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ABSTRACT

This paper considers a multivariable system with proper rational

matrix transfer functions GQ and Gf in the forward and feedback branches,

resp. Strictly algebraic procedures lead to polynomials whose zeros

are the poles of the matrix transfer functions from input to output (H ),

and from input to error (H ). The role of the assumption

det[I + G.(«>)Gn(«>)] ^0 and the relation between the zeros of det [I + Gf GQ]

and the poles of H and H are indicated. The implications for stability
ye

analysis of continuous-time as well as discrete-time systems are obvious.
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F44620-71-C-0087.



I. Introduction

The main result of this paper (see (32) and (33), below) is an

algorithmic method for generating two polynomials whose zeros constitute

a complete list of the poles of the two transfer functions of the feed

back system under consideration. The methods of the paper apply equally

to continuous-time systems (Laplace transform methods) or to discrete-

time systems (z-transform methods). In our exposition we use s to label

the complex variable.

II. Notation and Preliminaries

Let [R, ((C), denote the field of real, (complex, resp.) numbers.

Let ¥ = CU'{cd}, Let IR [s], (R(s)), be the set of all polynomials,

(rational functions, resp.), in the complex variable s with real coef-
mxm mxm

ficients. Let tR[s], ((R(s)), be the set of all mxm matrices with

elements in R[s], (R(s), resp.). Let N and D be matrices with elements

in IR[s]; a matrix M is said to be a common left divisor of N and D iff

there exist matrices N and D such that N=MN and D=MD where M, N, and D

have elements in IR[s]; both N and D are said to be right multiples of M;

a matrix L with elements in R[s] is said to be a greatest common left

divisor (g.c.l.d.) of N and D iff (i) it is a common left divisor of

N and D, and (ii) it is a right multiple of every common left divisor of

N and D. When a g.c.l.d. L is unimodular (i.e., det L = constant $ 0)

then the polynomial matrices N and D are said to be left coprime. We

define similarly a greatest common right divisor (g.c.r.d.) and right
mxm _ -i _

coprime. Given any G £ |R(s) it can easily be written as ND_ or D N
_ __ mxm

where N,N,D,D £R[s]. By a standard procedure ([1] - [5]) a g.c.r.d.

of N and D and a g.c.l.d. of N and D can be extracted so that
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G = N D"1 = dTV
r r I &

mxm

where (a) N^N^D^D^ G JR[s]; (b) Nr and Dr are right coprime, (c) N

and D£ are left coprime. It is well known ([l]) that N and D
, _ mxm

are left coprime if and only if there exist P„,Qn e R[s] such that

V* + DA =z

For completeness, we prove the well known fact: if

G•D A
mxm

where (i) N^D^ G R[s]; (ii) N and D. are left coprime, then

p e C is a pole of G if and only if p is a zero of det D.

Proof :

*= Premultiply (2) by D~ and use (3) to obtain

GP£ +Q* • h1

since, by assumption, p ^ C is a zero of det D. and since det[D. ] =

1/det D«, p is a pole of the r.h.s. of (5). Since ?o»Qo (°ein8 polynomial

matrices) are bounded at p, G must have a pole at p.

^ Use Cramer's rule in (3) to obtain

G = N^(Adj DA)/det D£
mxm

By assumption, p ^ C is a pole of G. Since N£, Adj D. 6R[s] (hence have

no finite poles) we must have from (6) that det U.(p) = 0. Q.E.D.

Notes: (a) Similarly, if

G = N D_1
r r
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mxm

where (i) N ,D £R[s]; (ii) N and D are right coprime, then
r r r r

8 p €= <E is a pole of G if and only if p is a zero of det D .

(b) It can be shown [2] that if R = [A,B,C,D] is any minimal

realization of G, then det[sI-A] = k»det D where k is the nonzero constant

such that the polynomial k»det D is monic.

mxm

(c) If T, U £lR[s] and are right or left coprime, it does not follow

that the polynomials det T and det U are coprime. To wit: T(s) = diag

[s-1, s-2], U(s) = diag[s-2, s-1].

