, [Painter 673,

[Kaplan 673, [Kaplan 683).

An assignment with side effects is identical to a general com

mand, as noted in [Good 703, since any variable may have its value

changed by side effects. To put it another way, any assignment is

equivalent to a sequence of assignments without side effects, as

noted'in [Floyd 673, although extra variables may need to be intro

duced (for example, when two variables interchange their values).

The terminology of various authors with respect to assignments is

displayed in Table 7*

Several authors, following McCarthy, restrict themselves to

assignments without side effects. Engelerfs definition of operations

(= commands) is perfectly general [Engeler 673, but the only opera

tions he actually considers are assignments without side effects•

Assembly language instructions and their state vector functions are

treated in [Painter 673; here, of course, no side effects are present.

In [Elgot and Robinson 6^-3, it is explcitl# considered as possible

that the left side of an assignment, as well as the right side, might

depend on the state vector; assignments are written "Insert P in G"

(for G:=F) where F and G are both functions of the addresses aQ, o..,

37

El^ot and "The following schema is typical of a large
Robinson 6h class of instructions which may appear

in a program...'Insert F....in G....1
....In this instruction k and a are sup
posed to constitute the given state....
The next content function k* satisfies:
kf(x) = k(x) for all x except x = G....
for which k(x) = F....."

Engeler 67 "Each operation is intended to produce....a
map from ku into Aw (where A°;is the set
of all sequences {an, a , .../ of elements
of A). The following are- the types of
operations from which the admissible ones
are selected x. :=g. (xn- ,...,x.), whic]

1 K Jl dni
transforms ^aQ, ..., a^, •••) in^°n
an, ..., f (a* , •••, a*), ••«/>•"

King 69 "A "state vector1 of a program is an (n+D-
tuple of values <N,al,a2,...an) where N
is an integer Klkm (the program counter)
....Let vj=<i?bTf,B2,...,bn> be an arbitra
ry vector in "fche sequence. Then if sjL has
the form assign:£xk,f (xl,x2,.♦.»xn),Itj,
the next vector in the sequence is vj+l=
<N,bl,...,f(bl,b2,...,bn),...,bn> where
the expression f(bl,b2,...,bn)....occurs
at the (k+l)-th position in the state vector."

Luckham, Park, "<r(i) is the i-th member of V, P(<T)(i) is the
•and Peterson 70 vector after <r(i) is executed and P(T)(i,o)

is its j-th component....The execution nnd
computation sequences, ST-r and Py(trjK#«#
are* defined inductively *rs follows.... If
v"r(i+l) is the assignment ^.^.'^(Lu ,...,
I4), theh....PT((TT)(i+l,i) = PT(oS-) 1 Ci,j)
iTtfw, and PT(Jv)I(i+l,w) =w I *I(Fp(PI(rI)(J,u|),...,PI(^TI)(i,uv))."

Burstall 70 "£ has. assignment(i<e) and o1 follows £ and s
at p db. next (s) at jrEnd val(i«next (sT) =
valTe.sTluTd [identifier(P7 and i« ? i ^
vaT(i^nextTs)) = valOSs)3"

Good 70 "Let Mbe a memory, and let u = (ru, ..., u^)
and w = (wn, ..., w) be vectors of celTs
in M. Alsoxlet TL. denote the vector of all
cells not in the vector w. Assignment ope
rations on M are written w:=f (u; where f
is a total n-ve-itor vl.ied function.. • •
An assignment operation can be initiated
at any tine t....The nrecis- meanr.v: of
w:-f(u) is w(t-M) - f*(u(t)) *nd M Ct+1)
= *R.(t) where t is the time when wthe ope
ration is initiated."

TA.BL2 7

38

b.a and of their contents as given by the cur: *nt content function k.

