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Summary

The approach described in this paper represents a substantive

departure from the conventional quantitative techniques of system

analysis. Its main distinguishing features are: (a) Use of so-called

linguistic variables in place of or in addition to numerical variables;

(b) characterization of simple relations between variables by fuzzy

conditional statements; and (c) characterization of complex relations

by fuzzy algorithms.

A linguistic variable is defined as a variable whose values are

sentences in a natural or artificial language. Thus, if tall, not tall,

very tall, very very tall, etc. are values of height, then height is a

linguistic variable.

Fuzzy conditional statements are expressions of the form IF A THEN

B, where A and B have fuzzy meaning, e.g., IF x is small THEN y is large,

where small and large are viewed as labels of fuzzy sets.

A fuzzy algorithm is an ordered sequence of instructions which may

contain fuzzy assignment and conditional statements, e.g., x = very
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small, IF x is small THEN y is large. The execution of such instruc

tions is governed by the compositional rule of inference and the rule

of the preponderant alternative.

tt~
By relying on the use of linguistic variables and fuzzy algorithms,

the approach provides an approximate and yet effective means of describ- ?
y

ing the behavior of systems which are too complex or too ill-defined to

admit of precise mathematical analysis. Its main applications lie in

economics, management science, artificial intelligence, psychology,

linguistics, information retrieval, medicine, biology and other fields

in which it is the animate rather than inanimate behavior of system

constituents that plays a dominant role.
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1. Introduction

The advent of the computer age has stimulated a rapid expansion in

the use of quantitative techniques for the analysis of economic, urban,

social, biological and other types of systems in which it is the animate

rather than inanimate behavior of system constituents that plays a

dominant role

At present, most of the techniques employed for the analysis of

humanistic - that is, human-centered - systems are adaptations of the

methods that have been developed over a long period of time for dealing

with mechanistic systems, i.e., with physical systems governed in the

main by the laws of mechanics, electromagnetism and thermodynamics. The

remarkable successes of these methods in unraveling the secrets of nature

and enabling us to build better and better machines, have inspired a

widely held belief that the same or similar techniques can be applied

with comparable effectiveness to the analysis of humanistic systems. As

a case in point, the successes of modern control theory in the design of

highly accurate space navigation systems have stimulated its use in the

*
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theoretical analyses of economic and biological systems. Similarly,

the effectiveness of computer simulation techniques in the macroscopic

analyses of physical systems has brought into vogue the use of computer-

based econometric models for purposes of forecasting, economic planning

and management.

Given the deeply entrenched tradition of scientific thinking which

equates the understanding of a phenomenon with the ability to analyze

it in quantitative terms, one is certain to strike a dissonant note by

questioning the growing tendency to analyze the behavior of humanistic

systems as if they were mechanistic systems governed by difference,

differential or integral equations. Such a note is struck in the present

paper.

Essentially, our contention is that the conventional quantitative

techniques of system analysis are intrinsically insulted for dealing

with humanistic systems or, for that matter, any system whose complexity

is comparable to that of humanistic systems. The basis for this conten

tion rests on what might be called the principle of incompatibility.

Stated informally, the essence of this principle is that as the complexity

of a system increases, our ability to make precise and yet significant

statements about its behavior diminishes until a threshold is reached

beyond which precision and significance (or relevance) become almost

mutually exclusive characteristics. It is in this sense that precise

quantitative analyses of the behavior of humanistic systems are not

likely to have much relevance to the real-world societal, political,

economic and other types of problems which involve humans either as

n
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individuals or in groups.

An alternative approach outlined in this paper is based on the

premise that the key elements in human thinking are not numbers but

labels of fuzzy sets, that is, classes of objects in which the transi

tion from membership to non-membership is gradual rather than abrupt.

Indeed, the pervasiveness of fuzziness in human thought processes

suggests that much of the logic behind human reasoning is not the

traditional two-valued or even multi-valued logic, but a logic with

fuzzy truths, fuzzy connectives and fuzzy rules of inference. In our

view, it is this fuzzy - and as yet not well understood - logic that

plays a basic role in what may well be one of the most important facets

of human thinking, namely, the ability to summarize information - to

extract from the collections of masses of data impinging upon the

human brain those and only those subcollections which are relevant to

the performance of the task at hand.

By its nature, a summary is an approximation to what it summarizes

For many purposes, a very approximate characterization of a collection

of data is sufficient because most of the basic tasks performed by

humans do not require a high degree of precision in their execution.

The human brain takes advantage of this tolerance for imprecision by

encoding the task-relevant( or decision-relevant) information into

labels of fuzzy sets which bear an approximate relation to the primary

data. In this way, the stream of information reaching the brain via

the visual, auditory, tactile and other senses is eventually reduced

to a trickle that is needed to perform a specified task with a minimal
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degree of precision. Thus, the ability to manipulate fuzzy sets and

the consequent summarizing capability, constitute one of the most impor

tant assets of the human mind as well as a fundamental characteristic

that distinguishes human intelligence from the type of machine intelli

gence that is embodied in present day digital computers.

Viewed in this perspective, the traditional techniques of system

analysis are not well-suited for dealing with humanistic systems because

they fail to come to grips with the reality of the fuzziness of human

thinking and behavior. Thus, to deal with such systems realistically,

we need approaches which do not make a fetish of precision, rigor and

mathematical formalism, and which employ instead a methodological frame

work which is tolerant of imprecision and partial truths. The approach

described in the sequel is a step - but not necessarily a definitive

step - in this direction.

The approach in question has three main distinguishing features:

(a) Use of so-called linguistic variables in place of or in addition to

numerical variables; (b) characterization of simple relations between

variables by conditional fuzzy statements; and (c) characterization of

complex relations by fuzzy algorithms.