III. Description of the System

Consider the continuous-time, linear, time-invariant, multivariable

feedback system S described by y « GQe, e =» u - G-y where u,e,y are the
mxm

input, the error and the output, resp.; also let Gn, Gf G (R(s) and are

proper (i.e., bounded at infinity). We perform the following factorizations:

9 Go =W
mxm

where NQ, Dfl G(R[s] and are right coprime, and det DQ i 0.

10 G- = D^N-
f f f

mxm

where Nf, D- £(R[s] and are left coprime, and det Df t 0.

In case the feedback system is discrete-time, u, e, and y are interpreted

to be the z-transforms of the input-, error-, and output-sequences and

the matrix-valued rational functions GQ and G_ are the matrix z-transform

functions (see [6]). The mathematical derivation which follows applies

equally well to continuous-time and discrete-time systems.

We assume

11 det[I + Gf(«>)G0(»)] 4 0.
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Let the transfer function from u to e be H and that from u to y (the

closed-loop transfer function) be H . From the system description

12 He =[I +G^]"1

13 Hy =60[I +G^]"1

Comment on assumption (11): It is easy to show that:
mxm

Whenever GQ, Gf Gr(s) and are proper, then det[I + G (»)GA(«>)] ^ 0 if

and only if He and H are proper (i.e., bounded at infinity).

By substituting (9) and (10) in (12) and (13) we obtain

14 H = DA ft"1 D£
e 0 f

15 H = NA fi"1 D-
y 0 f

where

16 n A(Df DQ + Nf NQ).

det ft i 0 because (11) requires that H tend to a nonsingular matrix at
e

infinity. We will now extract greatest common right-and left-divisors

from the products in (14) and (15). Let L be a g.c.l.d. of ft and Df,

then

mxm

where L, J2, D. £R[s].

18

17 ft = Lft

D=li J
~ ,. mxm

Since Df and ft are left coprime there exist P, Q £ |R[s] such that

19 Df P + ft Q = I

Substituting (17) and (18) in (14) we obtain
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20 H = DA ft"1 D,
e 0 f

Let R be a g.c.r.d. of DA and ft, then
e to 0

21 DA = DA R .
0 0 e ^ mxm

22 ft = ft R
e e

where R , ft , DA G R[s]
e e 0

mxm

Since DA and ft are right coprime there exist P , Q ^ R[s] such that

23 P DA + Q ft = I
e 0 e e

Substituting (22) in (19) we obtain

24 Df P + ft R Q = I => Df and ft are left coprime.

Substituting (21) and (22) in (20) we obtain

25 H =Dn ft"1 D~
e 0 e f

We now go through a similar procedure for (15). Substituting (17) and

(18) in (15) we obtain

26 H =NA ft"1 Dr
y 0 f

Let R be a g.c.r.d. of NQ and ft, then

27 NA = NA R .
0 0 y _ mxm

28 ft = ft R
y y

where R , ft , NQ € R[s].

mxm

Since NA and ft are right coprime there exist P , 0 G r[s] such that

29 P NA + Q ft = I
y 0 y y

Substituting (28) in (19) we obtain

30 Df P + ft R Q « I => Df and ft are left coprime,
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Substituting (27) and (28) in (26) we obtain

31 H = NA ft"1 D.
y 0 y f

Now that we have (25) and (31) we can state the

Theorem: For system S, with assumption (11) and the notation above, we

have

32 p 6 (J is a pole of H if and only if p is a zero of det ft
e r e J re e

33 p €= (C is a pole of H if and only if p is a zero of det ft .
y y y y

Proof: Since (11) implies that H and H are bounded at » , all of their

poles are necessarily finite, so we need only consider finite poles.

Proof of (32):

«= Multiply (23) on the right by ft" and then by Df to obtain

34 P DA ft"1 D. + Q D. » ft"1 Dr
eOef^ef ef

Using (25), (34) becomes

-1
35 P H + Q D. = ft Dr.

e e e f e f

Now, by assumption det ft (p ) =0. Since Df and ft are left coprime by

(24), the r.h.s. of (35) has a pole at p by (4); therefore, the l.h.s.
mxm

of (35) has a pole at p . Since P , Q , D- GR[s] it follows that p
e e e i e

must be a pole of H .

