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STATE VECTORS: A PRELIMINARY SURVEY

We Do Maurer

Introduction

We present here a critical survey of work done over the past
fifteen years on mathematical models of computational processes.
Central to much of this work is the concept of the gtate vector,
analogous to the instantaneous description of a Turing machine, and
the state vector function whose values are integers, truth values,
labels; elements of a set of variables, or further state vectors,
Any program, statement, expression, term, factor, or condition in
any programming language may be represented by a state vector func-
' tioﬁ, which may be‘said to constitute its meaninge

The study of computational processes has been marred by dif-
ferences in terminology; state vectors themselves are known by at
least six different names, One of the tools in our presentation is
the use of glossaries of programming terminology expressed in tabu-
lar form, By this means; similarities and differences among various
programming concepts may be observed, It is our hope that this sur-
vey will provide the research worker with a means of giving proper
credit to the initial users of many of these concepts,
| Many of the Important results cited here may be stated without
any reference to state vectors. These include Floyd!s methods of
proving the correctness of a progfam, Knuth'!s discussion of semantic
attributes in programming languages, and Manna's work on termination
of algorithms, However, in order to apply these results, we must

first make a specific model of the program to which the application



i1s made, We shall see that this may be done using state vectors or
their generalizations in all cases of interest. |

By unifying, in this way, the work of McCarthy, Floyd, Knuth,
and Manna, we are able to provide a single theory encompassing the
subjects of syntax, semantics, and program verification for arbi-
trary programming languages and computers. A program is verified
by using Floyd!s methods and their extensions to prove partial cor-
rectness, and Manna's methods and their extensions to prove termi-
nation., In order to prove the statements demandeéd by.:these methods,
we construct the derivation tree of each command in the language,
and associate sémantic attributes, as introduced by Knuth, with each
nonterminal in this tree. These semantic attributes are functions
of the current state vector, as studied by MeCarthy and others.

The existence of a unified theory by no means implies that
the subject of computation science is closed. For most large pro-
grams, it is very difficult to apply directly the methods of Floyd
and Manna, even in the presently known extended versions. The pos=-
sibility of errors in proofs of correctness of programs, which are
usually even harder to find than errors in the programs themselves,
strongly suggests that we need many more computer aids to verifi-
cation than we have at the present time, The extreme difficulty
‘of proving the correctness of even simple programs involving
floating-point numbers, and the fact that many well-known algorithms
of this kind are not correct in the mathematical sense, indicates
the need for mgthematical theory to influence future hardware and
software developments with respect to real arithmetic. The proof of
_correctness of programs admitting data structure is theoretically
possible, but practically almost unexplored. In particular, most

compilers remain unpfoved, thus preventing us from being certain
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about the behavior of even a verifiecd vrogram written in an alge-
braic language.

Similar questions remain open with respect to language defi=-
nition, The syntax of FORTRAN is no more cumbersome, when described
in BNF, than 1s the semantics of almost all existing programming
languages when described in terms of state vector functions, Cone
slderations of program correctness should be expected to have a
far-reaching effect on future language design. Many features of
existing languages, having to do with recursion, parameter calling
methods, order of evaluation, and so on, are defined informally and
then interpreted differently in different implementations, Any for-
mal definition of such a feature implies a choice of interpretation
with which not everyone might agree.

What the unified theory does give us is the assurance that
work in the area of computational models may ultimately be applied
* to the solution of real computing problems. With a little ingenuity,
state vector models may be bullt even in the presence of input-
output,y dynamic types, multiple use of names, or self-modification.
In fact, any existing programming language may be described in state
vector terms, provided that-1t:mayube=iﬁtenpreted in a semantically
unambiguous waye. Similarly, program verification techniques, al=
though they were first developed for greatly simplified languages,
may be applied to any language containing commands, and even to
languages in which commands are created dynamically.

The plan of this paper is as follows. In Part 1l we consider
models of state vectors and computation sequences, éntirely apart
from the programs which give rise to them, In Part 2 we treat the
association of state vector functions with various component parts
of a program. In Part 3 we consider mathematical models for pro-

grams themselves, In Part 4 we show how to give relations between
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the syntax of an arbitrary programming language and 1lts semantiecs -

in state vector terms, and compare this approach to semantics with

others, Finally, in Part 5, we apply this notion of state vector

semantics to the problems of proving correctness, termination,

| equivalence, and other assertions about programs.

The author is greatly indebted to Ralph London for his ex-

 haustive bibliography on proving the correctness of programs

" [London 70al, without which fhis survey would never have been com-
pleted.



1 STATE VLCTOR W NDAMY TALS

We shall start by reviewing various published definitions
of what are essentially state v~ctors. These definitions are not
all quite the same, and they differ from each other not only ter-
minologically but in other ways, such as the restrictions placed
on the number of variables or the numher of values. Providedlthat
the restrictions are properly chosen, we may construct state vec-

tors for sequential machines, Turing machines, and the like.
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1.1 Definitions of iitate Vecto. g

The first nppearance of stale vectors for an abstract machine
with infinitely many random=-access registers is in [Kaphengst 5971

the term Maschinenstellungen is used here. However, the first ap-

pearance of the state vector concept in connection with a general
theory of programs and computers is in [feCarthy 631, and it is
from this parer that we take the term "state vector."

McCarthy's original definition.of state vectors is displayed

in Table 1, along with a number of others which have =anreared since

then,

ly absent from this list are the "snapshots" of [Naur 6613 pro=-

grammers may visualize state vectors most easily as "snapshot"
dumps, but Neur's snapshots (as oprosed to his Genernl Snapshots)
are defined too informally and cursorily for inclusion here.

State vectors as functions first appear in [Elgot and Robin-

A eomtent func-

h
1]
.

son 641, where they are called content frnetion

tion k assigns to each variable x its current value k(x). The set
K of all content f'metions. applicable to a given conpitation is the
set of all functions from A, the set of all varinrbles, to B, the
set of all legal values. !lcCarthy, since he foes not se this func-
tional notation, introdices a function e(v, £) which gives the cur-~
rent value of the varicble v when the current state vector is €.

By writing cg(v) for c¢(vy £), we obtain the content f'inction Ce
corresponding to the state vector %. (Elgot and Rohinson are con-
cerned mainly with computers rather than programs, and thus they

use the term "addrosses" for variables and "words'" for veluess)
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"We shall “uirne the giate veekor & of a progren
at a 7ilven time, to be The set of current
assirnmantes of valuins to the variabhles of a
procram, In the case ol a mechine language
procranm, the ctnte voetor is the set of
current contents of those repisters wvhose
contents change dGiring the course of execn~
tion of the prosram."

"le assign symbols 243 @73 8oy a3, ees to the ine-
dividual storage locktiofis..3.e denote by Dy
bss Pry byy eee the units of information that
ca‘" bé stéred in the aj...‘Lnt A= &ao, 819 29
ooo}, B = ib . b 9 b. ’ o.o}{ then the“con=
Tiguration ig th meﬁory at a specified time
ci:.an bg f;cpresented by a function k(x) from A
nto .

"The ¥content of the storet....is a2 prinitive con-
cept and we si:all always denote it by 0....a8-
.sociated with each commend ¥ in the »nrogran
there is & (F- T) operator @ such.that obeving
the comiand ¥ in a state where the store con-
tent is ¢ -voduces a new state ¢! = o,

"A11l conputers have a :::er.v.or:g, which 1s a finite
- collection of felementst....lle may now drop

the quotes and speek of the merory of a con-
puter as a finite set M....\ particular stats
(sometiries Imown as an 'instantaneous descrip-
tiont) of the comnuter is ther....a fnction
frgm"I-I into the set of all integers from 0 to
Iles [

"Each oneration [Bs intended to "roduCe....2 map
from A® to A® (where A” is the set of 21l se=~
quences (2., 8.4 ese) of clements of A). The
following are the types of onerations from
vhich the admissible ones are selected: x, $=Cy
which transforms (50, ceey B3y vee) Into (ay;

XN X} ek,: seoe ;oooo

g At P(F) 2c-nte, respectively, a possile se~
arones of instrocetions of the schema P....0nd
he sedqircnceg of vectors of valies assigned %o
Ty eeey L) when U is ex-cuted., 0(i) is the
i-%h menber of ¥, P(T) (i) is the vector after
(i) is exceuted and P(¢) (i, j) is its j=-th
comp--nent "

_"In the first plece, vhat is a store? Physically,

we have several renmoriiable ~nswers, but nathe-
natlically 1t comes down to ™eingm sinply an as-
gignment (a £ metion) which conviects contents
to locations, Spealzing more precisely, the

. (e'rrent) state of the store, call it W, is
mathenatically a fmetign T: L~ V which as-~
simms to each location € L (Lhe set of 211

- locations) its (curreat) contents o(l) € V
(the set of all ol lowable values)."
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The use of a separate set of legal values for each variable first
appears (in a state vector context) in [Maurer 66],'ﬂ1thowgh this
jdea 1s also sugrested, semi-formolly, in [Ershov @], Although
[Maurer 66] is aiso basically concerned with comnuters rather than
programs, it is clear that different variables often Ao have different
kinds of values in practical situations. In fact, the set of all
legal values of a variable may bhe jdentified with the type of that
variable, as suggested in the ALGOL report [Maur et al. 60] and
elsewhere. It 1s also pointed out in [Maurer 661 that tape squares
may be variables in an infinite set of variables. The functional
notation S (x) denotes the value of x, and the state vector S is
called a state.

A cohcept known as the “coutent of the store" (the informal
nature of the definition of which is strongly emphasized) appears
in [Strachey 661, but it is clear from the context that it is ef=-
fectively a state vector. This paper 1s concerned with data struc=-
tures and functions acting upon them which may or may nbt be de~
fined at a given instant of time (because, for examnle, they may
go down a sublist which isnft there). Consequently the content of
the store is said to "contain" not only variable values but also
the values of all those. expressions which are legal at the given
instant of timee.

Explicit correspondences between ALGOL-like aésignment atate~
ments and state vector functions (see also section 2,3 of this
paper) first appear in [Engeler 671, although they are suggested
in both [McCarthy 63] and [Strachey 66]. Engeler is the first to
require that the number of variables be infinite; this is also done
in [Kaplan 681, which otherwise follows lMcCarthy. No specinl name,

other than "sequence of elements of A," is given here to a state
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vector, where A ic the n1nderlvirg sct (Lhe set of all values).

From 1967 on, snveral nther definitions were made. The as=-
signments to the registers of a computer langn~ge and to the set
of bound names of ~ programing language as introduced in [Jara-
simhan 67] are effectively state vectors, though informally de-,:
fined. Machines with infinitely many storage locations, including
‘tape squares, are studied in [Wagner 681; the values of storage
locations range over a finite alphabet, and there are finitely
many tape heads, each of which is effectively a variable whose
values are tape squares. Composite objects, as defined Por PL/I
by the Vienna{group [Lucas and Walk 69] can be made to look like
staté vectors of structured variables; they are essentially more
complex than state vectors, however, and their study will be de-
ferred to section,q.3. The condition for the correctness of a2
control path (see section 5.1) 1s given in state vector terms in
[Cooper 691; here {L% is used for the set of values of the (finite
number of) registers. Thé isubjéct of-verification is baken-gp in-
great detail:in-fXing 69):and £Good-70]§ -they use the term "state
vector" and specify a finite number of variables, each with its
own set of values. In [Luckham, Park and Paterson 70], a time
variable is explicitly introduced; P(¢) (1) is the state vector at
time i of the program Py and P(F)(1,J) is its j~th component, that
isy the value which it imparts to the j=th variable. Strachey!'s
concept of the content of the store is put into expliecit functional
form in [Scott 70]; £inally, Wegner's informatinn structures
[ngnern703'are informally defined but are suggestive of state
vectors, presumably in a data-structure setiing.-A partial glossary
of basi¢ términology used in connection with state vectors is given
in Table 2,
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Maschinen=_
stellung A

State
vector €

Content
function k
(or state
(k, a))

Content of
the store,
e

State 'S

Sequence
Gog 21
of elements
of A

Assignment
to a set
of regi-
sters

set {L% of
values

of the
registers

Vector of
values as-
signed to

(L 9 eevy
Ln>1

State of
the store,
o

JAcher

Variables

Addresses

Generalised
addresses

Menmory
elements

Variables

Registers

Registers

Location
symbols

Locations

TABLE 2

Worte

Values

Words

3it
patterns

Blements of
the base
set

Blements of

- the ulder-
lying set

Elements of

~ the range

of a regi-
ster

Values

Elements
of D

Values

W(P) heisst

der Inhalt
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ca, £) is

the a-conpo-
nent of €

k(x) is the
content of x

(C))(T) is
the I=value
corrnsponding
to the
L=value «

S(x) is the
state of x

-y ey e G w - ow

Li is a re-
zister whose
cu~rent val-
ue is also
denoted by L

P(g)(i,3j) is
the j=th
commonent
of the vec-
tor P(g) (1)

T(L) is the
contents

of £

i
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In most of these parcys, state vectors ave represented either
as vactors, or as Tunctions, or as treces, or as elements of 2 car-
trsisn product. Thrre 1s a natural mathematical corrrspondence
between these nntions. Any function £ is comnletely specified by
the set of all nairs (x, f(x)), for all x in its domain. If the
domain is known, tha Tirst elements of the palrs may be eliminated,
and the function specifled by a finite or infinite vector of its
valies. Any vector, in tirn, is an element of the cartésinn product
of those sets to which its varions components are constrained to
belong. The a-component fa(x) of the clement x of a cartesian pro-
duct may equally as well be regard~d as the value fx(a) of the
function fx corresponding to x when apnlicd to a. Finally, any
function £ may be represented by a finite or infinite directed tree
in which all links lead from the root:to terminal nedesj each link
corresponds to an element x of the domain of the function, which is
its label, and leads from the root to a terminal node labeled f(x)..
This representation is advantageous when f(x) is itself a tree, 2nd

will be discussed further in section 4.3.

A conpuatation is represénted by a finite or infinite sequnnce
of state vectorse If the sequence is infinite, the computation 1s
endless; if it is finite, the computation terminates., There is also
an associnted sequence of labels (or operators or statement numbers)
through which the computation passes in execution order; these may
also be thought of as values of a program cowinter or control re-
gister. Such sequences may be required to terminate when transfer
is made to an undefined label, or to a designated halt or exit, or
when the current operation is undefined, or even (as suggested in
[Elgot and Robinson 64] in connection with "passive words" ) when
the current operation is a transfer to itself., A zlossary of trr-

ninolony melating to eco-iation seqiorens is Alsolare In Table 3.
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1.2 Yariables and Values

[MeCarthy 631 usés the terms "variables" and "values" for
ALGCL~-11ke prbgrams, and "registers" and "dbntents" for machine
language vrograms, It is clear, however, that a register may be
regarded as a variahle, whose enntents are its value. Also, on
most real computers, "register" refers only to the internal re-
gisters and not to the memory, core or otherwise; and indeed those
state vector models which are concerned principally with computers
rather than programs are divided between the use of the terms
"register" and "storage location" (or "address"). We shall cone~
tinue, in this paper, to ~efer to variables and values in all cases,
A variable,. then, is anything to which a state vector assigns a
value directly,

What sorts of things can be variables? Clearly, simple vari-
ables in algebraic languages, and registers and memnry cells in
machine ianguages, are variables., What about subseripted Gariahles,
however? If we have an array of n numbers, should this bé a vari-
able whose values are sequences of :‘n numbers, or should it be n
varlables, each of whose values are numbers? Clearly either point
of view 1s possible; we should be able to go back and forth between
one viewpoint and the other, as the occasion arises. In the same
way, we can regard an n-bit word in a computer aé a variable whose
values are patterns of n bits, or we can regard it as h variables,
each of whose values are O or 1.

A general construction which 1s applicable to this gituation
is given in'[Mhurer 66]. If M is the set of all iariables, we may
let D be a decomposition of M, that is, a partition into disjoint
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sets, Iff Lhe sets nfaﬁ are now peysnrded as variables, each of whose
set of valuns Is itscll a (restrieted) state veetor, the state vec-
tors 'over M are effectively the same as the state voctors over P.
This idea is further generalized in the definition of comnosité
objects [Lucas and Walk 69] as trees; each level of such a tree
corresponds to a level of decomnosition. Thus we nay treat arrays
whose elements are struct:res, whose elements are arrays, et cetera,
‘as is allowable in FL/I. |

One quantity which certainly varies during the course of a
computation is the program co:nter, or curreﬁt statement number,
as discussed in the preceding section. [McCarthy 661 calls this a

“"pseudovariable'; [Elgot and Robinson 64] distinguish between

content functions k and states (k, a), where the address a 1s clear-
ly meant to represent the current address.‘[King 711, however, treats
the program counter -as an actual variable, and his state vectors

all have program counter components., It will become clear in part

2 of this paper that this should not invariably be the casej; we

need state vectors without program connter comvonents as the ar-
gumenfs of certain state vector functions. However, there is a cer-
tain advantage in not having to treat the program counter as a snpe=-
cial case.