Before proceeding to a detailed discussion of our approach, it will

be helpful to sketch the principal ideas behind the features cited

above. We begin with a brief explanation of the notion of a linguistic

variable.

( a) Linguistic and fuzzy variables. As pointed out above, the ability

to summarize information plays an essential role in the characterization
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of complex phenomena. In the case of humans, the ability to summarize

information finds its most pronounced manifestation in the use of

natural languages. Thus, each word x in a natural language L may be

viewed as a summarized description of a fuzzy subset M(x) of a universe

of discourse U, with M(x) representing the meaning of x. In this sense,

the language as a whole may be regarded as a system for assigning atomic

and composite labels (i.e., words, phrases and sentences) to the fuzzy

*

subsets of U. For example, if the meaning of the noun flower is a fuzzy

subset M(flower), and the meaning of the adjective red is a fuzzy subset

M(red), then the meaning of the noun phrase red flower is given by the

intersection of M(red) and M(flower).

If we regard the color of an object as a variable, then its values:

red, blue, yellow, green, etc. may be interpreted as labels of fuzzy

subsets of a universe of objects. In this sense, the attribute color

is a fuzzy variable, that is, a variable whose values are labels of

fuzzy sets. It is important to note that the characterization of a

value of the variable color by a natural label such as red is much less

precise than the numerical value of the wavelength of a particular color.

In the above example, the values of the variable color are atomic

terms like red, blue, yellow, etc. More generally, the values may be

sentences in a specified language, in which case we say that the variable

is linguistic. To illustrate, the values of the fuzzy variable height

might be expressible as follows

*

This point of view is discussed in greater detail in References [4]
and [5].
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height: tall, not tall, somewhat tall, very tall, not very tall,

very very tall, tall but not very tall, quite tall, more

or less tall.

Thus, the values in question are sentences formed from the label tall,

the negation not, the connectives and and but, and the hedges very,

somewhat, quite and more or less. In this sense, the variable height

as defined above is a linguistic variable.

As will be seen in Section 3, the main function of linguistic

variables is to provide a systematic means for an approximate charac

terization of complex or ill-defined phenomena. In essence, by moving

away from the use of quantified variables and toward the use of the

type of linguistic descriptions employed by humans, we acquire a capa

bility to deal with systems which are much too complex to be susceptible

of analysis in conventional mathematical terms.

( B) Characterization of simple relations between fuzzy variables by

conditional statements. In quantitative approaches to system analysis,

a dependence between two numerically-valued variables x and y is usually

characterized by a table which, in words, may be expressed as a set of

conditional statements, e.g., IF x is 5 THEN y is 10, IF x is 6 THEN y

is 14, etc.

The same technique is employed in our approach, except that x and

y are allowed to be fuzzy variables. In particular, if x and y are

linguistic variables, the conditional statements describing the

dependence of y on x might read:

Here and elsewhere in this paper, the italicized words represent the
values of fuzzy variables.
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IF x is small THEN y is very large

IF x is not very small THEN y is very very large

IF x is not small and not large THEN y is not very large

and so forth.

Fuzzy conditional statements of the form IF A THEN B where A and

B are terms with a fuzzy meaning, e.g., "IF John is nice to you THEN

you should be kind to him," are used routinely in everyday discourse.

However, the meaning of such statements when used in communication

between humans is poorly defined. As will be shown in Section 5, the

conditional statement IF A THEN B can be given a precise meaning even

when A and B are fuzzy rather than non-fuzzy sets, provided the meanings

of A and B are defined precisely as specified subsets of the universe

of discourse.

In the above example, the relation between two fuzzy variables x

and y is simple in the sense that it can be characterized as a set of

conditional statements of the form IF A THEN B, where A and B are labels

of fuzzy sets representing the values of x and y, respectively. In the

case of more complex relations, the characterization of the dependence

of y on x may require the use of a fuzzy algorithm. As indicated b«low,

and discussed in greater detail in Section 6, the notion of a fuzzy

algorithm plays a basic role in providing a means of approximate

characterization of fuzzy concepts and their interrelations.

(c) Fuzzy-algorithmic characterization of functions and relations. The

definition of a fuzzy function through the use of fuzzy conditional
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statements is analogous to the definition of a non-fuzzy function f by

a table of pairs (x, f(x)) in which x is a generic value of the argument

of f and f(x) is the value of the function.

Just as a non-fuzzy function can be defined algorithmically (e.g., ^

by a program) rather than by a table, so a fuzzy function can be defined

by a fuzzy algorithm rather than as a collection of fuzzy conditional £*

statements. The same applies to the definition of sets, relations and

other constructs which are fuzzy in nature.

Essentially, a fuzzy algorithm [6] is an ordered sequence of

instructions ( Jike a computer program) in which some of the instructions

may contain labels of fuzzy sets. E.g.,

Reduce x slightly if y is large

Increase x very slightly if y is not very large and not very small

If x is small then stop; else increase x by 2.

By allowing an algorithm to contain instructions of this type, it

becomes possible to give an approximate fuzzy-algorithmic characteriza

tion of a wide variety of complex phenomena. The important feature of

such characterizations is that, though imprecise in nature, they may be

perfectly adequate for the purposes of a specified task. In this way,

fuzzy algorithms can provide an effective means of approximate description

of objective functions, constraints, system performance, strategies, etc.

In what follows, we shall spell out in greater detail some of the ^

basic aspects of linguistic variables, fuzzy conditional statements and -

fuzzy algorithms. However, we shall not attempt to present a definitive
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exposition of our approach and its applications. Thus, the present

paper should be viewed primarily as an introductory outline of a method

which departs from the-tradition of precision and rigor in scientific

analysis - a method whose approximate nature mirrors the fuzziness of

human behavior and thereby offers a promise of providing a more

realistic basis for the analysis of humanistic systems.