These considerations are also treated in [Strachey 663, where side

effects are considered. In [King 713, assignment and go-to (transfer)

functions are combined; assign:jxk. f(xl, x2, ..•, xn), i} means

"perform the assignment xk:=f(xl, x2, ..., xn) and then go to j«"

The state vector function associated with this assignment is formally

defined, as is the case in [Burstall 703 with assignmentOvar, expr),

and in [Luckham, Park and Paterson 703 with k.Li =Fn(Lk' h^ •••* ^k^*
Left sides of assignments in abstract treatments are usually

as simple as possible; it is normal to forbid them even to have

subscripts, let alone side effects. (A side effect on the left side

may be caused by a function call in a subscript expression, although

this is forbidden, for example,' i* FOr.TRA:! II.) In [Strachey 663,

however, the general case is treated; his L(£, <T) is a "generalized

address," where £ is an expression and (T is a state vector. In our

terminology we would say that the state vector function f^. corre-

sponding to the left side v has values which are variables* Th*t is,

the range of this function is the domain of the state vectorsv(as

content f motions) under consideration. If v can be'both: a loft

side and a right side, the corresponding state vector factions fv

and z are related by the equation ^(S) =S(fv(S)) (a slnilar
equation is given in [Park 683). A" side effect of a l*ft side is

exactly like a side effect of a right side — it is a friction from

state vectors to state vectors. Strachey1s L'(&, <r) is a function

whose value is a pair W, Tf), where oC andV correspond respectively

to the values of f and g above.
V V

To construct the state vector function of a generalized as

signment, in which oither the left or the right side, or both, mry

have side effects, we must decide whether the left side o- the right

39

si:e is to V« oval at^*. first. Two J.o:mulas, one for left-to-right

and t!'.e other for right-to-left evaluation, .-re given in [Strachey

663. Again conbinr'-g Str~chey's work v*.th Bu-stall's, it is pos

sible to replace

yal(i, ncxt(s)) ••- val(e, s) and
Hdentifier(iO and if"V 1$ val^i1, next(s)) ;•= yal(if, s)3

in Burstall's formula (our Table 7) by

ri£ht(left(ij s), gexUs)) S right(e, si^eeffect(i, s)) and
LidentixTerTi f7 ancTlT F leftCU s) 4*
right (i '.next (s Y&right (iT7sideeffect (e«sideeffect (i.s)))3

for left-to-right evaluation (where left(£, <r) and right (£, a") are

Strachey!s L(6, \f) and R(£, v) respectively, and right(g. tr) cor

responds to Burstall's valfe, O) and

right (loft (i, sideeffoct(e, s)), next (s)) ~ right (e, r.) znr1.
TIdentiflerTi') yid i'"7 left(i, sideeffeet (eTsJ) ^~
right (i' ,:iext (s)3^r ight (i', sideeffeet (i, sideeffeet (e «s)))3

for right-to-left evaluation. Sinilar for.viulas may be obtained for

multiple assignments in ALGOL, where more than one assignment symbol

(:=) is nresent«

1(0

2."+ Conditions and Cor/1" Lionels

A condition (or, as itis sometimes cr.ll-.d, a predicate, or,

especially In connection with correctness proofs, an assertion) is
simply an expression whose value is true or false, rather than being
a number, and differs from an arithmetic expression only in this
regard. Uideed, the dist inction between functions and predicates
Which is commonly or.de in the study of program schcnes appears quite
meaningless from the viewpoint of a programmer working with B
declarationless language like LISP or APL; the conditional fmo
tions here are applicable to arbitrary arguments, and consider 0
(or NIL) as false and anything <lse as true.

The State vector friction corresp onding to a condition has
values true and false; by taking the inverse ir.age of true, one
obtains a set of state vectors for which the eevdition holds. She
association of acondition with a set of strte v-ctons is especially
useful when considering assertions (see section 5.1). If condition
C implies condition C•, then the set corresponding to C in con
tained in the set corresponding to C'. Conditions are built •-?
from other conditions and fno- arithuotic exprenrfo-s; the func
tion gaual(e, e«), which gives the condition that the two expres
sions (either arithmetic or Boolean) oand e' have ec .al values,
is given in EBurstall 703, together with a definition of its
vector function: val(e, s.) -yal(e», s)^ yra(ejiual(e, e«), &) =
true: val(e, s.) 4 3ESl(a'. a) * SSlCsSUBlCa. &'>,&> =£filaa-