Can the squares of a tape, the cards in a deck, the lines on
an output sheet, and so on, be regarded as variables? This guestion
1s directly related to two more fundamental questions. The first is
whether the next state in a comnutation should he dependent pnly
on the current state, and on nothing else., This is certainly nnt
true in automata theory, where tapes are “reated on a diflfercnt
basis from internsl states, but it becones true if we substitute "in-

stantaneous descrintion’ for "state." Thus ~ither oHnint of view may
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be talien, depending o vkoethor a state veetor is consldered as
anclogois to a state (of a Tiine nachine, s2y) or to an instan-
tancois deserintion, Thr more restrictive noint of view opreers in
[Perk 68]: "if the corrinnd is an Yortput? comniznd, 1t has an eff
fect not rcflected in the state ag envisaged here, On the other‘
hand, the effect of an 'input'! command is cetermined by some 'en-
vironment! which again is ot specified in the state." In an ope-
retor algorithm [Ershov 681 or in a RASP [Elgot and Robinson.643,
on the other hand, the current s?ate clearly derends on the pre-
vious state, and on nothing else. The restricted viewpoint may
clearly always be expanded to the general onej any quantity which
arfec?s the next state may he treated as a variahle in an exnanded
model,

The second question ig whether the total number of variables
1s 21lowed to be infinite. Most authors who refer to variables as
"reglsters" specify that their total number is to be finite, If a
tape 1s regarded as a single variable whose values are the possible
contents of the tape, this eauses no difficulty, provided that a
varlable .ts adTowed to have an .infinite number of values. Howover,
1f each tape square is a variable, vuch a'modél:effectively re-
stricts the total length of a tape to be finite., Some authars re~
qiire the number of variables to be infinite, which is a bit un-
natural when dealing with subroutines whiph perform no input-o tnut
operations, On the other hand, [McCarthy 63] and-many-others lecve
the total number of variables unspecified; [Elzot and Robinson 6]
specifically state ‘that it may even be uncountables and [Scott 701
actually'syudies the topological properties of certain uncountable

data types.
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Whenever the number of v .risbles is infinite, a state vector
is apparently not a finite object. This logical difficulty may be
overcome, however, 1f we specify that each operation on state vec-
tors must change only a finite number of variables (this is pa:t of
vhat [Elgot and Robinson 641 call being "finitely determined"). In
this case, 1f will always be true at any stage of a finite or in-
finite computation that only a fi?ite number of variables have values
different from their initial ones, and state vectors may then be
formulated to give values only to these variables. This may require,
of course, that different sets of variables be used at different
stages of a computation; this question.will be taken '1ip again in
section 2,1. o

We pass now from variables to values. The cornuter languages
of [Narasimhan 67] and the computing machines of [Orgass and Fitch
69a] specify that the total number of values of a variable must be

finite. Under tiinse conditions, no mechine or program inveolving in-

finite tapes may be modeled. In all the other work which we heve
been consider ing, however, there is no restriction of this kind,

A point of greater controversy is whether different wvariables should
be allowed to have different sets of valmes. It is g:ite cormion for
this to be forbidden, and, in consequenbe, for different kinds of
variable quantities to be tredted on diffevent -bagess Thus in
[(Wagner 68] the tape heads, which have infinitely many possible
positions, are distingnished_from the storage locations, whose values
range over 2 finlite alphabet. A much more comron distinction of this
kind 1s between the program counter and the other variables; this
may or may not be desirable, but 4f all veriables must heve the

samé set of values, it 1s apparently reqiired, since the valias of
the program counter are statements or therir lebels, while the values

of other variables pres:mably are note.
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If each variable has its own set of vnl es, it 1s always
possible to take the union of 21l these sets and form a universal
get of valnes. A distinction nust then be made between "legal"
state vectors and otherss explicit allowance for this possihility
is mede in [Blgot and Robinson 641, [Maurer 661, and [Wagner 681,
State vector frnctions, in turn, must be partial functions (which
they unsually are anyway). henever an eipliéitnrange?isrspééifiéd
for ¢ontent-functions, thiSrrangetaffectiveiyibecomeéﬁphe set of
all legal values of any variable. On the other hand, from the
carteslan product viewpoint, it appears mﬁnelpatural to work with
the cartesian product of arbitrery sets (each of which is the set
of values of some variable) than specifically with the cartesian
product of several éopins of the same set. This is reinforced by
the fact that mbst“pfogrémmingtlanguagesiha?é'zng-deciargtions,
vhose ;purpose, nathenatically, is to specify, for certain varisbles,
the set of all valies which they may assime, Sinilerly, most com-
puters have registers of various sizeé, together with input-otput ‘
devices ass ming fariachs from a charsctor cet.

A summary of the properties given to state vectors by variéus
authors aprears in Table 4, Iﬁ this connection we should mention
one pecullar property not mentioned in this table: the reluctance
on the part of some authors to nsé.th99¢on6ept of a sets McCarthy,
Strachey, and Engeler carefully avoid saying that there is a set of

all veriahles with which a given state vector associntes values;
Burstall speaks of "sorts," rather than sets. If mathematical logic
1s taken to underlie set theory [Suppes 57] rather than the reverse
[Ehlers 68], it might seem that mathematical logic should directly un-
derlie computation science, without set theory in between, Other
workers in mathemafical logle, however, use sets of variables and

sets of values without hesitation ([Elgot and Robinson 64], [Scott 701).
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Formal or Total ~.umiwr Total number Separate values
informal of variables of valuey for each
definition? variable?
MeCarthy 63 Informal Not specified Not specified Not specified
Elgot & Formal Unrestricted Unrestricted No
Robinson 64
Strachey 66 Informal 1lot specified Not specified Not specified
Maurer 66 Formal Unrestricted Unrestricted Yes
Naur 6ﬂ§ Informal Not specified Not specified ot snecified
Engeler 67 Formal Must be Unrestricted No
(countably)
infinite
Narasimhan 67 Informal  Mus( be Musl be Yes
fFinite* Fini Tex
Kaplan 68 Formal Must be Not specified o
, (countabiy)
infinite
Wagner 68 Formal =  Must be Must be - No
(countably) finite
| infinite
Cooper 69 Formal Must be Not specified o
3 finite
Orgass and Formal Must be Must be No
Fiteh 69a finite finite
Luckham, Park Formal Must be Unrestricted No
and Paterson finitegn
70
Scott 70 Formal Not specified Not snecified 1o
Good 70 Formal Must be Unrestricted Yes
: __finite
King 71 Formal Must be Not specilied Yes
finite
TABIE 4
¥ This & {:cr cemi)uter Ra W& (,5, ™ “ (&mrmk wa
tolal wumber |of va -4 ﬂcs ,,,,M;Z‘ }( 0w ab@ ‘a{\“k‘c& ‘311 QQ
Torcuﬂ hwy bozr of wa’) eS nol < ecuﬂ<
*¥ Accord.‘ul The d-?‘chz-lén aqe 32'{ of Z&.gs er. An
euf'ﬁ&C( Ra.(.tcm (P 221 see 511%9'1 R—moves u‘s S'tl‘cct¢,05\.
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1.3 Structured Sets of Values

The set of values of a fariable is normally provided with struc-
ture of various kinds. The most commonly encountered sets of values
are the real numbers and the integers, and their counterparts, the
one~word floating point numbers and the one-word integers. These are
provided with binary operations of additiony subtraction, multipli-
cation, division, and exponentiation, the unary minus, the ordering
relation <, and various other functions such as sines and cosines,
The set jtrue, false%, which is the set of values of logical or
Boolean variablesy is provided with the unary operation NOT and the
binar& operations AND and (Ry and, in ALGOL, with-» and £ as well.

From the mathematical point of view, we may study “ideal"
algorithms in which any real number, or any integer, can be the
value of a variable, or we may study "actual" algorithms in which
the values of varlables are constrained in the usual way by the
limitations of finite storage space in real computers. The only
difference between the mathematical models in the two cases 1s in
the sets of values and the properties of operations on these sets.
In particular, addition and multiplication of real numbers are as-
soclative, whereas addition and multiplication of floating=-point
numbers are not, even in the absence of overflow and underflow.
This must be taken into account when proving the correctness (see
section 5.,1) of an algorithm involving floating-point numbers. For
integers, the difference between ideal and actual algorithms is
purely a matter of overflow and zero division; if an ideal algorithm
involving only integer variables is correct (so that, in particular,
it involves no zero division), then the corresponding actual algo-

rithm is always correct whenever no overflow occurs.
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Other kinds of structure have been proposed for data types,
or sets of values. In [Scott 701, a complete lattice structure and
a topologlecal strpcture are proposed for data typese. Each data type
is assumed to have a countable, computable dense subset, and thus
its topology 1s separable. Mappings between data types are assumed
to be continuous and monotonic. All of these conditions are automa-
tically satisfied by finite data types. If D and D! are data types,
then the set of all functions from D to D* is also a data type; such
types are further studied in [Milner 721,

A number 6f programming languages constructed in the last ten
years have used data types of coﬁsiderable complexity. We have al=
ready mentioned the structures of PL/I, which were originally de=-
rived from COBOL structures. Similar features are found in ALGOL 68
[van Wijngaarden et al. 693, PASCAL [Wirth 711, and elsewhere. A
different kind of data type is enoountered in LISP, SNOBOL, EULER,
and APL, where the type of a variable may change dynamically. Thus
the same variable, within the same job, may be an 1ntegér and a list
in LISP, a string and a pattern in SNOBOL, an integer and a real
number in EUIER, or a two-dimensional and a three-dimensional array
in APL. In such cases the type of a variable is itself a variable,
and has its own component within the current state vectore. Alterna-
tively, the value of any variable may be given in the current state
vector as a pair (t, v), where v is the actual value and t is the
typee

All of these structural considerations may be thought of as
slight generalizations of the éoncept of a state vector. That is,
instead of a simple function from one set to another, we have a
function whose domain (the set of values) 1s provided with some

further structure. Another kind of generalization of state wectors
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is suggested by the problems of stcrage allocatione A programming
language with variable array dimensioning may be defined with re-
spect to an infinite sequence x5 X5y esey of cells and a storage
allocation mechanism which assigns to each variable, including each
element of each array, one of these cells, This assignment changes
as the program progresses, and we may therefore speak of the current
storage al location, as well as the current state vecter. Thus
[Kaplan 68] defines the program state yector ©f a program T to be
the ordered pair (M, §), where My maps program variables into the
positive integers and £ maps the positive integers into values.
In a similar way, [Park 681 defines the state of a computation to
be a pair <& 4 C>, where £ maps the currently legal expressions
(among which are the variables) into some set of locations, while C
maps each location into its current value. In Park's model, the sek-
of .eirréntly legal expressions also changes as the program progresses,
because an expression may refer to sublists of a liét, and is legal

only if the sublists are currently present.
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1.4 State Vectors of Specific M-shincs

Any real computer, and any real programing language, has
state vectors. In addition, automata of various kinds may be re-
garded as machines with state vectors. Automata, in the present
context, are specific machines with specific rules, rather than
being general models for all computers, It is true that we could
choose, .as the set of states of a sequential or Turing machine,
the set of all state vectars (without input-output components)
of some digital computerj then, provided that we were willing to
live with a restriction to a single input and output tape (for a
sequential machine) or a single seratch tape (for a Twring machine),

we could model a computer as a sequential machine or a Turing ma-

chine, Howevery, as we shall see in part 5 of this paper, the proof

W

of assertions aboul programs and computers generally requires that
domputérs, and programs, be modelled in other ways.

As_an example, let us make a state vector model of a Turirg
nachin;ﬁg%:'g:fzgjﬁhis, there are two arbitrary choices to make,
The first is whether to model the tape as a single variable, whose
valuss are sequences of symbols, or to model each separate square
as a variable whose values are symbols, The second way is clearly
more natwal, but, as we have seen, it is incompatible with the
model restrictions of [Cooper 6§1, [Good 701, and [King 711, (No
method of modelling a Turing machine is compatible with the re-
strictions of [Orgass B8 and Filch 691 )

The other choice is whether to model a moving tape and a

fixed head or a moving head and a fixed tape. In the first case,
the 1-th square of the tape 1s defined to be that square which is

currently i squares to the right of the head; the (-i)-th square
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is 1 squares to the left of t%s head. Lach "move left" or "move
right" operation sets the wvalue of each such variable to the cur=-
rent value of the variable on its right or left respectively. In
the second case, no square changes its value unless it is directly
under the head, but the head is also a variable whose values are
positions on the tape, (This variable is distinct from the vari-
able whose values are the states.) Although an extra vafiable'is
involved, the moving-head model 15 much easier to managé than the
fixed~head model when each square is a variable, éince only three
variables can possibly change (in the most general form of Turing
machine) at each stage. Writing Q for the state variable, P for
the variable remresenting the head, and T, (~» < i < ) for the
tape squares, passage from the current state vector S to the next

state vector S?! is given, in this model, by

s1(T) = 8(T,) for all 1 # S(P)

S(P) +1 for "move right"
St(P) =< S(P) for "no motion”’

S(P) -1  for "move left" |
S'@) = £(6(@), 5(Tg(p))) for "let the next state

be f(x, y), where x is
the current state and y
is the contents of theé
current tape square"

St (T ) =g(s@Q), s(T )) for “print g(x, y), where

S(P) | S(P) x and y are-as,abo&e"

Those who are familiar with simple Turing mechine program-
ming will be well aware thét, as [Minsky 61] points out, the state
variable, which we have called Q here, normally plays the r8le of a
program counter. This may cause some confusion concerning the term
"state vector" for a set of current "states" of variables; it should

be clear from the preceding discussion that a state vectar is not,
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as this analogy might suggest, a vector of program counters, but
rather a vector of variable values in the ordinary sensee.