As will be seen in the following sections, the theoretical

foundation of our approach is actually quite precise and rather mathe

matical in spirit. Thus, the source of imprecision in the approach is

not the underlying theory but the manner in which linguistic variables

and fuzzy algorithms are applied to the formulation and solution of

real-world problems. In effect, the level of precision in a particular

application can be adjusted to fit the needs of the task and the

accuracy of the available data. This flexibility constitutes one of

the important features of the method described in the sequel.

2. Fuzzy Sets - A Summary of Relevant Properties

In order to make our exposition self-contained, we shall summarize

in this section those properties of fuzzy sets which will be needed in

*

later sections.

Notation and terminology

A fuzzy subset A of a universe of discourse U is characterized by

a membership function u. : U + [0,1] which associates with each element

*

More detailed discussions of topics in the theory of fuzzy sets which
are relevant to the subject of the present paper may be found in
References [1]-[17].
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y of U a number Ua(v) in the interval [0,1] which represents the grade

of membership of y in U.

The support of A is the set of points in U at which vAy) is posi

tive. A crossover point in A is an element of U whose grade of member

ship in A is 0.5.

A fuzzy singleton is a fuzzy set whose support is a single point

in U. If A is a fuzzy singleton whose support is the point y, we

write

A = y/y (2.1)

where y is the grade of membership of y in A. To be consistent with

this notation, a non-fuzzy singleton will be denoted by 1/y.

A fuzzy set A may be viewed as the union (see (2.27)) of its

constituent singletons. On this basis, A may be represented in the

form

JA = I uA(y)/y (2.2)
u

where the integral sign stands for the union of the fuzzy singletons

y

be replaced by the summation

A(y)/y« If A has a finite support {y-, y2, ..., y }, then (2.2) may

A = y/y + ... + u /y (2.3)
11 n n

or

n

A=]Cvyi (2,4)
i=l
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in which y , i = 1, ..., n, is the grade of membership of y± in A. It

should be noted that the + sign in (2.3) denotes the union (see (2.27))

rather than the arithmetic sum. In this sense of +, a finite universe

of discourse U = {y1, y2» ..., yn> may be represented simply by the

summation

u = y± + y2 + ... +yn (2.5)

or

n

U=I>i (2.6)

i=l

although, strictly, we should write (2.5) and (2.6) as

U = l/yi + l/y2 + ... + l/yn (2.7)

and

n

U=y^l/y. (2.8)
i=l

As an illustration, suppose that

U = l + 2+... + 10 (2.9)

Then a fuzzy subset of U labeled several may be expressed as

several = 0.5/3 + 0.8/4 + 1/5 + 1/6 + 0.8/7 + 0.5/8

A is a subset of B, written as A C B, if and only if ux(y) f_ ^(y) for
all y in U. For example, the fuzzy set A = 0.6/1 + 0.3/2 is a subset
of B= 0.8/1 + 0.5/2 + 0.6/3.

&& A
The symbol = stands for "equal by definition" or "is defined to be"

or "denotes."
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Similarly, if U is the interval [0,100], with y = age, then the

it
fuzzy subsets of U labeled young and old may be represented as (see

Fig. 1).

-25 .100

young =j 1/y +J (1 +(^f^VrVy (2.11)
0 25

and

100

old- J (1 +(^rW (2.12)
•50

The grade of membership in a fuzzy set may in itself be a fuzzy set.

For example, if

U = TOM + JIM + DICK + BOB (2.13)

and A is the fuzzy subset labeled agile, then we may have

agile = medium/TQM + low/JIM + low/DICK + high/BOB (2.14)

In this representation, the fuzzy grades of membership low, medium, and

high are fuzzy subsets of the universe V,

V = 0 + 0.1 + 0.2 + ... + 0.9 + 1, (2.15)

which are defined by

low = 0.5/0.2 + 0.7/0.3 + 1/0.4 + 0.7/0.5 + 0.5/0.6 (2.16)

Here and elsewhere in this paper we do not differentiate between a
fuzzy set and its label.

-12-
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medium = 0.5/0.4 + 0.7/0.5 + 1/0.6 + 0.7/0.7 + 0.5/0.8 (2.17)

high = 0.5/0.7 + 0.7/0.8 + 0.9/0.9 + 1/1 (2.18)

Fuzzy relations

A fuzzy relation, R, from a set X to a set Y is a fuzzy subset of

the cartesian product X x Y. (X x Y is the collection of ordered pairs

(x,y), x € x, y £ Y). R is characterized by a bivariate membership

function y (x,y) and is expressed as
K

R = I PR(x,y)/(x,y) (2.19)J
XxY

More generally, for an n-ary fuzzy relation R which is a fuzzy subset of

X^ x X2 x ... x X , we have

•J y0(x-, ..., x )/(x_, ..., x ), (2.20)
K l n l n

A., X ... X A
1 n

x. e X , i = 1, ..., n

As an illustration, if X = {TOM, DICK} and Y » {JOHN, JIM}, then a

binary fuzzy relation of resemblance between members of X and Y might

be expressed as

• resemblance = 0.8/(TOM,JOHN) + 0.6/(TOM,JIM)

+ 0.2/(DICK,JOHN) + 0.9/(DICK,TOM)

Alternatively, this relation may be represented as a relation matrix
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JOHN JIM

<—

TOM 0.8 0.6

DICK 0.2 0.9

(2.21)

in which the (i,j)th element is the value of yT5(x,y) for the i value
K

of x and the j value of y.