** Use Cramer's rule in (25) to obtain

36 H = DA(Adj ft ) Dr/det ft .
e 0 J e f e

•v mxm

By assumption p is a pole of H . Since DQ, Adj ft ,Df £ R[s] (hence

have no finite poles) we must have from (36) that det ft (Pe) • 0- Q.E.D.

The proof of (33) is similar and will not be given.
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Remark: From (12), (25), and (32) we obtain

det ft J(8_Pei)
37 det[I +GfGQ] = e

det DQ*det Df [B (3-P()k)] [J (8-pfj)

where (i) p . are the poles of H ,counting multiplicities; (ii) pQi>

(pf ), are the zeros of DQ, (Df, resp.), counting multiplicities. Since

cancellations may occur in (37), some pole of He, say, p^, might not be

a zero of det[I + GfGQ]. Hence (37) implies that

38 {zeros of det[I + GfGQ]} C {poles of lO.

Similarly by (9), (13), (26), and (28), we obtain

det ft * det R

39 det[I + G.GA] = z z2- .
det DQ • det Df

Hence (33) and (39) imply that

40 {zeros of det[I + GfGQ]} C {poles of H }U {zeros of det R }.

Note that by (27), any zero of det R is a zero of det NA, but not

conversely. By (38) and (40) we have that neither the stability of H

nor that of H can be determined by only checking the zeros of det[I + GfGQ].

Examples

The examples below are purposefully simple; they illustrate state

ments (32), (33), (38) and (40), and the fact that the stability of the

feedback system requires consideration of H and H .

Example 1: H unstable, H stable. Let
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s-1

s(s+2)

Go -

s-1

Go sVo1
_ 0

rs-i

Gf =D^1 Nf =

s-2

s+1 J

s-2

-1

s(s+2)

"-(s+2)

r-(^)

-rl

s+1

L O s(s-2). L o -2(s+1)J

det [I + GfGA] = (s-l)(s-2)/sZ ;det [I + Gf(»)GA(«)] =1

s-1

He = [I + GfGQ] -1

L 0

H - G [I + G.Gj"1 =
y o f 0

r- 1
s+2

L 0

s-2-1

s+1
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Example 2 : H stable, H unstable. Let

s+2

s(s-l)
0

[-2 (s-1)
s+2

» Gf -

s+1

s-2 J
0

•s+2 s(s-l)
rl

Go s Vo1
s+lj L 0 s-2 J

's+2 0 T1 r2(s-l)

Gf= D-XNf
. 0 s(s+l)J L 0 s-2

det[I + GfGQ] = (s+l)(s+2)/sZ ; det[I + Gf («0GA(«0 ] = 1

- s

s+2
0 -

He =ii +G^r1 -
- 0

s

e-4-1 J

•

9 ft =
e

Hy = GA[I + Gf60]-1

r- 1
s-1

; ft =
y

s+2

r s-i

s-2

s(s+l) J

s+1 J

L 0 ^2 J _ 0 s-2^
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IV. Conclusion

Since there are well known algorithmic methods, [1] - [5], for

writing transfer function matrices in the form NQDA and D~ Nf, and

for extracting greatest common left-or right-divisors, statements (32)

and (33) give an algorithm for listing all the poles of H and H .
e y

The reasons why system stability cannot be guaranteed by considering

only the zeros of det[I + GfGQ] are exhibited by (38), (40), and the

examples. It should be stressed that if we consider the minimal

realizations of GA and Gf then provided all the poles of H and H are

in the open left half plane, (open unit disc for the discrete-time case),

the state trajectories corresponding to any bounded input are bounded.

More precisely, if these states are called xA and xf, resp., then the

map from u(*) to (xA(«), xf(-)) is L -stable, for 1 <_ p <_ °° .
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