Other specific abstract machines than Turing machines may
also be modeled using state vectors. For the complete sequential
machines of [Ginsburg 62] (which ar e adaptations of the finite
automata of Moore and Mealy), using an input variable, state vari-
able, output variable, and fixed read-write heads, if the machine
1s (K, =, A, §, A\) and the current state vector is {input = (i,
159 «ee)y state = k, output = (05, 0,9 coe)}, where ij<€ 2> and o,
€ A for each j, then the next state vector is finput = (i,, 1,,
ees), gtate = §(k, 11), output = (\(k, 11), 019 Oy eee)%e The
strings upon which a Markov algorithm [Curry 631 operates are ef=-
fectively its state vectors; likewise, pushdown automata and other
special-purpose subomata have their state vectors, as noted in
[Engeler 67] and alse ;nformally in [Scott 671,

Besides automatg, a number of other computational models
have been econstructed. We have already mentioned the Maécggnen-
stellungen of [Kaphengst 59]; Kaphengst's WPM, or program-controlled
computing machine, is similar to the Q-machire of [Melzak 611, the
#infinite abacus" of [I.ambek_él], end the RMs, IRMs, and SRMs of
fShepherdson and Sturgis 631, although only Kaphengst gives an ex-
plicit description of the state vectors involved. Two other compu-
tational models are developed almost, but not quite, to the point
of introducing state wectorsj these are the progranm schemata of
[Yanov 581 abd the operator algorithms of [Ershov 621,

Yanov, whose work is well summarized in [Rutledge 6#], in-
troduces eyaluationg, which are almost, but not quite, state vec-
tors. Each evaluation contains the current values, not of the vari-

gbles in the computation, but of certain expressions (specifically,
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Boolean expressions or predicates). Thcre are presumed to be only
a finite number of these, so that éimply choosing for our predicates
all expressions of the form {var=val} will not fit Yanov's model
when there are an infinite number of elther variables or legal val-
ues, Experience with modelling programs in this way suggests that
it 13 not always clear, even for a completely deterministic algo=-
rithm, what the values of all predicates will be after a given com-
mand, presuming that all their values are known before that command.
Yanov therefore allows an operator (= command) to specify, far each
incoming evaluation, a set of possible outgoing evaluations. This
feature of Yanov's model allows it to handle the nondeterministic
case directly, without alteration, whereas in the state vector model
a state vector and :a command specify the next state wector uniquely
if and only if the command is deterministic (as noted in [Burstall
721) o Yanov also introduces the "“argument domain of an interpretation"
which acts somewhat like a set of all state vectors, although the
state vector structure 1is not spglled out. ”

The operator algorithms of Ershov are modeled after digital
computers, rather than programming languagesj the value of a variable
may be an operator, as happens, for:example, with the inst ruetion
words of a computer, His definition is informal, and does not in-
volve state vecta s explicitly; he represents variables by
non-italicized letters, and the current value of any variable 1is
represehted by the corresponding italicized letter. Ershov does
point out, however, that different variabies should be expected to
have different sets of valuess

Mention should also be made of the SECD machine [Landin 64]
and the sharing machine [Landin 65), These machines have a con-

struction (the enyironment) which is much like a state vectar, but
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the rsle it plays in the model is distinctly secondary. The philo=-
sophy here is that recursive functions of conditional expressions
should be used in computing whenever possible, and manipulation of

variables in the ALGOL sense resorted to only when necessarye
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2 DOGNII ot i T an r, LA P TICEINNS

Any coxniter or wrograrning laiiuage 1z ronresentable <lither
as z context-free loiguage in standexrd BT or ns a subset of such

a langiage as detriined by eertrin 10=DIT restrictions (such as
that every veriabdl~ nsed must hr declered), It is with the nonter-
rninals in such a representation thet we now co:i:cern orselves. With
certzin of these nonterninals (or "metaling-istic variablesg" [llamr.
et 21. 601) we nay ascociate functions of the current stete v-ctor
vhose valies may be state vectors, real mumbers, integers, trith
valg.rzs, menbers of a set of variables, statements in a progran,
etc, These fimetions are zenerally nartiel; however, in proving the
corrcetness of a program, con:itlons are Innosed with reépoct to
which the functions are total (see also section 5.1). Such associn~
tions hove been made by varions anthorsj we now discuss the nost

COIIol ONeSe



28

2el General Cnmmanis

Passage from one stage of a compnutation to the next is made

by instructions or commands in computer languages and by operations

or statements in programming langunges. Each of these may have a -

statement number or a statement name or a label or sbmething simi=-

lar, Table 5 gives the terminology used by several authnrs with
respect to these concents.

A command may be associated with a function which takes state
vectors into state vectors. This is the easiest of our assoclations
to make, and it has been remarked upon by a great number of authors,
as displayed in Table 6. (See also the similar comments by Strachey
and by Engéler from Table 1l.) If S is the current state vector and
we execute the command C, then fC(S) is the next state vector in
the computation. The function fC corresponding to C has various
namesj we shall call it the effect of C, following [Park 681 and
others. This name includes as a special case the term "side effect”

of earlier vintage; side effects are discussed in the next section.

In the nondeterministic case, the effect is multi-~valied; this 1is

What happens when an instruction or cormand is modified by
a program and then later executed in modified form? The answer, as
noted semi-formally in [Ershov 68] and formally in [Elgot and Robin-
son 64], is that the instruction itself becomes a value of a varl-

able. Thus we may have varianbles whose valies are state vectar func-

tions. Or, to simplify things a bit, we can have a distinguished
set of "operators," a map from onerators into state v~ctor functions,
and variables whnse values are operators. With such a variable we

may always assoclate a single state vector function which is ap-
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Flrot and Rohinson 64
McCarthy 66
Strachey 66
Engeler 67

Elgot 68
Good 70
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instruection
statement
command
oprration
command

nnde operation

Luckham, Park and Paterson 70 instruction

Burstall 70 statement
King 71 statement
statement

Igarashi 71

TABIE 5

inetrietinn location
étatement number
label

numeral

occurrence

node

prefix

point

statement name

label symbol



McCarthy 63

Elgot and
Robinson 6%

Maurer 66

Park 68

Cooper 69

Orgass and

Fitch 6%a

Scott 70
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"When a block of ogram vving A single entrance
and exlt 15 exrcnted, the effect of thls exe-
cution on the state vector may be described by
& function g' = r(§) giving the new state vector
in terms of the old."

“"For any b € B then, hy defines a transition from
one state (element Bf 3 .) into another state....
h will be called an (agomic) instruction....We
akso speak of an arbltrary mappilng of 'io into
Zy as an instruction."

"An instruction then, is a method of passing from
one state to another state, 1. @., @ map I:
> %, where § 1s the set of all states under
consideration,”

"It is necessary to talk about the effect of a
command. The device adopted here is to refer to
an instantaneous state of a computation. The
state <, C) consists of two mappings L and C
v...The effect of the given command produces
the new state <£1, Cf/ "

"In a program scheme we have a_set of registers
Ll, I‘2’ XXX Lnoooolet q)ij(iL%) be the final

set of values of the registers, €L§ being the
set of values at the starte....” |

“aAs a result of our definition of the state of a
computing machine, we are able to assume that
an instruction is a partial recursive function
from Y-tuples of nat iral numbers into Y-tuples
of natural numbers."

"The {onrrent)-state of the store, call it ¥, 1s
mathematically a function Ts L= V....let X be
the set of all states....a command is a func-
tion ¥: & = ¥ which transforms (0ld):states to
(new) states."

(Further examples of effects include the function next(s) of
[Burstall 70], which produces the new state (= state vector) st
{n terms of the cirent state s, and the function J[A] of
[Igarashi 71), which associlates with each statement A a map
from [W| into D, where || is effectively the set of all
state vectors under ¢onsideration,)

TABLE 6
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plied whenever that variable onerator is executed. The value of
this function applicd to the state vector © is fi(s) whenever
S(v) = £,

In assoclating effects with commands, problems arise with

, where v 1s the variable operator.

domains and rangese. If the command C involves a subscripted vari-
able, the associated function fc is inapplicable to any state
vector which speciflies the given subserint as being out of rénge.
If C involves the square root of X, then f5(S8) is nnt defined if
S(X) is negative (unless X is complex). In general, the precise
domain of f_ may be difficult to determine, In nractice, however,

C
it usually suffices to specify fC: X -)3, as a partial function,

that is, to determine some set 4 of state vrctors which contains
the domain of fc. In nroving the correctness of programs, we also
determine a subset of 4 which is contained in the domain of such a
function, as will become clear in section 5.1; the restriction of
fc'to this smaller subset is then a tntal frinction,.

The set‘g generally consists of 211 state veetors of a cer-
tain form, and we must also be concerned with their doﬁains and
rangese., Each such state vector musf obviously have a component for
every variable appearinz in the command. ([Igarashi 71] uses V[A]
for the set of all variables occurring in the command A,) But what
about a variable that does not so appear? Such a vériable mey a%-'
ways be inecluded by specifying that it does not changej that is,
if v is the variable and f, the function, tﬁen S(v) = S'(v) where

C
St fC(S). The nroblem arises when we ask how many variakles ~hn1ld

il

be inclided in thies woye At one extremn, '~ c¢nuld spneify thrt
every conceivahle legal variable name ourht tn he included; this
solves the problem of specifyving a2 unique domain and range for fC’
but in a rather nnatural way. At the other extreme, we could re-

quire that there he nn such extrancois varinhles; hut this is a
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bit awkward when we seek to find thr effezt of a succescion of
commands .

The most reasonable middle groind seems to be to deﬁcrmine
2ll variables occurring in the program which contaiis the given
command. (In some langusges, such as SNOBOL, in which variable nnanmes
may be constructed dynamically, this may not be possible, and we
may have to go back to the first alternative.) The effect of a
command then involves state vectors having a component for each
program variable. This also takes care of the case in which function
calls in the command may cause changes in variables which do not
appear directly in it,.

A related vroblem concerns whether to allow a cormand to
specify the next comend. If ths stete vectors in the range of
the effect of the cormand have procram-counter cgmponents, this
can be done directly, as in [King 71]. Otherwise, we mey Introdice
a new state vector function (such as the direct trensition func-
tion of [Elgot 68]) which gives, for each current state vector,
the next statement or 1ts labele. This subject is taken up further
in section 2.Jf. If a command does not specify the next cormnand,
the only allowable cormands are assignments, function calls, ~nd

the 1like; these may be combined to form gtraight-line progrems,

which have been studied by a number of authorse.

The state vectors in the domain of the effeet of a command
do not, normally, nced progrem-o inter © mponenrts, since a com-
mand does the same thing no matter where it appears in a progrene.
This suggests that instead of writing fC: ,X -+3 we might write
fcz 3 > 3, where the state vectors in ':'( have progrron-counter com=-
ponents and those in.x do not. This is a special crse of the use
of different sets of state vectors for the domailn an? range of the

state veetor finction of a commaond. General trentments of this Mind
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incli‘e that of [Ershov 6] invnlving the "onerating region" of an
alrorithm, which msy change as the algoritlim nrogresses, allowing |
new state veetor components to anpear, and the "directions" of
[Elrot 681 (see al~o section 3.4+). [Scott 67] and [Manna 69] are
concerned with different doméins (effectively sets of state vectors)
for input, program, ani output variables; while [Park 68] allows the
set of legal expressions to change when a command affecting data

structure is executed,
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242 Expresslons

A unified theory of state vector functions starts with the
observation that they may be associated with other program com-~
ponents than instructions or commanis. Of these, the simplest is
the arithmetic (or Boolean) expression. Given a state vector and
an expression, with or without side effects, we can find values
i?or all variables appearing in the expression and then evaluate
the expression using those values, producing an arithmetic or
" Boolean va;ue“as output. This was apparently first noticed in
[McCarthy 631, where the notation value(t, §) is used; here t is
a term (= expression) and ﬁ, is a state vector. If we write ft(g)
for value(t, E),~werobtainﬁthe statehvectornfuﬂction“ft-corréspen-
ding -to the toerm ti

Expressions are built up from terms and factors,y and &inmi-
larly their state vector functions are built up from the state vector
functions of the terms and factors. McCarthy gives a fourdway'eonf
ditiosal edpression defining value(t,y ) when t is a variable, a
constant, a sum, or a product. Similarly, Burstall defines
plus(e, e!) as the sum of the two expressions e and e’; he then
gives the equation val(plus(e, e!), s) = val(e, s) + val(et, s),
where val(e, s) is the.vglue of e given the state vector s .[Burstall
701, Strachey writes R(g¢, 0°) for the value of the expression € given
T as the content of the store, and mekes the further point that if
€ appears on the left-hand side of the assignment symbol (which
might happen with a subscripted variable, for example)‘then a dif-
ferent function, which he calls L(€, w), should be usea; the values
of this function are‘addresses.

It is interesting to note that these points have been missed
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by a number of other authors, who treat all expressions in func-
tional form. Thus Cooper treats a fixed collection of functions
whose arguments are register values [Cooper 69]; also in [(King 711
the arguments'of the various- functions are varlable values. An
extension of this system, found in [Igarashl 71], can be made to
give the full generality of arithmetlc expressions; here, however,
the arguments of the various functions are not restricted to values
of variables, but may, recursively, be values of other expressions
as well.

BExpressions with side effects have given several authoré more
trouble than was really necessary, and some of them seem to have
been dimly aware of this. Thus we find [Floyd 67]: "Consider the
statement as=c + (c:=c + 1) + ¢, which has the effect of assigning
3¢y + 2 to a, where 5 is the initial value of ¢, and assigning
Co * 1 to Ceeseolet us reluctantly postulate a processor, with a
pushdown accumulator stack Se..." Later, the handling of side ef fects
is attempted in [Burstall 70] by attaching "points" (effectively
labels) to the middle of an expression with side effects, thus
gseparating out lts evaluation over. several "statements.," A key to
the true solution of this problem 13 found in [Strachey 661, where
RY(€, T), for the expression (with side effects) & and the content
‘of the store Uy gives as value a pair (P’ T, where B is the value
as before and g' is the new state vector. Strachey, however, does
not give combination rules for the state vector functions of expres-
sions. By combining Strachey'!s work with Burstall's, one obtains

an analogue of Burstall's value formula given above:

gideeffect (plus(e, e!), s) = sideeffect(e!, sideeffect(e, s))

val(plus(e, e!), 8) = val(e, 8) + val(e', sideeffect(e, s))

which reduces to the original formula if sideeffect(e, s) = s.



36

243 Assignments

An assignment without side effects 1s a speclal case of é
command, The assignment of the constant k to the variable y corre-
sponds to the'state vector function f£(S) = S' where S'(z) = 8(z) for
ail z ¢ v (this is abbreviated S' 2ot S in [McCarthy and Painter 67]
and S' = S|| M' in [Wagner 68], where M! is the set of all variables
except v) and S'(v) = k., This is called a(v, &y S) in [McCarthy 6313
by writing this as a,(S) where C 1s jvekf, we may ébtain the effect
aq of the assignment C. This notation, along with the earller men-
tioned c¢(v, S), continues to be used ([McCarthy 661, [Painter 671,
[Kaplan 671, [Kaplan 681).

) An assignment gggg,siQe effecots is identical to a general com-
mand, as noted in [Good 701, since any variable may have its value
changed by side effects. To put it another way, any assignment is
equivalent to a sequence of assignments without side effeéts, as
noted in [Floyd 671, although extra variables may need to be intro-
duced (for example, when two variables interchange their values).

The terminology of various authors with respect to assignments is
displayed in Table 7.

Several authors, following McCarthy, restrict themselves to
assignments without side effects. Engeler's de@inition of operations
(= commnands) is perfectly general [Engeler 67], but the only opera-
tions he actually considers are assignments without side effectse
Assembly language instructions and their state vector functions are
treated in [Painter 671]; here, of course, no side effects are present,
In [Elgot and Robinson 641, it is explcitly considered as possible
that the left side of an assignment, as well as the right side, might
depend on the state vector§ assignments are written "Insert F in G"

" (for G:=F) where F and G are both functions of the addresses 2,y ces)



El.r_r,of, and
Robinson 64

Engeler 67

King 69

Luckham, Park,
-and Paterson 70

Burstall 70

Good 70

37

"The [silowing schema is typical of a large
class of instruectinns which may apnear
in a program...'Insert Feeeoln Geooo!
eeselIn thils instrnction k and a 2re sup-
posed to constitute the glven state....
The next content function k! satisfles:
k'(x) = k(x) for all x except X = Goeoes
for WhiCh k(X) = Foo.oonn

"Bach oneration 1s intended to producee...a
map from A® into A¥ (vhere A® is the set
of all sequences {a., 8,9 ees) Of elements
of A). The followinZ are the types of
operations from which the admissible ones
are selected.....xi:=gk(le,...,xj ), which

@"

transforms {a,y eeey 2y eee) into
a 9 o0y f 9 eso0y a 9 000)0"

Y k jl jm

k
np tgtate vector! of a program is an (n+l)=-

tuple of values {N,al,a2,eeean) where N
is an integer 1<N<m (the program counter)
o.oo[ﬁt Vj=<izbi952,ooo,bn be an arbitra"
ry vector in the sequence. Then If gi has
the form aSSign:%}'Jf,f(Xl,xg’oo.,xn),zlz,
the next vector in the sequence is vj+l=
<N’b1,ooo9f(bl,b2,coo,bn)’ooo bﬂ) vhere
the expression f(blgb?,...’bnioueooccurs

at the (k+l)-th position in the state vector."

n"g(i) is the i-th member of ¥, P(T)(i) is the
vector after ¢ (i) is erecuted and P(w)(i,J)
is its j-th componente....The exec:tion ~nd
computation sequences, ¢, and Pr(Fy)eess
s_re( defj'ined inductji:vely ;skfollgws ( i;.If
i+l) is the ass rnment . =F 90cey
:}I,V% thene e Pp (T} (1+1,]) =I""PI(§—I> 17 (1,1
i 9 and PI(G‘I) (i+l,w =
I(F (PI(wI)(l,ul),ooO,PI(WI)(iQUv))o"

" 1
p has assiennent(i,e) and p' follows p and
at p = next(s) at p! and val(i,next(s))

alle,s) and Lidentiffer (IT) and if # 1
val(it,next(s)) = val 11%,.3.)3" ?