If R is a relation from X to Y and S is a relation from Y to Z, then

the composition of R and S is a fuzzy relation denoted by R°S and

defined by

RoS = 1 V (yR(x,y)A ys(y,z))/(x,z) (2.22)
XxZ y

ft

where V and A denote, respectively, max and min. Thus, for real a,b

a V b = max(a,b) = a if a ^ b (2.23)

= b if a < b

a A b = min(a,b) = a if a <_ b (2.24)

= b if a > b

and V = supremum over the domain of y.
y

If the domains of the variables x,y and z are finite sets, then the
i

**

relation matrix for RoS is the max-min product of the relation

J

ft

Equation (2.22) defines the max-min composition of R and S. Max-pro
duct composition is defined similarly, except that A is replaced by the
arithmetic product. A more detailed discussion of these compositions
may be found in [2].

ftft

In the max-min matrix product, the operations of addition and multi
plication are replaced by v and /\, respectively.
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matrices for R and S. For example, the max-min product of the relation

matrices on the left-hand side of (2.25) results in the relation matrix

R°S shown on the right-hand side of (2.25)

R S RoS

~") r~ ~\ i—
0.3 0.8 0.5 0.9 0.3 0.3

0.6 0.9 0.4 1 0.5 0.6

(2.25)

Operations on fuzzy sets

The negation not, the connectives and and or, the hedges very

highly, more or less, and other terms which enter in the representation

of values of linguistic variables, may be viewed as labels of various

operations defined on the fuzzy subsets of U. The more basic of these

operations are summarized below.

The complement of A is denoted by -| A and is defined by

-,A* } (i-yA(y))/y (2.26)

The operation of complementation corresponds to negation. Thus if x is

*

a label for a fuzzy set, then not x should be interpreted as -7 x.

The union of fuzzy sets A and B is denoted by A + B and is defined

by

I
U

A+ B= I (iiA(y)VPB(y))/y (2.27)

Strictly speaking, -1 operates on fuzzy sets whereas not operates on
their labels. With this understanding, we shall use -1 and not
interchangeably.
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The union corresponds to the connective or_. Thus, if u and v are labels

of fuzzy sets, then

u or_ v = u + v (2.28)

The intersection of A and B is denoted by A H B and is defined by

i\ & (yA(y)AuB(y») (2.29)I
The intersection corresponds to the connective and; thus

u and v = u H v (2.30)

As an illustration if

U=l+2+...+10 (2.31)

u = 0.8/3 + 1/5 + 0.6/6 (2.32)

and

v = 0.7/3 + 1/4 + 0.5/6 (2.33)

then

u or v = 0.8/3 + 1/4 + 1/5 + 0.6/6 (2.34)

and

u and v = 0.7/3 + 0.5/6 (2.35)

The product of A and B is denoted by AB and is defined by

AB £I yA(y)yB(y)/y (2.36)
U

-16-
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Thus, if

A = 0.8/2 + 0.9/5 (2.37)

and

B = 0.6/2 + 0.8/3 + 0.6/5 (2.38)

then

AB = 0.48/2 + 0.54/5 (2.39)

Based on (2.36), Aa, where a is any real number, is defined by

Aa =| (uA(y))°7y (2.40)J
U

Similarly, if a is any non-negative real number, then

[aA S| ayA(y)/y (2.41)
U

As an illustration, if A is expressed by (2.37), then

A2 = 0.64/2 +0.81/5 (2.42)

and

0.5 A = 0.4/2 + 0.45/5 (2.43)

In addition to the basic operations defined above, there are other

operations that are of use in the representation of linguistic hedges.

ft
Some of these are briefly defined below.

*

A more detailed discussion of these operations may be found in [15].
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The operation of concentration is defined by

CON(A) =A2 (2.44)

Applying this operation to A results in a fuzzy subset of A such that

the reduction in the magnitude of the grade of membership of y in A is

relatively small for those y which have a high grade of membership in

A and relatively large for the y with low membership.

The operation of dilation is defined by

DIL(A) = A0,5 (2.45)

The effect of this operation is the opposite of that of concentration.

The operation of contrast intensification is defined by

INT(A) =2A2 for 0.5 <_ yA(y) <_ 0.5
A 2 (2'46)= -7 2(-, A) for 0.5 £ yA(y) £ 1

This operation differs from concentration in that it increases the

values of yA(y) which are above 0.5 and diminishes those which are

below this point. Thus, contrast intensification has the effect of

*

reducing the fuzziness of A.

As its name implies, the operation of fuzzification (or, more

specifically, support fuzzification) has the effect of transforming

a non-fuzzy set into a fuzzy set or increasing the fuzziness of a fuzzy

set. The result of application of a fuzzification to A will be denoted

by F(A) or A, with the wavy underbar referred to as a fuzzifier. Thus

ft

An entropy-like measure of fuzziness of a fuzzy set is defined in [16].
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x = 3 means "x is approximately equal to 3," while x = 3 means "x is

a fuzzy set which approximates to 3."

A fuzzifier, F, is characterized by its kernel, K(y), which is the

fuzzy set resulting from the application of F to a singleton 1/y. Thus

K(y) = 1/y (2.47)

In terms of K, the result of applying F to a fuzzy set A is given

by

.;k) &JyF(A;K) - JVA(y) K(y) (2.48)
U

where yA(y) K(y) represents the product (in the sense of (2.41)) of the

scalar y.(y) and the fuzzy set K(y), and I should be interpreted as
A Ju

the union of the family of fuzzy sets yA(y) K(y), y £ U. Thus, (2.48)

is analogous to the integral representation of a linear operator, with

K(y) playing the role of impulse response.

As an illustration of (2.48), assume that U, A and K(y) are defined

by

U=l + 2 + 3 + 4 (2.49)

A = 0.8/1 + 0.6/2 (2.50)

K(l) = 1/1 + 0.4/2 (2.51)

and

K(2) = 1/2 + 0.4/1 + 0.4/3

Then, the result of applying F to A is given by
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F(A;K) = 0.8(1/1 + 0.4/2) + 0.6(1/2 + 0.4/1 + 0.4/3) (2.52)

= 0.8/1 + 0.32/2 + 0.6/2 + 0.24/1 + 0.24/3

= 0.8/1 + 0.6/2 + 0.24/3

The operation of fuzzification plays an important role in the

definition of linguistic hedges such as more or less, slightly, much,

etc. Examples of its uses are given in [15].