A nrvv-itioaal egression is an expression of the form if b
then xelse y, where xand yare expressions (of any type) and b
is aBoolean expression. Such expresses oeoa? in ALGOL [livir et
al. 60: for arithmetic and for Boolean expressions x ''"-d y, and are

k OC 'O

»fl

c**llrd a",?.J*1,T?i"t:'.c r>"'' ^ool^p' (rs 0i"p'."r"r*d to siri^?-^ ~tithn~t"c ~:.d

simple boolean) exr^e^sions. They are also studied in [McCarthy 63U,

although the term "conditional expression" is here more general, and

encompasses recursive conditional definitions such as nl -- if n ~ 0

then 1 else n«(n-l)l . Leaving these out for the moment, McCarthy's

discussion implies the state vector function relation (without side

effects): if c is £if b then x else y£ then fc(£) ~- j£ f^ify then
fx($) else fv(£)> where %is a state vector and fa is the state
vec'or function coi-.-'espondii^.g to a. i/hon side effects are present,

this eqiation must be modified; for a left-to-right evaluation

schene, we have tQ(%) =if f^) then ^(s^)) Qlse fy(sb(£)) aid
sc(g) = if fb(€) then sx(sb(?)) eJLfifi, sy(sb(£)), where sa is the
side-effect function corresponding to a.

The quantities x and y in if b then x else y may be arbitrary,

as long as they are- the same. They may, in particular, be left sides,

as in fif a > b then j else k):=i [Strachey 661 (his terminology is

a>b->3,lc:=i)or subroutine names, as in (if a < b then, sin

else cos) [Landin 66$j, as well as expressions. Host often, however,

they are commands, in which case the "else y" may be eliminated if

y does nothing. A conditional command may be treated like a condi

tional expression with side effects, by ignoring the value of the

expression — that is, ay using only the second of the two equations

above. We must, however, also allow for the state vector function,

if any, which specifics the r.nxt command. If this is denoted by xa

for the command a (the "exit function" of a) then, using the nota

tion above, we have xQ(%) = if *b(© then xx(sb(fp) else Xy(sbC£)).
If the "~lse y" is eliminated, wr> nay 3et x (£) to a special re-

served word, such as next, when fb(£) = filsey to indicate that the

cotanand has exited normelly. More generally, this device allows ar

bitrary commands to have ^xit functions; r. simple assignment h~s a

\2

constant exit function with constat value next. (TMs is diff-e,t
from the exit function, Mng undefined, which it night be, for
example, if a subscript were ont of range.)

Many program models simplify the treatment of conditional
commands by allowing only conditional transfers. The effect of
aconditional transfer (without side effects) is the identity
function, unless the state vectors have program-counter components,
in which case these are the only components that are cha.oged.
These may involve one exit, as Burstall's ifihaaCexpr, pt) (mean
ing "if expr is true then go to pt"), or two exits, as Elr,otj*nd
Robinson's "If R is true, go to H, and if R is f»lse, go to V
where R, H, and Eare functions of the addresses a0, ..., a^ and.
their contents as given by the cm rent state vector. Further exam
ples appear in section 3.1, where we discuss restrictions on con
ditional instructions in models of programs.

*f3

3 kodjsii? vo'r. r».:og[-a:-b

The mathematical definition of a program has been attempted

by a large number of authors, as displayed in Table 8. We may

notice immediately that many of these are not concerned with state

vectors. Basically, "a program is a sequence of instructions.»,.each

of which specifies (i) an operation to be performed, and (ii) the

next instruction to be executed" [Minsky 611. It is thus possible

to define programs in terms of operations without simultaneously

defining operations in terms of state vectors.

In examining various program models, we observe that there

are three important ways in which they differ:

(1) Some models allow only conditional transfer without side

effects and assignment, while others treat more general forms of

instructions.

(2) Some models are based on flowcharts or directed graphs,

while others view a program simply as a set of statements.

(3) Some models define a program, while others define a more

general object, called a program scheme, whose interpretations then

correspond to programs.

We shall take these up one at a time, after which we shall

discuss subroutines, blocks, and other program features included

in only a minority of the program models studied.