A3

s

"let M be a memory, and let u = (Uqy eoey W)
and w = (wl, ooy V) be vecto}s of cells
in M. Also~let denote the wector of all
crlls not in the v~ector we Assignment ope-
rations on M are written w:=f(u) where f
is a total n-va:tor v~lued functioNe...
An assignment overation can be initisted
at any tire te... " wrecis» meznin: of
wi=f (1) is w(t+1l) = £(u(t)) »nd I{ (t+1)
= % (t) where t is the time when “the ope-
rotion is initiatedl"

TABIE 7
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aj and of their contents as given by the cur:ent content function k.
These considerations are also ireated in {(Strachey 661, where side
effects are considered. In [King 71], assignment and go-to (transfer)
functions are combined; assign:ixk, £(xl, X2, eeey Xn), J? means
"perform the assignment xk:=f(xl, X2, ¢eey xn) and then go to J oM
The state vector function associated with this assignment is formally
defined, as is the case in [Burstall 70] with assignment (var, expr),
and in [Luckham, Park and Paterson 70] with k°I'i = Fg‘(lkl, Lkz’ ceoy Lkn)‘ :

T 1nft sides of assignments in abstract treatnocnts eore usually
as sirple as possibles it is normal to forbid “hem even to have
subscripts, let alone side cffects. (A side effect on the left sice
may be caused by a finetion call in a subscrint expression, althgugh
this is forbiddeﬁ, for exsmple, in FONTRAIT II,) In [Strachey 661,
however, the general case is treated; his L(gy §) is a "goneralized

ad dress," vhere ¢ is an expression and ¥ is a state vector. In our

ternirology we would say that the state vector f‘-.v.;*.ctionv _f_‘v corre-
- sponding to the left side ¥ has velues wyhich are vorizbles. Th=t is,
the range of this finction is the jomain of the state vectors: (as
content £ nctions) under consi‘eration. If v tan be:both a left
eide an a right side, the corresponding state vector fctions fv
and g are related hy the eguat:':on gv‘(S) = S(fv(S)) (a siniler
eqiation is give: in [Park 681). & side effect of a 1t slle Is
exectly 1iké a side effect of 2 »ight side -= it is a function from
state vnctors to state vectors. Strachey'!s LY@, @) is a finetion
whose value is a pair ({, '), wherec o and & correspond’ respectively
to the valies of fv and gv ahove o

To construct the state vector finetion of a gereralized ns-
sigmment, in which either the left or the right sife, or hoth, n~y

9,

heve side effects, we mist decice whether the left nice o thn »ight
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si’e is tn b ovel nted Tirel, Tvo somudles, oe for left-to~-rirsht
an” the other for rishit-to-left ~voliatinn, ~re glven in [Strnachey
€€1. Agein comhin’-c Str-cheyl!s worlk it Dirst~ll%s, it is pos-

sible o replace

val(l, next! ))
r—eﬂélfier(ﬁ-

in Burstnll's fornula (our Table 7) by

(left(i s), next(s)) = f’iﬂbt(e siteeffect(i, g)) and
{"j ntifier(41) and 1T élef 1, s)
rlEE € ,nox’f(s N=right (1V,s1deeffect (e sideeffect (1,3)))]

for left-to-right evaliation (vhere left(€, O) and right(€, o) nre
Strachey's L(€, T) and R(€, v ) respectively, and right(€, o) cor-

responds to Burstall'!s val(¢, 7)) and

richt (12t (1, sideeffoct(e, s)); ‘Qev’b 'Pi""lt(e g) and
fidentlfibr'(ﬂ) LI léf%(_i_: 817 rct(e, s)) 3
2irght (A7, zoxt(s))=ri ght(_’_',siﬂee.u.ect(;_ oideeffect Qe_,_s_)))]

for right-to=left eval atio 1, Sinilar formilas mey be obhtninel for
nultiple assignments in ALGOL, where nore than one assigiment symbol

(:=) is "resen
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2.+ Conlitions and Cond’'iionels

A conition (or, as it is sometimes erll-d, a predicate, or,
esnecially in counection with correctress proofs, ~n ~s~ertion) is
sinply an expression whose value is true or falge, rether the: heing
a number, and Ciffers from an arithmetic expression ornly in this
regard. Indeed, the dlstinetion ":\e"w,eezz fietions and predicotes
which is commonly made in the study of program schcnes 2pNEaTS quite
nmeaningless from the viewpolnt of & progranmer working with a
declarationless language like LISP or APL;" the conc¢itional frne-
tions here ‘are anplicable to arbltrary arguments, and consider 0
(or NIL) as false and arything clse &as true.

The state vectnr fnction corres onding Lo a conition has
values true an false';" by taking the inverse iage of true, o:e

ohtains a set of state v-~ectors for which the co ition holds. The

association of a co»ition with =2 set of strte v-ctors is especirlly
useful wheon considering assertions (sce section H.1). IS .coniition

¢ imnlies condition C!, then the get corresponding to C is coi-
v , . — I

tained in the set corresponding to Ct. Conditions are build d

from other conditions and fro- apithatic exorescionsy the fune-
tion equal(e, e!), which gives the con’ition that the two expres-
sions (either arithnetic or Toolean) e and el hove eg al val:cs,

is given in [Burstall 70'5, together with a cefinitinn of its ste’e
vector fimction: valle, s) = valle!, g)= vel(eainl (e,

true; val(e, s) # val(e’, 3) > vallenel(e, '), s) = Zelse.

A conditional exmression is an expression of the form if b

g

ther x else ¥, whers x 2.t ¥ are exnressions (of avy tupe) 24 D
is a Boolenn expresrion. Such exnrassinng oceny in ALGOL [imr et

al. 601 for arithmetic and for Bonleax expreasions x ~C Yy, ant are
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enlled nmitipimtic » Tooleas (rn opnured to afrnle snjdhm-sia -@

sinnle Boolcan) exnressions. They are also studiied in [MeCar thy 63],.
ali‘;hou.gh the term "co 'itional exijression" is here nore gn:ueral, and
enconprsses recursive conditional definitions such as ni = ;_i_‘ n=20
then 1 glse ne(n=1l)l . Leaving these out for the moment, HeCarthy's
Aiscussion imnlics the state vector function relntion (without side
effects): if ¢ is §if b then x nlse y¢§ then £, (g) = if fbctf,) then
£x(§) else fy(ﬁ), vhere § is 2 state vector and f, is the state
vec'nr finction corresponding to a. Vhei side effects are niresent,
this eqration mnust be modified; for a left~to-right evalu~tion
schenie, we have f (g).z ir fb(ﬁ) then fx(sb(ﬁ,)) else fy(sb(ﬁ)) end
8o (§) = 1f fb(g) then s, (s, (8)) else sy(sb(g,)), vhere s, is the
side-effect functinn correapo~iing to ae

The quantities x and y in if b then x else y may be arbitrary,
as long as they ar~ the same. They may, in particular, be left sides,
as in (if a > b then J else k)s=i [Strachey 6.6] (his terminclogy is
a>b=>j, k :=1) or subrontine names, as in (if a < b then sin
glse cos) [Landin 66@, as well. as expressions., llozt often, howarer,
they are commands, in which cass the "else y" may be elimin~t~d if
y does nothinge A conditional cormand may be treated like a condil-
tional expression with side effects, by ignoring the valne of the
expression -- that is, by using only the second of the two equations
above. We must, howovor, also allow for the state vectnr function,
if any, which swecifirs the 2rxt command. If this is dennted by x,
for the command a (the "exit finetion" of a) then, nsing the nota-
tion above,' we have x,(§) = if fb(z) then xx(sb(é)w) else &J(sb(g)).
If the "~lse y" is climimnted, wr moy set x, (£) to a special re-
served wo:d, such as next, when fb(ﬁ,) = frlse, to indicate that the
coimand has exited nnormrlly. Moro generally, this device allows ar-

bitrory commands to hnve ~xit functionm; o zinplc aszignment hos a
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constant exit function with conctuant valie noxt. (This is ciffrrent
fronm the exit fanetion being andefined, which it might he, for
exqmple, i1f a subseript were ont of ranges)

Many program models simplify the treatment of conditional
commands by allowing only conditional transfers. The effect of
a econditional transfer (without side effects) is the ldentity
function, unless the state vectors have program-co inter components,
in which case these are the only components that are changed.
These may involve one exit, as Burstallts ifthen(expr, pt) (mean-
ing Mif expr 1s true theu go to pt"), or two exits, as Tlcot and
Robinson's WTf R is true, go to H, and if R is false, go to i
where R, H, and & are functioas of the addresses 3qy ey 24 and
their contents as given by the current state vector. Tyrther exam-
ples appear in section 3.1, where ve discuss restrictlons on col-

ditional instructions in modrls of vrogramse.
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3 MODELS WO PROGEALES

The mathematical daefinition of a progrem hrs heen attempted
by a large number of authors, as displayed in Table 8, We may
notice immediately that many of these are not concerned with state
vectors, Basically, "a program is a sequence of instructions....eash
of which specifies (1) an operation to be performed, and (il) the
. next instruction to be exccuted" [Minsky 61]. It is thus possible
to define programs in terms of operations without simultaneously
defining operations in terms of state vectors.

In examining various program models, we observe that there
are three important ways in which they Aiffer:
| (1) Some models allow only éonditional transfer without side
effects and assignment, while others treat more gencral forms of
instructions.

(2) Some models are based on flowcharts or directed graphs,
while others view a program simply as a set of statements.

_(3) Some models define a program, while others define a more
general object, called a program gggégg, whose interpretations then
correspond to programs,

We chall take these up one at a time, after which we shall
discuss subroutines, blocks, and other program features ineluded

in only a minority of the program models studied.
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3¢l Pectrictions on Con'itinud In-tructious

A number of authors have sought to simplify mathematical
models for programs by placing two lmportant restrictions on the
conditional instructions which they contain:

(1) No conditional instruction may have more than two exits,

(2) No conditional instruction may change the value of any

-variable (except the vrogram connter, if that is .counted as a vari-
able); that is, it must be a conditional transfer without side ef-
fects,

The first to make this pﬁrticular simplification was appar-
ently Keluzhnin [de Bakker 9], who introduced, in 1959, the A-F
graph screma, This 1s a directed graph model in which.there are four
types of node: the entrance node, the exif nocle, ogerator nodes (=
generalized assiénment), and disgriminator nodes (= conditional
transfer). In any interpretation, an operator nede corresponds to a
mapping from the domain of interpretation to itself, while a discri-
minator node corresponds to a mapping from th~ domain of interpreta~
tion to ftrue, false}. This corresponds to the stete vector function
aseocliations mad~ enrlier in this paper, if the donain of interpre-
tation is taken as tho set of all applicable state vectorse

Kaluzhnin graphs have been re-introduced several tim~s sinrce.
A gloﬁsary of terminology relating to this model is given in Table
9, and, for each of the authors cited in this table, a summary of
the features of his model which distinguish it from the others under
consideration is given in Table 10, It will be seen that a great
number of arbitrary choices exist within the gencral restrictions
above.

In the general, or multi-branch mo?el, as onnns=d to K=luzh-

nints two-branch model, there is essentinlly only nre type of rtate-
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Knluzhnin GH intrance Cperator Discrimi- Exit
nrig nator node
Engrler 67 Starting Operational Conditional None (stop
instructinn  instruction instruction when trarcs-
(any type) k: do W k: if @ fer to un-
%nen go thg g~ to defined
te p eﬁg label)
q
Floyd 67 Starting Assignment Condition-  Halt for
.. point for operation 1 branch the progranm
the program x&f(x,y) % i
Narasimhan 67 Initial Vertex with Decision Terminal
vertex exactly vertex - vertex
(any type) one outgo-
ing branch
Scott 67 . Start in- Operation Test in- Halt in-
struction instruetion itruction struction
Ls Fi :
g to L go ko
Cooper 69 Always Assignment Test Halt
star;c; at staten(lent :'%%te)ment statement
firs & £ (L; K ol ’
statement 1.;5.,13 “ (her nini ?
Separa is the
%9 false exit)
.. Statement T = |
0 Entry nodes Operator Diserimi- . Exit nodes
Bjorner 7 or 3'tl;egin-- nodes or nator nodes or end-
nodes action- or deci- nodes
nodes sion nodes
X 2 Always Assignment Transfer Stop
ngglx?ll‘na;;zd stagt at instruction insé:r%it%on inst ruction
first in- Lii= . mynn
Paterson 70 ‘F‘{(LtgLu,’ For ncdn
eeosly) ditional
Does ndt transfer,
e 3 transi'er set m=n .
King 71 Always Assign Test Halt
start at etatement statement statement
first assligns test:
$xk,f(x1, {p(xl,x2,
... ... X*l
xn), ik’ i1,5er”’

TABLE 9
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Narasimhan 67
Scott 67
Floyd 67
Engeler 67
Cébber 69
Bjorner 70

Luckh~m, Park
and Paterson

70

King 71
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1.

Iach graph curresnonding *n 2 nropgram must hoave
only one exit node (see nlso [Cooper 67] and
[ianna 681), -

Only threce types of node in » bnsic flow chart

(= program); the initial vertex (= node) may
be any of these typese

Four types of statement t»n corresnond to Ka-
luzhnints fo'r types of node; all statements
are labelled.

Fifth type of node in flowchzrt langunge, cor-
responcing to a Join of control, where exits
from two nodes meet and continuir as one.

Only two statement typesj the start may be elther
of the two, and termination is signalled by
transfer to a nonexistent label.

Assignment and unconditional trrnsfer are sepa-
rated; there are assignment, test, go to, and
halt statements, and the initial statement
may be any of these.

More than one begin-node allowed; graphs must be
"elean" in a number of ways (no unreachable
statements, no conditional may transfer to
i'LS&lf)o :

Ho exnlicit unconditibnal transfer; all uncondi-
tional transfers are cnnditionni transfers
vhich go to the same label in eilther cese.

Statement nemes, which are always integers Irom
1 to ny ~re used instead of 1lnbels; therec 2re
three statement types, and every program
starts at statement 1.

TABLE 10
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ment i a program, It on ellic., “or euach stute vector before the
statement is exncuted, the next statement to be executed as well

as the new state veetor; ia the terminology of section 2.4, it hes
an effect and an exit function. Yanov [Rutledge 64+] refers to the
"shift relation" which gives the ~ext state vector (if Yanov's eval-
uations are interpreted as state VQc§ors) and the "successor func-:
tion" which gives the next statement, both as functions of the cur-
‘rent evaluation, In [Elzot and Robinson 641, each element b € B (?he
set of words) is made to correspond to an instruction hb: fb-é EO,
wheore each element of EO is a state (= state v~ctor) giving each
element a € A (the set of addresses) a value in B, and the program
counter a value in A, This is more general thah the above rnodel,
since it allows the possibility that the program-conter component
of € Z can affect address components of h.b(u') -- that is, that
the effect of the instruction corresponding to b may depond on its
location. Elgot- and Robingon call a mappingrhb location independent

if this cannot happen, and an entiré machine (RASP) is called loca-
tion inde“endent if each of its instructions’is. |

Every program in the multi-branch model is equivalent to one
in the two-branch model; however, the equivalence must be construc-
ted with care. In the directed graph model of [Gobd 701, each“node
has an associated operation which transforms the state vector, and’.

all links leaving a node carry mubtually exclueive traversal condi-~

tionse. Thus an arhitrerv node with n exits would seem to be eqliva-
Jjent to an assignment followed by n-1 two-way conditional branchese.
Such an equi§alence, however, does not always hold without the intro-
duction of extra variables, as shown by the ALGOL example if x=y then
go to to a else gg to b where roal procedure y3 v~§~g yi=z3§ X:i=2 eﬂd- .

Here, if the node oper:tion éonsists of y:=z followed by x:=z, Wwe heve
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no way of telling where to go next, sir:e x, y, and z are now all
equal, We may obtali: equivalence by intioduclng a new Boolean vari-
able, test; the node operation is now fest:=(x=y); y:=z3; x3i=z; , and
the traversal conditions are test=true and test=fglse. The directed
graph model of [Manna 70] is more carefully constructed; he associ-
ates an operation on the domain with eaéh.ggg of the graph, rather”
than with each node, and the operation is presumed to take place after
the test is made. Under these conditions, the eguivalence described
above may be carried out without the necessaity of introducing extra
variables. (Manna refers to elements of a domain, in the above sense,
as state vectors, but makes no further study of their structure.)