Language and meaning

As was indicated in Section 1, the values of a linguistic variable

are fuzzy sets whose labels are sentences in a natural or artificial

language.

For our purposes, a language, L, may be viewed as a correspondence

ft

between a set of terms, T, and a universe of discourse, U. This

correspondence may be assumed to be characterized by a fuzzy naming

relation N from T to U, which associates with each term x in T and

each object y in U the degree, y (x,y), to which x applies to y. For

example, if x = young and y = 23 years, then y (young,23) might be 0.9.

A term may be atomic, e.g., x = tall, or composite, in which case it

is a concatenation of atomic terms, e.g., x = very tall man.

For a fixed x, the membership function yN(x,y) defines a fuzzy

subset M(x) of U whose membership function is given by

yM(x)(y) = yNU,y), xe t, ye u (2.53)

ft

This point of view is described in greater detail in [4] and [5]. For
simplicity, we assume that T is a non-fuzzy set.
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This fuzzy subset is defined to be the meaning of x. Thus, the meaning

of a term x is the fuzzy subset M(x) of U for which x serves as a label.

Although x and M(x) are different entities (x is an element of T whereas

M(x) is a fuzzy subset of U), we shall write x for M(x) except where

there is a need for differentiation between them.

To illustrate, suppose that the meaning of the term young is

defined by

yN(young,y) =1 for y _< 25 (2.54)

=(1 +O^)2)"1 for y>25

Then we can represent the fuzzy subset of U labeled young as (see (2.11))

>.25 flOO
young =J 1/y +J (1 +(^—VrVy (2.55)

0 25

with the right-hand member of (2.55) representing the meaning of young.

Linguistic hedges such as very, much, more or less, etc. make it

possible to modify the meaning of atomic as well as composite terms and

thus serve to increase the range of values of a linguistic variable.

The use of linguistic hedges for this purpose is discussed in the

following section.

3. Linguistic Hedges

As stated in Section 2, the values of a linguistic variable are

labels of fuzzy subsets of U which have the form of phrases or sentences
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in a natural or artificial language. For example, if U is the collec

tion of integers

U = 0 + l + 2+...+100 (3.1)

and age is a linguistic variable labeled x, then the values of x might

be: young, not young, very young, not very young, old and not old,

not very old, not young and not old, etc.

In general, a value of a linguistic variable is a composite term

x = xnx0...x which is a concatenation of atomic terms x,, ..., x .
1 2 n 1* ' n

These atomic terms may be divided into four categories: (i) Primary

terms, which are labels of specified fuzzy subsets of the universe of

discourse (e.g., young and old in the above example); (ii) the negation

not, and the connectives and and or; and (iii) hedges such as very, much,

ft

slightly, more or less, etc., and (iv) markers such as parentheses.

A basic problem, Pp, which arises in connection with the use of

linguistic variables is the following: Given the meaning of each atomic

term x., i = 1, ..., n, in a composite term x = x ...x which represents

a value of a linguistic variable, compute the meaning of x in the sense

of (2.53).

The above problem is an instance of a central problem in quantita

tive fuzzy semantics [4], namely, the computation of the meaning of a

composite term. P« is a special case of the latter problem because the

composite terms representing the values of a linguistic variable have

a relatively simple grammatical structure which is restricted to the

ft

Although more or less is comprised of three words, it is regarded as
an atomic term.
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four categories of atomic terms (i) - (iv).

As a preliminary to describing a general approach to the solution

of Pff, it will be helpful to consider a subproblem of P? which involves

the computation of the meaning of a composite term of the form x - hu,

where h is a hedge and u is a term with a specified meaning, e.g., x =

very tall man, where h = very and u = tall man.

Taking the point of view described in [15], a hedge h may be

regarded as an operator which transforms the fuzzy set M(u), representing

the meaning of u, into the fuzzy set M(hu). As stated already, the

hedges serve the function of generating a larger set of values for a

linguistic variable from a small collection of primary terms. For

example, by using the hedge very in conjunction with not, and and the

primary term tall, we can generate the fuzzy sets very tall, very very

tall, not very tall, tall and not very tall, not tall and not very very

tall, etc.

To define a hedge h as an operator, it is convenient to employ

some of the basic operations defined in Section 2, especially concen

tration, dilation and fuzzification. In what follows, we shall indicate

the manner in which this can be done for the natural hedge very and the

artificial hedges plus and minus. Characterizations of such hedges as

more or less, much, slightly, sort of and essentially may be found in

[15].

Although in its everyday use the hedge very does not have a well-

defined meaning, in essence it acts as an intensifier, generating a

subset of the set on which it operates. A simple operation which has

-23-



this property is that of concentration (see (2.44)). This suggests

that very x, where x is a term, be defined as the square of x, that is

very x = x (3.2)

or, more explicitly

very x= | yx(y)/y (3.3)/
U

For example, if (see Fig. 2)

100

x=old men =J (1 +(^y^VWy (3.4).

then

-100

x2 =very old men =I (1 +(2^)~2)"2/y (3.5)
50

Thus, if the grade of membership of John in the class of old men is

0.8, then his grade of membership in the class of very old men is 0.64.