Mf

;'t-ite vectors Two-V^-n oh
(or eq 'iva- or ::mlt_-
lent) used? branch model'

Directed Programs
graph or program
:iodel? schemes?

Yanov S"J No

Kaluzhnin S |̂ rro

Engeler 67 Yes

Floyd 67 No

Narasimhan 67 "0

Scott 67 No

Elgot 68 Yes

Cooper 69 No

Manna 70 No

Luckham, Park,
and Paterson 70

No

Good 70 Yes

King 71
v,
xes

Multi-branch No Schemes

Two-branch Yes Schemes

Two-branch No Programs

Multi-branch Yes Programs

Two-branch Yes Frograms

Two-branch No Programs

Multi-branch No Programs

Two-branch No Schemes

Multi-branch Yes Schemes

Two-branch No Schemes

Multi-branch Yes Programs

Two-branch No Programs

T\3LM 8

3.1 Pestrictjnns 211 Co-, M.tifv.;il Iiy-truct.io.ir>

A number of authors have sought to simplify mathematical

models for programs by placing two important restrictions on the

conditional instructions which they contain:

(1) No conditional instruction may have more than two exits.

(2) No conditional instruction may change the value of any

variable (except the program counter, if that is counted as a vari

able); that is, it must be a conditional transfer without side ef

fects .

The first to make this particular simplification was appar

ently Kaluzhnin Cde Bakker c93, who introduced, in 1959, the iUF

graph schema. This is a directed graph model in which there are four

types of node: the entrance node, the exit node, operator nodes (=

generalized assignment), and discriminator nodes 0= conditional

transfer). In any interpretation, an operator node corresponds to a

mapping from the domain of interpretation to itself, while a discri

minator node corresponds to a mapping from th^ domain of interpreta

tion to {true, fcilsej. This corresponds to the st?te vector function

associations mad" earlier In this paper, if the domain of interpre

tation is taken as the set of all applicable state vectors*

Kaluzhnin graphs have been re-introduced several tim^s since.

A glossary of terminology relating to this model is given in Table

9, and, for each of the authors cited in this table, a summary of

the features of his model which distinguish it from the others under

consideration is given in Table 10. It will be seen that a great

number of arbitrary choices exist within the general restrictions

above•

In the general, or multi-branch model, as opposed to Kaluzh

nin^ two-branch model, there is essentially only ^r.o type of rtate-

Kaluzhnin §J

Engeler 67

Floyd 67

Narasimhan 67

Scott 67

Cooper 69

Bjorner 70

Luckham,
Park and
Paterson 70

King 71

Entrance

Starting
instruction

(any type)

1*6

Operator

Operational
instruction

k: do «

fir?

Starting Assignment
point for operation
the program x£*f(x,y)the program

Initial

vertex
(any type)

Vertex with
exactly
one outgo
ing branch

Discrimi

nator node

Exit

Conditional None (stop
instruction when trar.s-
k: if (q fer to un-

p elsjg label)
62 S2 4

Condition- Halt for
al branch the program

Decision
vertex

Terminal
vertex

Start in
struction

Operation Test in-
instruction struction

go to L1
?•? ££

Halt in
struction

Always
start at
first
statement

Entry nodes
or begin-
nodes

Always
start at
first in-

Always
start at
first

Assignment
statement

...,illJ
Separate

statement

Operator
nodes or

action-
nodes

Assignment
instruction
k. L-t:
Fj(LKl,Lkjl,
...,J->^ /
Does ript
transTer

Assign
statement
assign:
?xk,f(xl,
X2,.. . ,
xn),j}

TABLE 9

§S

Test Halt
statement statement
tO^)^,^
(here n^
is the
false exit)

Discrimi- Exit nodes
nator nodes or end-
or deci- nodes
sion nodes

Transfer Stop
instruction inst ruction
k. Ti(L\)m,n
For uncon

ditional
transfer,
set m=n

Test
statement
test:
£p(xl,x2,
...,xn),

Halt
statement

Kaluzhnin 59

Narasimhan 67

Scott 67

Floyd 67

Engeler 67

Cooper 69

Bjorner 70

Luckham, Park
and Paterson
70

King 71

±7

Each graph corresponding to a program must have
only one exit node (see also [Cooper 67I and
CManna 683).