The complexity of modern programming languages has resched a
point at which even the assignment and conditional transfef statements
which the two~branch model was intended to reflect are no longer well
represented by that model, in particular 1f side effects are present.
' Further language features, such as FORTRAN assigned and computed
GO TO's and arithmetic IF's and ALGOL 53“52'3 involving switches,
are also not well represented in the two=branch model., We may alwa
carry out the equivalence ahbove, but the equivalent two-branch graph .
obscures timing considerations for combuted GO TO's and the llke, and
is sometimcs almost impossibly clumsy, as when describing the ef fect |

of a block with several exits.,
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32 gzecgeg gapng and ¢ tatoment Sots

Oour second point of dif-wrence among program models concerns

the choice of a geometiric versus an algebraic representation. Flow
diagrams, or flow charts, have long been used by programmers (see,
for example, [Goldstine and von Neumann 471). A flowchart, in the
sense considered here, is a finite directed graph whose nodes are
statements of a program and whose links correspond to paths of con-
trol from one statement to another. We note that at least two other
graph models of computatibns have been studied; in one of these,
the links represent data dependency, in the sense that a link from
A to B signifies that B cannot be started until certain data has '
been calculated by A [Martin and Estrin-68]; the nodes in the other
are effectively finite paths in the normal flowchart which start
at initial nodes, and a link frum A to B signifies that thé&-path A is
obtained;from B by Qeleting its last node [Scott 71].

_ . Flow diagrams, of course, are also used in Kaluzhnin's model,
discussed in the preceding section. Kaluzhnin and most other authors
have used different terms for a computational process and its graph;
the graph, by itself, presumably contains no information as to what
a2 node doesy or when a given link is taken, The terminology which has
been uﬁ?d in this connection by various authors is given in Table 11.

Gnowpt ic cogi”erations giv~ rise to » number of useful elenn -
tary f:cts =30t nrogramns. A nodé is initial if there are no 1li ls

nto ity it is termirial if there are nn 1iiks which lead

4

wnich leagd
o1t of it, Tiitial an’ terninal noes corrrspond in an obvious viay
to start ad ston stat-ments of » "rogrome A ~totement mry he ice tis
fied as aennditional (o as-iginet or o wmeecditin~rl trrnsfer, “or
exsmnle) i it hes only o:~ 1liik wiich leads ot of ite A cOnm tbrtin .
ceque ‘ce correshoinds 1.: &0 obvions way to a path i. the granh which
leads from an i:itial nde to a termi:al node. If a give: node % a

graph is not o1 oy such path, the corresnonii- ¢ stateme-t mry be



Goldstine and o o e e e e
von Neumann Y7

Kaluzhnin §9 Graph schema
Floyd 67 Flowchart
Narasimhan 67 Directed graph

Bjorner 70 Well-formed

flowchart
Menna 70 Direncted granh
Good 70 _ Directed graph

Flow dingran

Interpretntion
Interpretation*

Basic flow
chart

Interpreted
gravh

A-process

Boxes

Nodes

-Vertices

Vertices

Nodes

Vertices

Nodes

Arrovs

Arrors
Tdges

Branches
Livks -
Arecs

Ares

* Floydt!s interpret~tions invelve assertions in a proof, rrther
than specification of » domain, which he does not do explicitly.

TABIE 11
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removed from the program without al*~ L1 its ~ffeecty this process
of rémoval mny be carried out in o finlte numbcflof steps, =s noted
i [Karp 604. It ndditiny, the corcept of a set of nodes which is
such that every closed p~th, or loop, in the graph must contai: at
lcast oite member of the set is usef:l in the proof of gorrectness
of programs by the mcthod of [Floyd 671 (see section 5¢l)e

It is also possible, of coiurse, to use graphical properties
to impose unrealistic restrictions npon programs. Most authags
([Bjorner 70] is an exception) require a gingle initial node, al-
though clearly the graphs of many.real programsy sich as ‘those which
compute sines and cosines, have more than one initial nodey In the
preceding sectlon we have noted a number of ~uthors who have re-
quired that there be only one terminal node in such a graph; this
restriction may have becen suggested by ALGOL main programs, which
have no halt statements and stop only at the physical end, but it
- does not, for example, cover the case of ALGOL blocks, which can
exit at any point By transferring to a statement in a containing
block. The fact that finite automata, as well as programs, havé die-
rected graphs has suggested a number of constructions of finite auto~
mata and regular expressions corresponding to programs ([Rutledge 641,
[(Cngeler 671, [Kaplan 69al, [Bjorner 701); in much of this ﬁork,
however, the authors have been content simply to give the corre-
spond§nce without producing any deep results for the theory of pro=-
grams. ‘

A more serinus difficulty in using directed graphs s _cone= '
cerned with subroutines, If links are to lead from the exit node of a
subroutine to all possible return locationz, the deéision as to which
of these to take must depend on the value of an explieitly introduced
return address varlable; ““is scems unnatural, esnecially for ~lge-

braic langunges. A highly complex treatment of subroutines treated



53

ag flowcharts substituted dyramlcally into others 1s given in [Nhra-_
simhan 67] in his treatment of hierarchical computation processes,
If a program and 1ts subroutines are assumed to correspond to sepa-
rate directed graphs, it 1s possibl~ to require that each instraetion
which calls a subroutine, instead of linking to that subroutine in
the directed graph sense, correspond in the calling program to a
state vector function which embociies the ~ffect of that subroutine,
and a similar statement holdg for blockse These matters will be fur-
ther examined in section 3

In the models of programs which do not use directed graphs,
there is normally a set of statements, some or 211l of which are la=-
belled in some way. The use of suchiarget of statements rather than
a dlrected graph is much like the use of a program rather than a
flowchart to illustrate how a problem is solved -~ it 13 primarily
a matter of tasté. There is still ahother approach,: however, according
to which an entﬁe’prbgram 1s represéhfed by-a-gingle sﬁa')‘;e‘vec\'bor«
Pinetion q3 Y ; vhera the state vectors.in ¥ have program-counter
components., The idea 1s that any T € J gives us the current statement
as well as the current state vector, so that we can execute that state-
ment and arrive at a new current state vector and a new current state-
ment, which uay then be combined to form q(T). If we take this noint
of view, the directed graph of » pfogram becomes a derivative nrotion,
rather than a fundamental one; its nodes are the values of the progran
counter, and it has a link from i to j if 2'.d only if there exists
TE€J with T(N\) = 1 and T*(\) = J, where A 1is the program counter and
Tt = q(T). Any directed graph may appear in this way, andy in particu-~
lar, there are no fesm'ictions on the form of a graph such as are made

in the two-branch model.
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303 fw Schemes and Ingerr.ctationg

One advantage in using directed graphs is that we can prove
facts about a graph which are independent of the contents of the
boxes. Thus by removing boxes which cannot participate in termina-
ting computations as in [Karp 6], for example, we can often replace
a given program with a smaller equivalent ones. There is another class
of program models which give much more general results on program
equivalence and other topics by using only a little bit mare infor=-
mation about a program than is given by its graphe These are called
progran schems (or schema) models, and a particular program which is
an example of any program scheme is called an W of that
scheme

The extra information available in a program scheme derives
from the notion of form in mathematical logice A test which takes
place in a flow diagram éorresponds to a condition, or predicatej;
an operat iony which changes the state wvector, correspohds to a funce
tione In a program scheme these predicates and funetions are given
by their form only. That is, we are effectively given a directed
graph containing predicate symbols and function symbols, but nothing
else is said about what the predicates or the functlons actually do.
In any interpretationy these symbols are made to correspond to actual
predicates and functions over some domain of interpretation.

There are as many definitions of program schemes as there are
papers on the subject, but generally these definitions fall into two
broad classes, depending on the nature of the domain of interpreta-
tion, In the first group of modelss the domain of interpretation is
composed of state vectors. (This fact is often left "understood," but
it is explicitly stated in [Manna 70l].) A "function® correspbnds to
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a map from the domain to itscuf; a predicate corresponds to a map
from the domain to § true, falsete. Thus functions and predicates
correspond to the state vector functions of general commands and

conditions respectively. We have already seen how intgrpmetations

of Kaluzhnin graphs follow this scheme; Yanov's model oEiSiiEumits

found in [Cooper 671].

In the second group, the domain of interpretation is more
like a set of values, and there are grgument symbols (which corre-
spond to variables) as well as function and predicate symbols. A
function of n arguments now corresponds to a map from D into D,
where D is the domaing rather than from D into itself; a mredicate
with n arguments corresponds to o map from D" to §irue, falseS.
Thus predicates are much as before, but functidﬁs now correspond
to the state vector functions of expressions, rather than commands.
Therefore, an explicit notion of assignment is introduced in order
to include :'simple commands in the model. All of the ‘types of pro=
gram scheme in this group use the two=branch model (as introduced
in section 3.1); but they differ in several other seemingly unim-
portant ways, as displayed in Table 12, Most of these models are
not concerned with state vectors explicitly, although it is easy
to define the relevant state vector functions in each case, and this
is actually done in [Kaplan 69al] and in [Luckhem, Park and Paterson
70]. The functional arguments in [Kaplan 69al, in addition, are re=-
cursively defined terms, whereas in the other models they are simply
argument symbols.

Any program scheme has an interpretation in which the wvalues
of variables are strings of operators (or their labels, if every

operator is labeled) and in which the effect of each operator upon



Paterson 68

Cooper 69

Kaplan 6%9a

Milner 70a

Milner 70b

Luckham, Park
and Paterson

70

96

Functions with
several argu~
ments

Function names
with several
arguments (fie
nitely many)

Function letters
with several
argunents (re-
cursively de-
fined; infi-
nitely many)

One function
letter, with
one ar gument

Function letters
with several
arguments (in-
fini tely many)

Operator symbols
with several
arguments (ine
finitely many)

Predicates with
one argument

Test names with
one argument
(finitely.many)

Relation letters
with several
arguments (ine
fini tely many

One test letter,
with one
argument

Predicate or test
letters with se=-

veral arguments

(infinitely many)

Iransfer symbols
with one argu-

ment (infinitely

many)

TABLE 12

chations

Registers
(finite-
1y many)

Variables
(infinite~
1y many);
terms (ar-
guments of
relations)

Register
letters (in-
finitely many)

Location
letters (in-
finitely many)

Location
symbols (in-
finitely many)
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the current string is to appcud itselr to that stringe. In schemes
as defined by Yanov, the resulting value at the end of any compu-
tation 1s the string of those operators which were executed, 1n -
their execution order, or the ca of that computation (see Table
3). Thus, in particular, if two such schemes are equivalent in all
interpretations, their traces mngt agree. An interpretation some-
what similar to this one 1s called the free interpretation in
[Luckham, Park and Paterson 70}, although here only right siies of
assignments, rather than entire commands, are being interpreted.
Further discussion of program schemes is postponed to section 5e39
where we discuss equivalence of programse.

still anotheriform ot separation of the propertles of a flow=
chart from the propeities of the computations in the boxbs is the
"outer and inner language® concept of [Wilkes 681, The BNF rules
which define a language are here separated into those concerned
with specifying the flowehart (outer syntax) and those concerned
with types of commands and parts of commands (inner synbax).
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3.4+ Programs, Subroutines, and Blroxgs

We now return to the method of analysis of Part 2. What sort
of state vector funbtion do we wish to associate with a program? One
answer is suggested at the end of section 342: if Y is the set of
all applicable state vectors with program-counter components, where
the values of the program counter are the statements of the program
P, then the state vector function to be associated with P 1s a func-
tion from Y into itself, This function, in turn, is specified com-
pletely by the effects and exit functions of all the statements in
the programe, If the statements are Cl, coey Gn’ the respective ef=-
fects are fl’ seoy fn’ and the respective exlt functions are xl, ecey
X,y then the function q: § # J satisfies q(S, C,) = (£,(8), x,(5)),
where elements of J are identified in the obvious way with pairs
(Sy C) with S a state vector without a program-counter component and
C a statement, that is, a value of the program-counter va;iable.

There is another kind of state vector function, however, that
may also be associated with a program. If S is the current state vec-
tor at the beginning of a program, and we execute the entire program,
then, when it ends, we have a new current state vector, which we may
denote by e(S). If the program aoes not end if started at S, then we
may consider e(S) to be undefined. Thus e 1s a function from state
vectors (without program counter components) to state vectors; we

shall call it the effect of the given program, and we note that it

also depends upon the choice of starting statement,

The effect e 1s derivable from the execution function q men-
tioned above, although, generally, only in semi-computable fashlon.
([Mazurkiewicz 71] calls e the tail function corresponding to q.)

. The easiest way to perform this derivation is to construct a com-

putation sequence Tyy Ty eeey -from q by the equation T, . = q(Ti),
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for 1 > Oy whenever this is defined, ’.n. effect e is then given by
e(S) = S? where T = (8, ¥)y T = (S'y X) ic the last member of the
sequence to be defined, F 1s the starting statement, and X is the
final statement. Definitions of this type have been made by a mumber
of authors, as summarized in Table 13, Alternatively, we may define
e(S) = e'(S, F) where e'(S, C) = if §(S; C) is undefined then S else
e'(q(S, C)); this is a recursive definition which may not always re=-
cursively terminate, This style is used in tl}e definition of
-miero(W, §) in [MeCarthy 661 and that of E(d, D, £, x) in [Kaplan 6921,

Amother related function may be derived for a block (in ALGOL,
for example) which may terminate either normally or by transferring
to any of a number of labels defined in blocks containing the given one,
I;b_ S ﬁbe a starting state vecicri we run the program and determine
how it exits. If it exits by transfer to the label L, then we write

= n(S). If it does not exit at all, then n(S) is undefined. If it

exits normally -- that is, to the next statement following the block
== then we set n(S) equal to some special word, such as hext. The
function n may be called the pexf-label function of the program;
like the effect,y 1t depends upon our choice of the start statement,
Subroutines, as opposed to blocks, can exit in only one place in
many languages, and thus would not have next-label functions, al-
though we may note that in ALGOL the same considérations apply in
this case as well (of course, it is not very common for a procedure
to terminate in this way, but it might, in order, for example, to
transfer to an error exit.)

We may thus associate two functions with a program which are
of exactly the same form as the two functions associated with a
general command. The obvious conclusion is that these functions
should become the effect and exit function, respectively, of any
eall to the given pz;ogram as a subroutine. Thus a call does not cor-
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IMW: DD X Ty “iera D s the (state vector or
evaluation) domainy T is the sci of terminal
operators, I is an interpretation of the
pro gram scheme WUo

f: BF o BS, where B is the set of words, is com=-
puted (this notion is defined) by the program
T at datum locations dgy eeey ‘}r- and value
locations Vgr ooy Vgo39 all o ich are ad~
dresses.

Given a construction and an input.(state veetor),
we'hava an output (state vector); does not

explicitly say that the output is a function
of the input, ~

T X3 Y, where X is the input (state vector) do-
maine Y is the output domain, T is a program,
and 1 is a machins,

The program p determines the output state s, with
respect to the input state s, if s,, py and S5
are related by the programmi?lg lanpuage =..

i‘he .valuemo“f a compui;ation (that is, of a sequence

of information structures) is some function of
the last element of the sequence.

Val(P.) is the value of the program P under the in-
t&pretation I vhiech, in particular, specifies
an initial state vector; Val(Py) is then the
final state wector.

Given an execution sequence and an initial state
vector, we have 2 final vector; does not ex-
plicitly say that the final vector is a func-
tion of the initial wectore.

TABLE 13
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respond to a Link (in the dir-.ted grapa) ko a gubroutine entrance;
a return does nmot correspond fo links fo all yeturn addyesges. In-
stead, each subroutine and each block is represented by a separate
directed graph. Each ygage of a block and each call to a subroutine
corresponds to a general o mmand whose effect and exit function are
the effect and next-labal function, respectively, of the corresponding
block or subroutine.

The eéffect ¢ and the exit function g may be combined into a
" single "overall effect" o, such that o(S) is the pair:(e(s), x(S))
for any state wvector S, Any command then has an overall effect, and
if commands are combined to form a program (with a specified star-
ting point), that program also has an overall effecte Overall effects
are similar to directlons as siudied in [Elgot 68]; a direction of
rark {n; -pyoq) is é. function of state vectors involving an variables
whose values are palrs consisfing of state wectors involving p vari-
ahles and integers 1; O < 1 < qo The integer is supposed to denote
the choice of exit. Given a set of directions D,y we may form the set
P of all directions e@rresponding to programs which are such that each
command in them has a direction belonging to D. The bar operator taking
D into D 1s a closure operator in the topological sense; that is, it
satisfies Dy €D, 35, €5, 0 ¢ B, and B = B (the last of these being
the most important and the hardest to prove).