As another simple example, if

U=l + 2 + 3 + 4 + 5 (3.6)

and

small = 1/1 + 0.8/2 + 0.6/3 + 0.4/4 + 0.2/5 (3.7)

then

very small = 1/1 + 0.64/2 + 0.36/3 + 0.16/4 + 0.04/5 (3.8)
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Viewed as an operator, very can be composed with itself. Thus

very very x - (very x) (3.9)

4
= x

For example, applying (3.9) to (3.7), we obtain (neglecting small terms)

very very small = 1/1 + 0.4/2 + 0.1/3 (3.10)

In some instances, to identify the operand of very we have to use

parentheses or replace a composite term by an atomic one. For example,

it is not grammatical to write

x = very not exact (3.11)

but if not exact is replaced by the atomic term inexact, then

x = very inexact (3.12)

is grammatically correct and we can write

2
x = (-i exact) (3.13)

Note that

not very exact = -i (very exact) (3.14)

= —i (exact )

is not the same as (3.13).

The artificial hedges plus and minus serve the purpose of providing

milder degrees of concentration and dilation than those associated with
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the operations CON and DIL (see (2.44) and (2.45)). Thus, as operators

acting on a fuzzy set labeled x, plus and minus are defined by

plus x = x (3.15)

and

minus x = x (3.16)

In consequence of (3.15) and (3.16), we have the approximate identity

plus plus x = minus very x (3.17)

As an illustration, if the hedge highly is defined as

highly = minus very very (3.18)

then equivalently

highly = plus plus very (3.19)

As was stated earlier, the computation of the meaning of composite

terms of the form hu is a preliminary to the problem of computing the

meaning of values of a linguistic variable. We are now in a position

to turn our attention to this problem.

4. Computation of the Meaning of Values

of a Linguistic Variable

Once we know how to compute the meaning of a composite term of the

form hu, the computation of the meaning of a more complex composite term

which may involve the terms not, or and and in addition to terms of the

-26-



form hu, becomes a relatively simple problem which is quite similar to

that of the computation of the value of a Boolean expression.

As a simple illustration, consider the computation of the meaning

of the composite term

-» x « not very small (4.1)

where the primary term small is defined as

small = 1/1 + 0.8/2 + 0.6/3 + 0.4/4 + 0.2/5 (4.2)

with the universe of discourse being

U-l + 2 + 3 + 4 + 5 (4.3)

By (3.8), the operation with very on small yields

very small = 1/1 + 0.64/2 + 0.36/3 + 0.16/4 + 0.04/5 (4.4)

and by (2.26)

not very small = -j (very small) (4.5)

= 0.36/2 + 0.64/3 + 0.84/4 + 0.96/5

= 0.4/2 + 0.6/3 + 0.8/4 + 1/5

» A8 a slightly more complicated example, consider the composite term

x - not very small and not very very large (4.6)

where large is defined by

-27-



large = 0.2/1 + 0.4/2 + 0.6/3 + 0.8/4 + 1/5 (4.7)

In this case

2
very large = large (4.8)

= 0.04/1 + 0.16/2 + 0.35/3 + 0.64/4 4

+ 1/5

2 2
very very large = (large ) (4-9)

= 0.1/3 + 0.4/4 + 1/5

not very very large = 1/1 + 1/2 + 0.9/3 + 0.6/4 (4.10)

and hence

not very small and not very very large = (4.11)

= (0.4/2 + 0.6/3 + 0.8/4 + 1/5) H (l/i + 1/2 + 0.9/3 + 0.6/4)

= 0.4/2 + 0.6/3 + 0.6/4

An example of a different nature is provided by the values of a

linguistic variable labeled likelihood. In this case, we assume that

the universe of discourse is given by

U = 0 + 0.1 + 0.2 + 0.3 + 0.4 + 0.5 + 0.6 + 0.7 + 0.8
a

+0.9+1

in which the elements of U represent probabilities.

Suppose that we wish to compute the meaning of the value
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»•*•

x = highly unlikely (4.13)

in which highly is defined as (see (3.18))

highly = minus very very (4.14)

and

unlikely = not likely (4.15)

with the meaning of the primary term likely given by

likely = 1/1 + 1/0.9 + 1/0.8 + 0.8/0.7 + 0.6/0.6 (4.16)

+ 0.5/0.5 + 0.3/0.4 + 0.2/0.3

Using (4.15), we obtain

unlikely = 1/0 + 1/0.1 + 1/0.2 + 0.8/0.3 + 0.7/0.4 (4.17)

+ 0.5/0.5 + 0.4/0.6 + 0.2/0.7

and hence

4
very very unlikely = (unlikely) (4.18)

= 1/0 + 1/0.1 + 1/0.2 + 0.4/0.3

+ 0.2/0.4

Finally, by (4.14)

highly unlikely = minus very very unlikely (4.19)

= (1/0 + 1/0.1 + 1/0.2 + 0.4/0.3 + 0.2/0.4)'

= 1/0 + 1/0.1 + 1/0.2 + 0.5/0.3 + 0.3/0.4

0.75
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It should be noted that, in computing the meaning of composite

terms in the above examples, we have made implicit use of the usual

precedence rules governing the evaluation of Boolean expressions. With

the addition of hedges, these precedence rules may be expressed as

Precedence Operation

First: h, not

Second: and

Third: or

As usual, parentheses may be used to change the precedence order and

ambiguities may be resolved by the use of association to the right.

Thus,

plus very minus very tall

should be interpreted as

plus (very (minus (very (tall))))

The technique employed above for the computation of the meaning

of a composite term is a special case of a more general approach which

is described in [4] and [5]. The approach in question can be applied

to the computation of the meaning of values of a linguistic variable

provided the composite terms representing these values can be generated

by a context-free grammar.

As an illustration, consider a linguistic variable x whose values

are exemplified by: small, not small, large, not large, very small,

not very small, small or not very very large, small and (large or not
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small), not very very small and not very very large, etc.