Only three types of node in a basic flow chart
0= program); the initial vertex (= node) may
be any of these types.

Four types of statement to correspond to Ka-
luzhnin's fo^r types of node; all statements
are labelled.

Fifth type of node in flowchart language, cor
responding to a join of control, where exits
from two nodes meet and continue as one.

Only two statement types; the start may be either
of the two, and termination is signalled by
transfer to a nonexistent label.

Assignmezit and unconditional transfer are sepa
rated; there are assignment, test, go to, and
halt statements, and the initial statement
may be any of these.

More than one begin-node allowed; graphs must be
"clean" in a number of ways (no unreachable
statements, no conditional may transfer to
itself).

No explicit unconditional transfer: all uncondi
tional transfers are conditional transfers
which go to the same label in either case.

Statement'names, which are always integers from
1 to n, are used instead of labels; there are
three statement types, and every program
starts at statement 1.

TABLE 10

k8

me:it i-> a program. It inoif.t',, 'or e.ioh state vector before the

statement is executed, the next statement to be executed as well

as the new state vector; in the terminology of section 2j+, it has
an effect and an exit function. Yanov CRutledge (hi refers to the

"shift relation" which gives the next state vector (if Yanov«s eval
uations are interpreted as state vectors) and the "successor func

tion" which gives the next statement, both as functions of the cur
rent evaluation. In CBlzot and Robinson 61+3, each element b£ B (the
set of words) is made to correspond to an instruction hfe: fQ-+ *0,
whore each element of FQ is astate (= state voctor) giving each
element aC A (the set of addresses) a value in B, and the program
counter avalue in A. This is more general than the above model,
since it allows the possibility that the program-counter component
of 0*6 E can affect address components of h^Or) — that is, that
the effect of the instruction corresponding to b may depend on its
location. Elgot- and Robinson call a mapping b^ location independent
if this cannot happen, and an entire machine (RASP) is called loca

tion independent if each of its instructions'is.

Every program in the multi-branch model is equivalent to one
in the two-branch model; however, the equivalence must be construc
ted with care. In the directed graph model of CGood 703, each node
has an associated operation which transforms the state vector, and'.
all links leaving a node carry mutually exclusive traversal condi

tions. Thus an arbitrary node with n exits would seem to be equiva

lent to an assignment followed by n.-l.two-way conditional branches.

Such an equivalence, however, does not always hold without the intro

duction of extra variables, as shown by the AlfiOL example if x=y then

go to aelse go. t° bwhere real PJ^codure Y5 £gj&} 7^1 *:=z t^5 '
Here^ if the node operation consists of y:=z followed by x:=z, we have

h9

no way of telling where to go next, slr.;e x, y, and z are now all

equal. Wo may obtain equivalence by intioduclng a new Boolean vari

able, test; the node operation is now £est:==(x=y); y:=z; x:=z; , and

the traversal conditions are test=true and tesjb=ga^lse. The directed

graph model of [Manna 703 is more carefully constructed; he associ

ates an operation on the domain with each arc of the graph, rather*

than with each node, and the operation is presumed to take place after

the test is made, under"these conditions, the equivalence described

above may be carried out without the necessaity of introducing extra

variables. (Manna refers to elements of a domain, in the above sense,

as state vectors, but makes no further study of their structure.)

The complexity of modern programming languages has reached a

point at which even the assignment and conditional transfer statements

which the two-branch model was intended to reflect are no longer well

represented by that model, in particular if side effects are present.

Further language features, such as FORTRAN assigned and computed

GO T0»s and arithmetic 3Ffs and ALGOL g&J&'s involving switches,

are also not well represented in the two-branch model. We may always

carry out the equivalence above, but the equivalent two-branch graph .

obscures timing considerations for commuted GO TO's and the like, and

is sometimes almost impossibly clumsy, as when describing the effect

of a block with several exits.

	Copyright notice 1972
	ERL-347 (1 of 2)
	ERL-347 (2 of 2)