‘When a subroutine i1s ealled as a function inside an expression,

" 4t has a yalue v(S) for any state vector S given by v(S) = S*(n),
where S' = e(S) for the effect e of the subroutine, and where n
is the name of the output variable (normally an acéumulator in

machine language, or the function name in an algebraic language).
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Thus a function call plays the same role ar an expression. (The
assoclation of a value function of this kind with every string in

a language J is called a realization of J in [Skowron 71].) The ef-
fect of the subroutine becomes part of the gide effect of the ex-
pression in which the function call is contained, and its next-label
function affects the exit function of ény command containing that
expression, Usually, of course, an gssignment in ALGOL, for exam-
ple, exits normally to the next instruction, and so the value of its
exit function is next, for any state vector. This is not the case,
however, if it contains an expression including a function eall which
sometimes or always tranéfers to a label in the block containing the
given assignment, or in some block containing that one. In this case
the value of the exit function is determined, in a computable way;

from the next-label functions of function calls in the command.

A subroutine with formal parameters has an effect for each
choice of actual parameters, That is, there is a mapping from the
set of possible choices of actual parameters into the set.of pPoOS=
sible effects (and next-label functions). This mapping depernds upon
the methods of calling parameters (call by name, by value, by ad-
dress, etc.), but there can be no doubt that it exists, although
it may be difficult to determine and may even be uncomputable, Al~
ternatively, the formal parameters may be counted as variables whose
values are the corresponding actual parameters or their state wvector
functions (not their values, unless they are called by value); the
subroutine then has a single effect and next-label function whose
state vectors involve these components. If a subroutine ¢ontains a
recursive call, this is replaced by its effect.and next-label function,
Just as in the case of a non-recursive cally this leads, of cowrse,

to a recursive .definition of the effect,
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4 PROGRAM SYNTAX AND SEMANTICS

There are serious doubts as to whether a "program theory,"
universally applicable to programming situations, could be bullt up
around any of our definitions of programs, flowcharts, program
schemes, and so ony or, for that matter, around any single mathe-
matical definition. Programming languages in practice are so diverse
that it is unrealistic to expect programs in all of them, under all
~situations, to correspond to any one model. If we are going to prove
assertions about programs written in some language, we must relate
the way in which a program is formed in that language (the syntax of
the program) to the results which the program produces (the semantics
of the program). This is the cubject of the present part of this
paper,

Our approach to program semanties continues a line of investi-
gation injtiated by de Bakker, who summarizes nine different
languagefdefinition methods without, however, attempting a systematic
evaluation of them [de Bakker 691, We shall first discuss the method
of Knuth, which is the last of the methods surveyed by de Bakker, and
show how state vectors and state vector functions provide exactly the
mechanism needed to apply this method to arbitrary programming lan-
guages. We then compare this with the method of McCarthy, both in its
original form [MCCa;thy 631 and as it has been applied in the Vienna
definition language, and show that Knuth's ideas can be used in this
framework as well. Finally, we discuss a numbsr of other forms of
semantics which are based on rigorous definitions of translators or

translation SChemeS ® E. % f- o DUt .\} e AT RO A S o R e A ;‘-‘t M i “
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4,1 Knuth's Semantic Attributes

Most programming languages, such as ALGOL, are not context-free
(Floyd 62], but may be presented as subsets of context-free languages
(that is, in BNF with suitable restrictions, such as that every vari-
able used must be declared), and we may therefore speak of their deri-
vation trees. One way to assdéciate a meaning, or semantics, with a
program is to associate a meaning with every substring of that pro-
gram which occurs on its derivation tree. The meaning of any nonter-
minal -- ineluding <program> -- is then derived by means of equations
which are associated with the production rules involving that nonter-
minal. This is the central idea behind gemantic attributeg ([Knuth
68al, [Knuth 71al).

Any nonterminal may have one or more attributes. These are
functions appliecable fo any string which is an instance of the given
nonterminal. Thus if "walue" is an attribute of <expression> (where
<expression> 1s defined so as to involve no variables, only constants)
then yalue(e) is defined for any string e which can be shown to be an

expression by the given syntactic rules. If these are

<expression> 3= <integer>| <expression> '+! <Jinteger>
<Integer> ::= <digit>‘ <integer> <digit>
<digit> ::= 10V 11t | 12" l3lj thr | 150 | 161] 171 ] 130 ( 191

then we expect yalue('"0!), value (*10+10'), and value ('13+6+1') to
be all equal to 20 (and value ('+20') to be undefined, because '+
is not an ex»ression according to the given rules)., In order %o ce-
fire this rather cornlicated £ netion of strings, 1ot us rewrt+.

the ahove rules in the st+le of [Knuth 68d] ~ni rtve thair mgoooi-tas
semantie rulesy here E, I, nad D stand for "expression," "integer,"

and "digit" respectivgly,'while Vx means the vnlie of Xt



E->I Ve = Vp
E1-9E2 + I vE1= E, + vy
I-D vi=Y

11—9 12 D vIJ. = 10-v12 + D
D=0 vy = 0

D21 | vy = 1

D=>2 .vb = 2

D3 vp =3

D> 4 vy =k

D=5 vp =5

D> 6 v =6

D> 7 W =7

D= 8 | v, =8

D=9 ‘, v, =9

Now we have values for integers and digits, as well as expressionse
The value of '1! is 1 as a digit, and therefore as an integer also.
The value of '13! is 10°1+3 = 13, since !'13! is the integer '1!
{with value 1) followed by the digit 3 (with value 3). Similarly,
the value of 113+6' is 19, and that of '13+6+1! is thus 20.

In his papers, Knuth_does not consider the semantics of actual
programming languages, although this has been attempted in [Knuth 71b]
and in {Wilner 7i3.,.~ But the considerations of the previous two
parts of this paper should make it clear that state vector functions
may be associated with nonterminalg in 2 programming language as
semantic attributes, In particular, if e is an exp:}ession (this tire
possibly involving variables as well as constants), we can associate
with é a function f, such that £, (S) is the value of e, calculated
from the 'values of variables occurring in e as given by the state

vector S, Similarly, a state vector function with values true and
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false may be associated with a P,ulean coundition, a state v§ctor
funetion whose values are state vectors with an assignment or other
general command, and so one This method is further discussed in
[Maurer 721, where an application 1s made to describe a dialect of
FORTRAN II,
A fundamental characteristic of Knuth's method is the use of

two kinds of attributes: synthesized and jinherited. Synthesized ate-
. tributes of:a nonterminal &re given by equations involving attri-
butes of descendants of that nonterminal, that 1s, other nonterminals
below it on the derivation tree (farther away from the root). All
the attributes in the examples above are synthesized. Inher ited
attributes of a nonterminal are given by equations involving at tri-
butes of its-ancegtorse that is, those nonterminals of which it is

a descendant. An excellent example of an inherited attribute in a
programping language is the fype function which assigns to eachfiden;
tifier its type (real, integer, or whatever), This must be an attri-
 bnte of each occurrence of such an identifier in the program, in
order to determine the state vector functions of expressions. For
example, the state vector function corresponding to A+B hﬁs valuas-
obtained by adding the values of A and B as real numbers or integers
(or arrays, structures, etce)y and performing convers ons as required,
depending on ¢he’type-functioh attributes of A and of B. These, in
turn, are inherited frpm the type-function attributes of the program
or block in which the given expression A+B is contained; and these
type-function attributes are synthesized from the declaration sec-
tion in that program or block, where types are assigned to variables,
and also from the body of the program in any language in which varie
ables may be left undeclared and their types assigned by default,
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Imposing conditions wiiich must be satisfied by the semantic
attributes allows us to défine languages which are not context-free
in a way which closely reflects their informal description. For
example, the set of variables declared in an ALGOL block and the
set of variables used in that block may both be easily made into
synthesized attributes of the block. By requiring that the second
set be contained in the first, we obtain a rigorous formulation of
the condition that every variable used must be declared. While Syne
thesizing the set of variables declared, we may impose a similar
restriction:which amounts to the statement that no identifier may
be duplicately declared. The type-function attributes of the mre-
vious paragraph may be restricted so as to forhkid or otherwise re-
strict mixed-mode arithmetic; while sets of labels defined and used
in a block may be constructed and then restricted so as to forbid
duplicate label definition or transfer to an undéfined label. Fur-
ther examples are discussed in [Maurer 723,

A top-down parser for any language may be modified to produce -
the values of any computable synthesized attributes of its nonter=
minals. When inherited at tributes are present, the process of pro-
ducing these values may be endless; however, there 1s a test for
deciding whether it will ever be endless, given in [Knuth 68a] and
in a corrected version in [Knuth 712). Thus such a parser may be
expanded to obtain an interpreter for languages déscribed in this way.
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4,2 MeCarthy's Abstract Syntax ar.: Semantlics

The concept of abstract syntax and semantics as studied in
[McCarthy 631 and applied in [McCarthy and Painter 66], [Kaplan 671,
[Painter 67], and the work of the Vienna group (see the follow-
ing section) is much more general than the treatment of Xnuth., It is
unrealistic to expect a single program to be able to interpret a
language arbitrarily described in this style. By impgsing restric=-
tions suggested by the concept of semantic at tribute, however, we
may obtain a subclass of language descriptions processable in such
a way. |

According to McCarthy, a language is best described entirely
in terms of functions, and there are functions for syntax and for
semanticse The syntactic functions are of three types: the "is".
functions, the "make" functions, and the component functions. To
illustrate for the string 'A¥B+C*D', considered as the sum of two
terms A¥BY and !C#D1?: |

issum(*A*B+C¥D') = true

mksum(TA¥B®, IC¥D1) = PA¥B+CHD!
. addend (FA*B+C3D!) = 1A¥B!

augend (TA¥B+CHD1) = 1C4D!

The "1s" functions are predicates. The predicate (in the natural
language sense) of the sentence "A*B+C*D is a sum" is "is a sum" 3
this 1s abbreviated "iséum," and since the above sentence is true,
the predicate isgum assumes the value trus when applied to A*B+C3D
as argument. The "make".functions have as many arguments as there
are components in the quantity being "made"; here, a sum is made

from two components, an addend and an augend, and hence there are
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two arguments to the function "make sum," abbreviated mkgum. The
component functions, addend and augend here, have one argument each.
All ﬁrguments and values (except the values of the "is" functipns)
are strings in some programming language.

Any BNF rule is equivalent to a syntactic definition of this
kind, We must, however, give names to all compound alternatives and

to their components. For example, the BNF rule
<expr> ::= <term> , <expr> '+! <term>

has two alternatives; the first 1s simple, the second is compound.
Let us denote this compound argument by "sum" and its components
(<expr> and <term>, leaving the !'+! aside because it is a terminal)
-'by "addend" and "augend" respectively. We may now construct a syn-
tactic definition as follows:

isexpr(s) = isterm(s) v (issum(s) A isexpr(addend(s)) A
isterm(augend(s)))
(x = mksum(u, v) A isexpr(u) A isterm(v)) = (issum(x) A
= addend (x) A v = augend(x))

mksum(u, ¥) = concatenate(u, concatenate('+!, v))

We have purposely deviated slightly from McCarthy'!s defini-
tional style, particularly with respect to the third equation above,
McCarthy considers a syntactic definition to be gbstract if it is
independent of the choice and placement of terminal symbols and of
the order of appearance of nonterminals; this third equation would,
therefore, nérmally be omitted. Such an equation 1%, however, neces-
sary to complete the definition in any concrete case. By replacing
this equation by
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-~

mksum(u, v) = concatenate('(PLIB °, concatenate(u,

concatenate(! ', concatenate(v, ')'))))
we obtain a definition of LISP-style sums; whereas replacing it by

mksum(u, V) = concatenate('ADD !, concatenate (u,

concatenate(! TO ?, v)))

gives a definition of COBOL=style sums. Any results obtained using
the abstract syntax only, such as the compiler correctness proofs
of [Kaplan 67] and [Painter 67], are immediately applicable to a
vh ole family of languages obtainable by different concréte choices.
A more completely worked-out example of concrete realizations is
given in [MeCarthy 661,
In general, a definition of this form will employ two types
of "is" functions, one for each defined nonterminal (isexpr here)
and one for each named alternative (here jssum). The function isterm
presumably corresponds to some other BIF rule starting with <term> ::= .
"Make" functions wlll correspond to each named alterpativé, while
component functions correspond to its components. It must be pointed
out that in much work of this kind a very restricted definition of
the term "function" 1s employed, according to which a predicate like
isexpr is not a function and must always be called a predicate.
‘There is also a provision in the theory for semantiec functions,
and these can be made to correspond directly to semantic attributes.
Each function has one more argument than the corresponding attri-
bute, namely the string with which it is associated. Thus if ‘the
value of a term t is £, (€), given the current state vector §, then
we may construct a function wvalue(t, £) to give this value, Likewise
1f £,(§) is the new state vector after the ALGOL program T has been

~ executed from the initial state vector €, we may construct a fune-
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tion algol (M, ¢) to give thi:s new state vector, (Both these exam-
ples are taken from [McCarthy 63].) The equations which define se=-
mantio functions in this style may now be derived directly from the
semantic attribute equations in both the synthesized and the 15119:01-
ted case. More general equations, corresponding to neither of these
cases, may also be derived, such as those in the second concrete

realizat ion of Micro=-ALGOL given in [McCarthy 661].



4.3 The Vienna Method

An extension of the concepts of abstract syntax and semantlcs,
which has been used to describe PL-I ([Lucas and Walk 69], [Wegner
721), ALGOL [Lauer 681, and, in a simplified form, BASIC [Lee 721, is

also immediately adaptable to treatment in aqalogy wlth Knuth's worke
The Vienna definition language is built upon methods for bull-

ding and analyzing trees. We shall be directly concerned with two
types of tree; the first of these dorresponds to the derivation tree
of a program or other nonterminal in a context-free language, while
the second corresponds to a state vector under the specilal conditions
that variables may be arrays, structures, and the liks.

A tfee is a directed graph, and hénce we may speak of 1ts nodes
and links. A composite object, in tle Vienna definition language, is
a tree whose links are all labeled, and whose terminal nodes are also
labeled, The node labels are 6a11ed elementary objects, and the labels
on the links are called gelectors. When a composite object represents
a derivation tree, the elementary objects are the terminal .symbols,
and the selectors correspond roughly to the component names as dis-
cussed iﬁ the previous section, A syntactie eqliation correspandlng to
a BNF rule with several nonterminals on the right, but without alter-

natives, involves the names of the selectors exp licitly. Thus
is—assign-st = (<s=~left-parti:is-var>,<s-right-part:is-expmr>)

(taken from [Wegner 72]1) corresponds to a class of partial subtrees
of derivation trees of which the following is typical:

Z=A+B

left-parﬁl(\\xvlght~part
A*B
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Here it is assumed that Jg=ac..gn-st('4=A+B'), is-yar(%Zt?), and
Js-expr ('A+B?) are all true -- that 1s, Z is a variable, A+B is an
expression, and therefore Z==A+B‘ is an assignment statement -=- and
that Jeft-part('Z=A+B!) = '2' and right-part (*Z=A+B1) = PA+BI,
None of our three nodes is terminal, but we have labeled each node
with the string corresponding to the subtree whose root is that node,
although in practice this would ultimately become too cumbersoms.
A colon in such a rule assoclates a selector on the left with either
an object (composite or elementary) on the ri ght, or,' metalinguisti-
cally, a predlcate satisfied by such objects. Note that these rules
are abstract in the sense of the preceding section; they do not de-
pend on. particular choices ralating to terminal symbols.