The values in question can be generated by a context-free grammar

G = (V ,V ,S,P) in which the set of terminals, V , comprises the atomic

terms small, large, not, and, or, very, ( , ); the non-terminals are

denoted by S, A, B, C, D, and E; and the production system is given by

S -*• A C -»- D (4.20)

S+SorA C + E

A -> B D -*- very D

A -*- A and B E •+ very E

B -> C D + small

B -*- not C E •* large

C + (S)

Each production in (4.20) gives rise to a relation between the

fuzzy sets labeled by the corresponding terminal and non-terminal sym-

ft

bols. In the case of (4.20), these relations are

S + S or A => SL » SR + Aj^ (4.21)

A -*• A and B =* iL = L H J

B -> not C =* B = -j C_
L R

D ->• very D => DT =D2
Li IS.

2
E + very E => E = E^

D •*• small => DT = small
ij —————

E -»• large => E = large

*

We omit the productions which have no effect on the associated fuzzy
sets.
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in which the subscripts L and R are used to differentiate between the

symbols on the left- and right-hand sides of a production.

To compute the meaning of a composite term x it is necessary to

perform a syntactical analysis of x in terms of the specified grammar

G. Then, knowing the syntax tree of x, one can employ the relations

given in (4.21) to derive a set of equations (in triangular form) which

upon solution yield the meaning of x. For example, in the case of the

composite term

x = not very small and not very very large

the solution of these equations yields

x= (-1 small2) n (-, large4) (4.21)

which agrees with (4.11). Details of this solution may be found in [4]

and [5].

The ability to compute the meaning of values of a linguistic variable

is a prerequisite to the computation of the meaning of fuzzy conditional

statements of the form IF A THEN B, e.g., IF x is not very small THEN y

is very very large. This problem is considered in the following section.

5. Fuzzy Conditional Statements and Compositional

Rule of Inference

*

In classical propositional calculus, the expression IF A THEN B,

where A and B are propositional variables, is written as A =* B, with

ft

A detailed discussion of the significance of implication and its role
in modal logic may be found in [18].
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theimplication=*"regardedasaconnectivewhichisdefinedbythe

truthtable

ABA=*B

TTT

TFF

FTT

FFT

Thus,

A=•B=-iAvB(5.1)

inthesensethatthepropositionalexpressionsA=>B(AimpliesB)and

—iAVB(notAor_B)haveidenticaltruthtables.

Amoregeneralconceptwhichplaysanimportantroleinourapproach

isafuzzyconditionalstatementIFATHENBor,forshort,A=*B,in

whichA(theantecedent)andB(theconsequent)arefuzzysetsrather

thanpropositionalvariables.Typicalexamplesofsuchstatementsare:

IFlargeTHENsmall

IFslipperyTHENdangerous

whichareabbreviationsofthestatements

IFxislargeTHENyissmall

IFtheroadisslipperyTHENdrivingisdangerous

Inessence,statementsofthisformdescribearelationbetween
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two fuzzy variables. This suggests that a fuzzy conditional statement

be defined as a fuzzy relation in the sense of (2.19) rather than as

a connective in the sense of (5.1).

To this end, it is expedient to define first the cartesian product

of two fuzzy sets. Specifically, let A be a fuzzy subset of a universe

of discourse U and let B be a fuzzy subset of a possibly different

universe of discourse B. Then, the cartesian product of A and B is

denoted by A x B and is defined by

AxB£ | yA(u)A yB(v)/(u,v) (5.2)
UxV

where UxV denotes the cartesian product of the non-fuzzy sets U and

V, that is,

U x V = {(u,v)|u S U, v e V} (5.3)

Note that when A and B are non-fuzzy, (5.2) reduces to the conventional

definition of the cartesian product of non-fuzzy sets.

In words, (5.2) means that A x B is a fuzzy set of ordered pairs

(u,v), u *= U, v £ V, with the grade of membership of (u,v) in A x B

given by y»(u) A y„(v). In this sense, A x B is a fuzzy relation from

U to V.

As a very simple example, suppose that

U = 1 + 2 + 3 (5.4)

A = 1/1 + 0.8/2 (5.5)

/
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and

B = 0.6/1 + 0.9/2 + 1/3 (5.6)

Then

A x B = 0.6/(1,1) + 0.9/(1,2) + 1/(1,3) (5.7)

+ 0.6/(2,1) + 0.8/(2,2) + 0.8/(2,3)

The relation defined by (5.7) may be conveniently represented by the

relation matrix shown below

0.6 0.9 1

_0.6 0.8 0.8J
(5.8)

The significance of a fuzzy conditional statement of the form IF A

THEN B is made clearer by regarding it as a special case of the condi

tional expression IF A THEN B ELSE C, where A and (B and C) are fuzzy

subsets of possibly different universes U and V, respectively. In terms

of the cartesian product, the latter statement is defined as follows.

IF A THEN B ELSE C = AxB+(nAxC) (5.9)

in which + stands for the union of the fuzzy relations A x B and

(-i A x C) .

More generally, if A., ..., A are fuzzy subsets of U and B,, ...,
± n 1

B are fuzzy subsets of V, then

IF A- THEN B. ELSE IF A0 THEN B0 ... ELSE IF A THEN B = (5.10)
11 22 nn

A. x B. + A0 x B0 + ... + A x B
112 2 n n
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Note that (5.10) reduces to (5.9) if IF A THEN B ELSE C is interpreted

as IF A THEN B ELSE IF -i A THEN C. It should also be noted that by

repeated application of (5.9) we obtain

IF A THEN (IF B THEN C ELSE D) ELSE E = A x B x C (5.11)

+ Ax~iBxD + -iAxE

If we regard IF A THEN B as IF A THEN B ELSE C with unspecified C,

then depending on the assumption made about C various interpretations

of IF A THEN B will result. In particular, if we assume that C = V,

then IF A THEN B (or A =* B) becomes

A => B = IF A THEN B = A x B + (-\ A x V) (5.12)

On the other hand, if we assume that C = 0 (empty set), then

IF A THEN B = A x B (5.13)

In the sequel, we shall assume that C = V and hence that A =* B is

defined by (5.12). In effect, the assumption that C = V implies that,

in the absence of an indication to the contrary, the consequent of

—i A =*• C can be any fuzzy subset of the universe of discourse.