Ilet us now restrict BNF in such a way that concatenation and
alterhation never ococur in the same rule. This can always be done
by introducing ext ra nonterminals; thus the example

<expr> ::= <term> [ <exm> '+t <term>
of the previous section would be replaced by something like

<expr> 3= <term> ' <sum>
<sum> = <expr> 14! <term>

A rule of the first kind above is now replaceable dlrectly by an
abstract syntactic equation involving predicates alonej thus, here,

we would write
Isexpr = isterm v issum

whereas a rule of the second kind, involving no alternatives, is
replaceable by a syntactie equation involving selectors as illustra-

ted above for assignment statements.
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In formulating the semantic ruies in the Vienna method as ap-
plied to a language such as PL/I, it 1s helpful to consider state

vectors as composite objects. For example, the state wector
S = fIAMBDA = 12, J =3, K=8, M= =9, N =4t

may be represented as the following & mposite object:
. LAMigﬁ”’iij;quﬂi::zs\\\~‘1§
12 3 8 -9 I

The form of this as a tree, of course, is quite special, In PL/I,
however, arbitrary (disjoint) sets of variables may be grouped to
form structures., Thus we may fori: a structure called I out of J and
K and a structure called L out of M and N by writing

DECLARE 1 I, 2 J, 2 K, 1 L, 2 M, 2 I

We may then use agsignment statements such as I = I + L, which is
equivalent to J = J + M followed by K = K + N, The state vector above
would have the following tree form under these conditionss:

N T,
12 E&‘/’\f )‘//’sr
| 3 8 -9 L

Thus finite trees of arbitrary form can represent PL/I state vectors.
(Assignments such as I = I + L involving arrays are also possible in
PL/I, as in APLy the meaning of such assignments is much the same as
with structures, and the corresponding state vectors have similar form

as composlite objects,. Arrays without such assigrmments, of cburse, are

also permitted in most - othér higher-level languages.)
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Semantic functions may now be c¢onstructed in much the same way
as described in the preceding section. Thus the following might be
given as a description of sums without type o nversion or side ef=-
fects, where £ represents a state vector repreéented as above as a

composite object:

is-sum = (<s-addendzis-expr>,<s-augend:is-term>)

value(sum, £) = plus(value(addend.sum,s8), value (augend .sum,%))

The first of these rules is syntactic, the second semantic. The period
in %addend.sum" and "augend.sum" gives the result of selection by
means of the selectoi on the left applied to the object on the right;
thus "addend.sum" is the addend of sum, which is presumably a composite
object, one of whose selectors is addend. If pname stands for a va i-
able name, then value(name, £) = name.f o Assignments may be handled
by an operatar/u, defined in the Vienna language, which 1s somewhat

" analogous to MoCarthy's a; the value of s(t, <g:x>) 1s the éomposite
object £ as modified by changing gst to be x. For the definition of

assignment statements given above, we might write

effect(assign-st, £) = n(€, <left-part.assign-st:value (right-
part.assign-st, £)>)

again without type conversion or side effects.

The Vienna definition language includes a concept of the state
of a computation in PL/I. This includes both program and data com-
ponents, as well as a wide wariety of other possible components. The
successive states of a computation in PL/I, accordihg to the Vienna
definition, correspond to the successive states of the computer which
executes it, whereas in our own definitional style this 1s true only
in the absence of subroutinesj a subroutine eorresponds to a separate
computation, and the next state after a subroutine call is the state

upon return from the subroutine,
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44 Translation-Oriented Defini* ong

Any method of language definition must take account, in some
way, of the fact that the effect of an arbitrary program cannot be
determined recursively, We have done this by introducing a single
semicomputable function by which the effect of a program is derived
from its execution function. There is another style of definition,
:however, in which a program in a2 language is defined by means of a
translation from that language into some extremely elementary lan-
guage. The definition of the translation may then be entirely re-
cursive, although the definition of the elementary language involved
must be left as axiomatic,., The.best~known examples of elementary
languages of ‘this kind are ISWIM [landin 66al, which has been used
to descéribe ALGOL: [Burstall 67], and the elementary notation for
algorithms which is used to describe the language EULER [Wirth and
Weﬁer 661].

Of the two, Wirth and Weber's notation looks much more like a
"normal” programming language. It has labels, assignment statements,
simple and conditional branching statements, unary and binary opera=-
tors, simple and subscripted variables, lists, and built-in functions,
The value of a variable may be a reference, or pointer, to another
variable, and indirect assignments to the variable Y may appear, which
assign new vélues to the variable to which ¥y currently points. The
definltion of EULER in term$ of this notation is'formally and rigo-
rously stated. No attempt is here made to reduce the elementary no-
tation to simplest possible form, in the logiecal sensey it is quite
c¢lear, for example, thaﬁ one type of statement, incorporating as-
signment and conditional transfer, would havé sufficed.

The ISWIM notation, on the other hand, bears more of a resem-~
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blance to pure LBSP§ 1t is dcsceribed in [Burstall 671 as "a more
intelligible version of the lambda-notation." It has arithmetic
and iogical operators, conditional expressions, recursive and
non-recursive definitions, and built-in functions including an‘
output operator, but it has no labels and no branching. Any pro-
gram constructed using assignment and conditional transfer may be
effectively reduced to this form [McCarthy 60], so that ISWIM may
. be used to describe roﬁghly the same elass pf languages as Wirth
and Weber's notation can. The definition of ALGOL in terms of this
notation is much more informal than that of EULER; on the other
hand, ISWIM is the "cleaner" of the two notations, in that it would
be harder, in ISWIM, to conzolidate features to prbduce an even
simpler language.

Semantic attributes may be used to describe the operation of a
translator. With each nonterminal in the source language above the
primary expression level we associate, as an attribute, some string
in the destination language, or some function whose values are
such strings. For example, we ﬁay associate with an arithmetic term
a function which takes as argument a set of temporary cell names,
and whose value is the code in the destination language needed to
calculate the value of the term, using those names. (If no temporary
cells are needed for that term, the function has a constant string
value,) Two terms, or an expression and a term, are now combined to
form an expression using an adding operator, and the strings or func-
tions which are their attributes are combined into a single string
or function which is an attribute of the expression., When an ex-
pression is used in an assignment, assuming that the temporary cell
names can now be specified explicitly, the value of the associsted

function is taken;'givan these specific names as arguments. A trans-
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lator for SIMULA, using destination strings as attributes, is de-
seribed in [Wilner 711.

Translation-oriented language definitions are sometimes called
"compiler-oriented," in contrast to "interpreter-oriented" defini-
tions such as that of section 4.l. This causes confusion because
the relative advantages of these methods haVe nothing to dé with the
relative advantages of interpreters and compilers. A compller has
- two phases: translation and execution. In a translation-oriented
method such as that of Wirth and Weber, the translation is formally
~defined, but the execution is either left axiomatic or defined in-
formally. Our own methods are execution-oriented; they specify what

is to be done next. They are linked to the operation of interpreters,
since a (pure) interpreter has only one phase, an execution phase.
Ihey may also, howevér, be used with translation-oriented methods,
to correspond to the execution phase’of a compiler. For example, we
could define Wirth and Weber'!s elementary notation for algoritims,
using semantic attributesj if we did this, any language rigorously
defined in this way would automatically become rigorously defined
with respect to both translation and execution. Such a definition,
however, appears more cumbersome from the viewpoint of proving cor-
rectness. We might, for example, optimize Wirth and Weber!s trans-
latory and prove the equivalence of the new translator with the oldj
but if someone presented us with an EULER translator based on en-
tirely different principles from Wirth and Weber's, it is not at all
clear how the correctness of such a translator could bg proved. |
Concerning ISWIM, it may be argued that this is not a language
at all, but merely the lambda-notation of Church in a slightly al-
tered form. Alternatively, one may argue that, 1f ISWIM is a language,

then so 1s the notation we have been using, based on the fundamental
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mathematical properties of sete and furctionse In this view, all
language definition methods may be regarded as translaf:ion-oriented,
differing only in that some provide translations into set-theoretic
o tation, as we have done, while others translate into basic logical
or algorithmic notation. In one sense, of course, this is merely a
matter of taste. No matter which notation we regard as fundamental
and axiomatic, there are bound to be certain undefined terms, and
the well-known logical paradoxes will crop up in one form or another.
- It i1s much less cleér, however, .‘what the ISWIM notation means, pre-
cisely, than what set-theoretical notation means; this is betrayed
by the wery name ISWIM (an acronym for If you See What I Mean). The
original ISWIM [Landin 66a) is extended by Burstall, who even then
1s not quite satisfied with it [Burstall 67]. Wirth and Weber's no-
tation, similarly, is only semi-formally defined, and the definition
of the notation leaves a number of small details unclear,

Still another approach to the precise definition of compilers _
f;e&uril:s%zc}e %sihewp;oiu:%’io& ;aggcui%e in‘é &?% 2%] aﬁ, (Evans 641,
sxcellently summarized’ in I:F‘eldm and Gries 681 and elsewhere. Rather
than defining a single compiler mathematically, production language
alldws us to give strict definitions of any of a whole class of com-
pillers. It is essentially a specilal-purpose, compiler-writing-oriented
language, which cuts compilérs down to manageable size., It is itself
defined informally, but it may easily be defined using state vector
functions and semantic attributes. Using such a definition, any
language with a compiler written in production language is automa-
tically rigorously defined in roughly the same sense that EULER 1s.
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5 PROOFS OF ASSERTIONS ABOUT PRIGRAMS

We shall now apply thevlogical framework which we have de-
veloped, and give techniques for proving various assertions about
programs. Foremost among these are correctness (proving that a
program produces given results under given conditions); termination
(proving that a program never goes on indefinitely, except possibly
under certain given conditions); and equiyalence (proving that two
programs produce the same results under the same cormditions).

The problem of constructing an algorithm whieh will always
solve any one of these problems 1s unsolvable for Turing machines
[Davis 58]; and, since the funztions computéd by Turing machines are
exactly the functions computed by ialuzhnin graph schemes ([Peter
581, [Ershov 6§.1), no géneral algorithms may be constructed in this
case either. Speclal classes of algorithms have been constructed
for which these problems are solvable; for example, if we require
all transfer instructions to be in the forward direction,.and allow
esgg-ggga}-type loops and non-recursive subroutlnes, subject to cer-
tain obvious restrictions, we obtain a class of programs which always
terminate and the effects of which are éomputable. (For further exam-
ples, see [Constable and Borodin 72],) Alternatively, a number of
authors have reduced the general case of our problems to equivalent
problems in logic, which, on the surface at least, appear as hard or
harder to solve (see, for example, [Manna 69] on correctness, [Engeler
671 on termination, or [Milner 70b] on equivalence).

We shall be mainly concerned with the case in which some hint
has been given as to why a program is correct, or why it terminates,
or why two programs are equivalent, Our problem will then be to find
types of hints which are applicable in a wide variety of programming

situations, and which may always bé cast in rigorous form, .
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5.1 Correctness

Debugging, as it is currently practiced, is a perfect example
of what happens when a body of mathematical techniques is developed
in the absence of a rigorous framework. Programs which are debugged
quite thoroughly still develop strange errors, often after the pro-
grammers have’daparted. This state of affairs has baen deplored in
[McCarthy 651, [Naur 6§J, and elsewhere; although it 1s probably un-
realistic to hope to eliminate debugging entirely, since even the
mathematician "debugs% his new theorems before subjecting them to
formal proof and publication.

In order to prove that a program actually does what it 1is
supposed to, we can determine, for each of its commands, the re-
lations which must hold among.the variables Just prior to the exe-
cution of that command at any time during the program, We may then
attempt to prove for each command that 1f it is executed at a time
when its associated relations hold, then the relations associated
with the next command (in execution order) will always hold, If
this can be done, it follows that if we start the program with the
starting relations holding (and in some programs these will be null),
than, no matter how the program twists and turns, every time a com-
mand is executed, the relations associated with the next command
will hold. Thus, if we ever get to the end (which we may not), the
relations assoclated with the last command will hold. This basie
method of proof was first published in [Floyd 67] and independently,
although much less rigorously, in [Naur 6Zl. Floyd credits the idea
to Perlis and Gorn, but, as Knuth points out ([Knuth 68bl, which also
contains an excellent worked example) it can be traced back to won
Neumann [Goldstine and von Neumann 4%7]. The relations among .the vari-

ables, which are the key to the method, are called ggsertions by
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von Neumann, and we shall continue to vc¢Te. to this method as the

assertion method.

Floyd uses a dirccted graph model and attaches assertions to
the edgeg (= links) of the graph; an edge with an associated as-
sertion is said to be tagged., The assertion method takes a finite
number of steps even 1if not every edge is tagged; as Floyd remarks,
all that is necessary is to tag a set of edges which is such that

. every closed loop in the graph passes through at least one of them
(in circuit theory, this is called a feedback arc set [Younger 631)

.and which contains each entering (and exit) edge., Under these con-
ditions, we determine the control paths [Cooper 69] between two
tagged edges with no fagged ediges in between, and prove for each
such path that 1f it is started with its initial assertion true, and
if it is actually followed to the end, its final assertion will be
true when it ends. The total number of control paths is finite if
and only if they are chosen relative to a feedback arc set.

The proofs of the Iezifiééfion condi&ibns ("If P is trﬁe and
we do command C then Q will be true") depend on the semantics of
commands. Floyd requires that any reasonabls semantic definition of
a command be capable of producing such ﬁroofs, and he gives examples
of verification conditions involving ALGOL commands and boxes in a
flowchart language, but he does not show how these may be derived,

fHoang‘GQJ

and. in fact,]is inclined to treat them as axiomatic (see also -

Ed B Eka an 69a3).

o.kker &
5 2 emantic attributes, however, we may derive veri-

fication conditions immediately, In fact, P and Q, being conditions,

will correspond to state vector funetions fP and fQ whose values are

true and false, and thus also (see section 2.4) to setsASP and 5q
of state vectors for'which fP and fQ respectively yield the value
trye. Likewise, the command C will have a semantiec attribute which

is a state vector funetion €c giving its effect, The condition that
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"if P is true and we do C thsa Q will be true" is then precisely
the condition that if S € s, then e;(S) € sy, for all state vectors S.
This analysis may be generalized. If C has several exits, and
if Q tags an edge which is followed whenever the condition B is true
(before C 1s executed), then B corresponds as before to a set sz and
the condition above becomes S € s, N sy e, 8) e 8q° If B must be
true after C is executed, rather than before, the condition becomes
(5 € s and 05 (8) € 5) e (8) € 5.
a control path, with respective effects @19 seoy en,'wa define ei
T ei(S) = °1(°i~1(8)) for 1 <1 < n, so that e! is the composition
of all the 3 if each C; has only one exit, and P and Q are the
initial and final conditions respectively, then S €'sp must imply
8} (8) € 8q° If the control path is followed, after the command C,,
only if the condition B, (corresponding to the set si) is true,
~then e?(8) ¢ 8q must be true only if S € s, and ei(s) € s, for each
1y 1 £ 1 < n, Note that. the:conditions e, (S) 6"sq~"and el(8) € 8y
implys in particular, that these funotions are defined when applied
to S§ this must be assured by the form of P, For example, if C in=-

Ir Cl, eeey C  are commands in

volves subscripted variables, P must imply that all subscripts are
in range. I-the:set of all e (S) for S € 8p is of the form sy for
some condition R, then R is the gtrongest yerifiable conseguent of
P after the command C, and we write R = I, (P) [Floyd 671.

If the state vector S has domain M as a content function, then
any function £(S) may be regarded as a function of two var iables,
£(S(v), SIM-§v}), for any variable v € M, If £ is the function fa
corresponding to the predicate Q, and P 1s derived from Q by substi-
tuting the expression e for v wherever v occurs, then f,(S(v), S| M-$v})
will be equal to fQ(f (s), SIM-{V?), vhere f, 1s the state vector
function of e, In this casey if P is true and we do the command

3vi=e} then Q will be true, In fact, if S is any state vectar and we
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8l
do {v:=e¥, producing S', where S°(v) = fe(s) and S!|M=§v} = S| M-jv?,
then £o(S') = £o(S(v), S M-Tv}) = £, (£, (5), SIM-fv}) = £p(3(v),
S|¥-§v}) = £,(5). Thus P is true before execution of this command
if and only if Q is true afterward; in particular, Q is the strongest
verifiable consequent of P, This means that if we kmow Q we can easily
derive an assertion P for which the verification condition through
§vi=e§ will hold, merely by performing the substitution described

‘above; and we may continue in this way in the backward direction

along any control pathe. This is the so-called back substitution

nethed, which appears as Axiom DY in [Hoare 69]. We have defined

the method only for constant vj generalization to subscripted left
sides does not always work; as noted in [King 691,

When P = Q, the verification condition through {v:=e?} always
holds provided that P does not involve v or any variable whose value
might be changed by any side effect of e, The set of all such vari-
abies, for a giveh slde effect-or, more generally, for the effect
of a given command, is called its region of influence in [Elgot and
Robinson 64] and its output region in [Maurer 661. The set of all
variables used by the effect of a commahd is called the faput regien
in [(Maurer 6613 this concept can also be generalized to provide in-
put regions for arbitrary state vector functions. [Wagner 68] combines
the input and output regions into a gegendencxyactivigx‘gggggg, and
[Igarashi 71] refers to them as R[AJ and LCAJ respectively, for the
command Aj thls suggests the right and left sides of an assignment,
although, for a general assignment with side effects, both sides of
the assignment symbol may affect both regions,

It must be noted that Floyd's #erigg;ation conditions are

seemingly more general than those discussed here; his P and Q are

not predicates but rather yectors of predicates, corresponding to

several entrances to a command and several exits from it. In prac-
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tice, however, a command can 2lwayc b3 caken to have a single en-
trance, unless it corresponds to a subroutine with several entry
points; and in this case it will have different ver ification con-
ditions corresponding to each entry point. We have chosen to con=-
sider the exits from a command one at a time, each one accompanied
by a traversal cbndition, rather than a vector of exlt predicates.

In proving the correctness of a program, the probability of
error in the proof may bs as high or higher than the probability of
error in the program itself. Therefore, computefuaided methods are
indiecated. Computer aids to program verificatign are described in
{King 69) and [Good 70); further such programs, some of them~un-
finished, are referenced in [London 72bl. Some of these are to pro-
vide compllation as well as verificatlon; in fact, an idea often
mentioned (see, for example, [Dijkstra 68]) i3z to construct and
verify programe simultaneously and interactively. A verifier may

* 1tsalf contain errors, of coursej strictly speaking, no verifier-

produced proof is to be trusteq unless and until the ver ifier is
itsalf verified in some manner, a8 well as the compiler {or assem-
bler) for the 1anguége in which the verified program is written.
Most verifiers use the assertion method, although there are
other methods of proving programs correct ([McCarthy 611, [Manna
691, [Burstall 69], [London 70b]) which may bs computerized. A
verifier may be written to act upon any language in which programs
are written, Using the assertion method, we may even verify asseme
bly language programs, so long as we do not consider instruction
modification as a dynamic alteration of the flow diégram, as in
[Goldstine and von Neumann 47], but rather regard an instruction
word whose coﬁtents duringa program may be any of the commands cl,
seey ) a3 & keway branch with the meaning "If cy is stored here

now, then do cio"“v.



86
5.2 Termination

When a program has finite computation sequences -- that is,
when its execution does not run on indefinitely -- 1t is said to
terminate. As we have just seen, the application of Floyd's asser-
tion method to a program leaves open the poSsibility that the pro-
gram may not terminate; thus in [King 69] a program which never
- terminates is always "correct." [Mama 69] ealls a program gorrect
only if it terminates; a program is partially correct if, for each

- input vector, it either terminates cor;ectly or does not terminate
at all,

Any program always terminates unless it contains loops; a
program contains loops if and only if its commands eannot be ar-
ranged in sequence such that all transfers are in the forward di-
iection. The best-known general treatment of termination is given
in [Manna 683 and [Manna 70], improving an earlier treatment in |
[Floyd 67]. We shall present a simplified version of Manna's methods,
and show that both;the:geheral and the simplified method are suf-
ficlent to prove the termination of any terminating program.

In general, what causes a loop to terminate is usually the
behavior of the loop index, or controlled variable, or its equi-
valent., This is an expression which must increase (or decrease)
every time around the loop, and which is bounded within the loop in
some waye It 1s not enough to have a test within the loop which
exits if an inereasing loop index exceeds some bound , as 1llustra-
ted by the ALGOL loop

as: Jei=J+l; 1:=0; if 1>0 then g2 to b; i:=§; & to a3 b:

where the integers 1 and j are initialized to zero, Here 1 assumes

- the successive values 0, 1, 2, eeey Overy time the label a is reached,
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but the loop 1s endless. One enuld require that the index never de-
erease during the loop, but this requirement is not necessary if we
make use of information gained in proving correctness when proving
termination. Specifically, some edge in each loop must be tagged
(see the preceding section), and, if we measure Increase of an ex-
pression around the loop from the tagged edge, it is enough (as far
as that loop is concerned) that the assertion which tags that edge
imply that the expression is bounded whenever that point is reached.
- We shall call an integer expression subject to these two conditions
a controlled expressione

Controlled expressions are usually not difficult to find, pro-
vided we know dhpuitively why our given loop terminates. If the loop
index i 1s decreasihg, then -] is probably a controlled expressione. .
If the loop index 1 is real (or, in PL/I, of scale FLOAT) then it
probably must be mcremented within its loop by at least some minimum
amount € each time (otherwise it might converge monotonieally to a
value less than its bound, and thus loop endlessly); the integer part
of 1/ is then probably a controlled expressione The bound must be
constant, but this normally poses no problem; 1if the index 1 is boun=-
ded by the variable n, the controlled expression is i-n. For an al-
gorithm involving two integers which increase alter nately (or, as in
Buclid®s algorithm, decrease alternately), the controlled expression
is their sum, or its negative, For an interchange sort of a:table A,
. the total mumber of pairs of integers (1, j) such that 1 < j and A[1]
< ALJ] 1s an expression whése value increases each time such a pair
is placed in order. For ths calculation of the 1limit of a conyergent
sequence dy¢, i_;z\, evedy 1L which &y 'is campared with aj.y each time, nsing
a tolerance €, the controlled expression is %3 this increases by 1
each time, and is bounded by the constant N given by the convergence cri-
terion (for every é, including this particular €, there exists N such
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that fa, - a, .| <€), |
In state vector terms, an integer expression corresponds to a

state vector funetion f£(S) whose Qalues are integers. Defining the
Ci, 49 and ei for a control path as in the preceding section, the
condition for £ to be increasing along thizupath is f(eﬁ(S)) > £(S)
for each state vector S; this holds whether 6r not thé path is a
loop. The. boundedness copndition, of eourse, is £(S) < k for some
constant k. Any integer-valued state vector function'satisfying these
cohditions may be considered as a controlled expression, whether or
not it is the state vector function of an expression syntactically
producible in the given programming language. Thus, for the limit
program of the preceding paragraphy if the variable g always con-
tains the current ay, then £(8) is that 1 such that S(a) = 2.
Likewlise, for the sequential processing of a list or file, £(S) is
that 1 such that the ji-th elemént of the list or file is currently
being processed; this increases by 1l each time, and 1s bounded by
the known finite length of the file or the assumed finite length of
the list.

| The termination method of [Floyd 671 essentially involves
finding a single controlled expression for a program, although it
is to be decreasing and its values may lie in any well-ordered set.,
Using state vectors, it is easy to prove that in fact any terminae-
ting program has such an expression. Let T be a state vector with
a program=-counter component, and suppose that the computation se-
quence beginning with T terminates after nT stepses Then we simply
define £(T) = nré or, to produce an increasing controlled expression,
£(T) = ~nT. Such an:expression must, in general, involve a program-
counter component, and, in addition, might not correspond to a re-

cursive function,
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The cycle method (Theerrem 1) and the elementary path method
(Corollary 1) of [Manna 70] involve a separate expression for each
tagged edge. In the cycle method, each such expression must be ine
creasing around every closed loop in the program that begins and
ends at its corresponding edgej in the elementary path method, the
value of the expression associated with the end of any elementary
path (= control path) must be greater than the value of the expres-
sion associated with its béginning. The expressions are permitted
to have values in well-ordered sets, as in Floyd's methed; in the
cycle method, the values of different expressions may lie in dif-
ferent well=ordered sets.

The advantage of Manna‘®s method over Floyd's is that the
well-ordered sets are simpler to construct, as illustrated in
[Mannah7OJ by three eéémples. None of these involves the cycle
methody which has the disadvantage, for large programs, that the
total number of cycles in a program increases faster than the total
number of commandse. It might seem that the elementary path method
is slightly unnatural, in that it does not deal with the values of
a single expression along a path unless that path 1 a loop. How-
ever, it is not enough to find such an expression for every path,

as shown by the ALGOL loop
as 1:=1+1; Ji=j-1l; b: 1:=i-1l; je=j+l; go to a3

which never terminates, even though i and J are bounded thro ughout,
and 1 increases along the path from a to b while jJ increases along:
the path from b to a, |

- A rather complex set of conditions involving controlled ex-
pressions in our sense appears to give easy termination proofs for
a wide class of large programs, Let us associate with each coptrol
path a seguence of expressions. Normally, each such path 1s deter-
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mined to be inside k nested loopr: Ll’ eoey Lk whose controlled ex-
pressions are respectively el, coey ek, and this is the sequence which
we assoclate with that path. No control path need be considered in
this analysis unless it i1s inside at least one loop; that is, there

1s a way that the program can proceed from its end back to its be-
ginning, if these are not the same, Define a path associated with

039 eeey € to bée guter to any path associated with €19 evey O3y €99
eeey ©ltge Define a path associated with eys ++ey € to be primary

if ey 1s a controlled expression and gecondary if any closed loop
‘containing it must contain some path outer to it (where possibly j = 0
in the definition of "outer"), Then a program terminates if every
path 1s either primary or secondary and no ed in the sequence asso-

clated with any path ma§ decrease along that pathe
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53 Equiyalence

In order to prove that two programs are equivalent, we must
first define what we mean by equivalence, It would seem that two
programs which do the same thing have, in our terminology, the same
effect; but this definition is too restrictive for many practical
purposes. The temporary variables used by two programs may have
different values upon termination, and yet we may wish to regard
them as equivalent since they produce the same effect upon the input
and output variables. Igarashi [de Bakker 69] takes A 4B, for the
straight-line programs A and B, to mean that A and B produce the
same effect on the variables belonging to the set X. A more general
notion, involving separate sets of input and output variables, is
introduced in [Manna 69] and independently (and much more informally)
in [Orgass 70], where it is called relatiye equivalence. We may also
define equivalence with respect to what is printed out, as in [Kaplan
69b], although, in our terminology (see sect ion 1.2),.this may be re-
garded as a special case of the above, since printout sheets and
output tapes are regarded as variables with values.

Another kind of restricted equivalence resembles the notion of
correctness with respect to an initial assertion. If two programs
compute the square root of X in different ways, we wuld like to re-
gard them as equivalent even though one or both of them may be "un-
safe " thaﬁ is, may give unpred;ctable results when the given value
of X is negative. In [Manna 69], equivalence is defined with respect
to an_.input predicate; two programs are equivalent if they have the
same effect on any state vectar for which the input predicate is true.
To obtain ordinary equivalence, oné uses the input predicate which

is always true.
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Equivalence of progran sch e is wormally taken to mean equi-
valence in all, or most, interpretations. For program schemes as
defined by Yanov, this implies (see the discussion of traces of compu=-
tations in section 3.3) that two equivalent schemes must have the
same (finite) sequences of operations, as well as the same effects.

(For programs, this last condition is called strict equivalence in

1
EY

[Orgass 701, as contrasted with the ordinary notion of operational
" . equlyalenceJ One example of equivalence in Yanov's sense is fur-
nished by the process of removing statements from a flowchart which
~cannot be reached by a path in the flowchart (as a graph) from any
entrance node, Graphs containing such statements are called ineli-
gible in [Karp 60], where it is noted that this condition may be
detected in a finite number of steps; indeed, actual compllers often
have error messages reading "NO WAY TO REACH THIS STATEMENT" or some-
thing similar, although they normally do not make full use of graph
theory to mark all graphically unreachable statements in this waye
Karp also treats the removal of statements from which a terminal node
cannot be reached; such statements may appear in endless computations,
but Yanov!s notion of equivalence, as noted above, implies only that
the finite operator sequences must agreé. A
Equivalence of the program schemes in [Luckham, Park and
2 Paterson 701 in all interpretations is called strong eguivalence.
(Weak eguivalence is a sort of "partial equivalence"; two program
‘?; schemes are weakly equivalent if they give the same results under
conditions when both are defined.) However, since a change of in-
terpretation of such a scheme involves only right sides; and not
left sides, of assignments in the scheme, strong equivalence is
operational and not strict (in Orgass! sense, above)., Transforma-
tions of flowcharts which produce transformed programs strongly

- equivalent (but not equivalent in Yanov's sense) to the original

o — © p—
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include the addition of new r.atwinenis which do nothing, as well as
the combining of two or more nodes into a single node. In these cases
the effect of the transformed program is the same as that of‘the ori-
ginal, but the corresponding‘%inite sequences of operators usually
do not even have the same length. Five such transformations are
examined in [Cooper 671, by the use of which any node in a graph may
be eliminated unless it links to itself, and thus any flowchart may
be reduced to a form in which every node links to itself, If there
are no other links, the flowchart is called proper cyvcle free (PCF)j;
termination of PCF flowcharts is particularly easy to check, since
it is the same as termination of each node-loop separately. Most
flowcharts, however, are not reducible to PCF form, and Cooper glves
a necessary and sufficient condition for this; a related result is
found in [Bohm and Jacopini 66]. It is also possible to use Cooper'e
first transformation to show the equivalence of the two=branch and
mulfi-branch graph models which we discussed in sectfion 3.1.

For Yanov's notion of equivalence, there is a decision pro-
cedure involving reduction to canonical form.'Strong equivalence,
hoWever, is undecidable, although three powerful tests for detecting
it are given in [Kaplan 69al. A formal theory of flowcharts is pre-
sented in [Kaplan 69b], in which certain basic equivalences between
flowcharts are taken as axiomatic. For each of these, the trans-
formed scheme is strongly equivalent to the original scheme. Kaplan's
equivalencee are specified explicitly in terms of functions and pre-
dicates, whereas Cooper gives only two examples in this style, lea-
ving the others stated in graphical termse. Using his basic equiva-
lences, Kaplan is able to prove further assertions about programs,
using MeCarthy's technique of recursion induction [McCarthy 611].

The treatment of flowchart equivalences as axiomatic leaves

open the question_es to which reasonable subsets of real programming
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languages satisfy the axloms and which do not, Strong equivalence,
as we have seen, is defined for program schemes involving assignments
to single fixed registers and functions and predicates with no side
effects, The use of subscripted left sides, or of assignments to
more than one register at once, does not affect any of Cooper'!s or *
Kaplan's basic equivalences; on the other hand, the form of both of
Cooper's explicit examples and of three of Kaplan's six axioms must
- be altered if we allow predicates to have side effects, Even the
transformations suggested by Karp do not Preserve strong equivalence
‘unless we are careful to replace endless loops by other endless loops,
and not by error exits or anything else that would substitute a ter-
minating computation for a non-terminating one.

A general method, which closely resembles that of Floyd, may
be used to prove that s given programming language satisfies a given
equivalence axiome Let P and P' be two programs which act upon the
(state vector) domain D, let X be a subset of the statements of P,
and let f map X into the statements of P!, Suppose that we ean prove
for each statement k € K that if P and P' are started at k and (k)
respectively, each with current state vector S € D, then the next
time P reaches a statement k! € K, with current state vector St, and
the next time P! reaches a statement (k") for some k" ¢ K, with
current state vector S", we will have k! = k" and St = S, Under
these conditions, for example, if k; and f(k ) are unique entrances
and k. and f(k ) are unique exits, then P and P! are equivalent, and
this statement may easily be generalized to several entrances and
exits, If the set X satisfies Floyd's closed loop condition (see
section 5.1) and the commands of P and P! ape given by state wvector
functions, the conditions above may be checked in a finite number
of steps. Of course, if P! is obtained by transforming a subset U
of the statements of P, then f£(k) = k for all k ¢ U,
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When P and P! act upon differei’ lomains D and DY, thermethod
above may be further generalized to involve a lfunction g: D> DY,
Such generalization 1s necessary, for example, when P! is obtained
from P by transformations involving variable names. If P! uses tempo-
*ary variables which P does not, then P and P! will, in general, be
only relatively equivalenty involving a different kind of generali-
zation. Axioms for relative equivalence are given in [de Bakker 691,
some of which are originally due to Igarashi. Again, these are for
assignments without silde effacts and with single variables on the
left, and, for de Bakker?!s axioms, on the right as vellg their form
must be altered 1f these restrictions are relaxed. The same is true
of Igarashi's axioms for conditional expressions, also presented by
de Bakker.

Proofs of the correctness of compilers require at least the

relative equivalence of a source program and the corresponding ob-

. Ject program. Such proofs are given in [Kaplan 67], [Painter 671,

and [London 72al. In addition, if a compiler includes object code
optimlzationy it 1s necessary to prove that the optimization methods
used are valid in the sense that the optimized and unoptimized pro-
grams are always equivalent, Studies have been made (see, for example,

[Allen 69]) of highly complex optimization methods for real program-
ming languages, but proofs are usually not given, except for

straight-line code, where the effect is always computable [Aho and
Ullman 72), Compilers for languages allowing subroutines must com-
pile valid code for the handling of return dddresses and parameters;
the validity of this process is discussed, for return addresses, in

[Maurer 731,
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