As a very simple illustration of (5.12), suppose that A and B are

defined by (5.5) and (5.6). Then on substituting (5.8) in (5.12), the

relation matrix for A =*• B is found to be

A =* B =

111

0.8 0.8 0.8

(5.14)
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It should be observed that when A, B and C are non-fuzzy sets, we

have the identity

IF A THEN B ELSE C = (IF A THEN B) H (IF -i A THEN C) (5.15)

which holds only approximately for fuzzy A, B and C. This indicates

that, in relation to (5.15), the definitions of IF A THEN B ELSE C and

IF A THEN B as expressed by (5.9) and (5.12), are not exactly consis

tent for fuzzy A, B and C.

As will be seen in Section 6, fuzzy conditional statements play

a basic role in fuzzy algorithms. More specifically, a typical problem

which is encountered in the course of execution of such algorithms is

the following. We have a fuzzy relation, say R, from U to V which is

defined by a fuzzy conditional statement. Then, we are given a fuzzy

subset of U, say x, and have to determine the fuzzy subset of V, say y,

which is induced in V by x. For example, we may have the following

two statements

(a) x is very small

(b) IF x is small THEN y is large ELSE y is not very large

of which the second defines by (5.9) a fuzzy relation R. The question,

then, is: What will be the value of y if x is very small? The answer

to this question is provided by the following rule of inference which

may be regarded as an extension of the familiar rule of modus ponens.

Compositional rule of inference. If R is a fuzzy relation from U to V
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and x is a fuzzy subset of U, then the fuzzy subset y of V which is

induced by x is given by the composition (see (2.22)) of R and x, that

is,

y = x o R (5.16)

in which x plays the role of a unary relation.

As a simple illustration of (5.16), suppose that R and x are

defined by the relation matrices shown below. Then y is given by the

max-min product of x and R

have

[0.2 1 0.3] o

R

0.8 0.9 0.2

0.6 1 0.4

0.5 0.8 1

[0.6 1 0.4] (5.17)

As for the question raised above, suppose that, as in (4.3), we

U = l + 2 + 3 + 4 + 5 (5.18)

with small and large defined by (4.2) and (4.7), respectively. Then,

substituting small for A, large for B and not very large for C in (5.9),

we obtain the relation matrix R for the fuzzy conditional statement IF

small THEN large ELSE not very large. The result of composition of R

with x = very small is shown in (5.19)
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[1 0.64 0.36 0.16 0.04]o

y =» Ao(A => B) = B

0.2 0.4 0.6 0.8 1 = [0.36 0.4 0.64 0.8 1]

0.2 0.4 0.6 0.8 0.8

0.4 0.4 0.6 0.6 0.6

0.6 0.6 0.6 0.4 0.4

0.8 0.8 0.64 0.36 0.2

There are several aspects of (5.16) that are in need of comment.

First, it should be noted that when R « A =* B and x = A, we obtain

(5.19)

(5.20)

as an exact identity when A, B and C are non-fuzzy, and an approximate

one when A, B and C are fuzzy. It is in this sense that the composi

tional inference rule (5.16) may be viewed as an approximate extension

*

of modus ponens.

Second, (5.16) is analogous to the expression for the marginal

probability in terms of the conditional probability function, that is,

i-Li 'ij
(5.21)

where q± =Prob{X =x^, r =Prob{Y »y }, p =Prob{Y =y |x =x^,

and X and Y are random variables with values x.., x«, ... and y_, y«» .

respectively. However, this analogy does not imply that (5.16) is a

relation between, probabilities.

Note that in consequence of the way in which A "* B is defined in (5.12),
the more different x is from A, the less sharply defined is y.
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Third, it should be noted that because of the use of the max-min

matrix product in (5.16), the relation between x and y is not continu

ous. Thus, in general, a small change in x would produce no change in

y until a certain threshold is exceeded. This would not be the case if

the composition of x with R were defined as max-product composition.

Fourth, in the computation of x o R one may take advantage of the

distributivity of composition over the union of fuzzy sets. Thus, if

x = u or_ v (5.22)

where u and v are labels of fuzzy sets, then

(u or v) o R = u o R or v o R (5.23)

For example, if x is small or medium and R = A =* B reads IF x is not

small and not large THEN y is very small, then we can write

(small or medium) ° (not small and not large =* very small) (5.24)

= small o (not small and not large =* very small) or medium o

(not small and not large =* very small)

As a final comment, it is important to realize that in practical

applications of fuzzy conditional statements to the description of

complex or ill-defined relations, the computations involved in (5.9),

(5.10) and (5.16) would, in general, be performed in a highly approxi

mate fashion. Furthermore, an additional source of imprecision would

be the result of representing a fuzzy set as a value of a linguistic

variable. For example, suppose that a relation between fuzzy variables
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x and y is described by the fuzzy conditional statement

IF small THEN large ELSE IF medium THEN medium ELSE IF large

THEN very small

Typically, we would assign different linguistic values to x and

compute the corresponding values of y by the use of (5.16). Then on

approximating to the computed values of y by linguistic labels, we

would arrive at a table having the form shown below

Given

small

medium

large

B

large

medium

very small

Inferred

x

not small

very small

very very small

not very large

not very large

very very large

very very large

small or medium

Such a table constitutes an approximate linguistic characterization of

the relation between x and y which is inferred from the given fuzzy

conditional statement.

As was stated earlier, fuzzy conditional statements play a basic

role in the description and execution of fuzzy slgorithms. We turn

to this subject in the following section.

6. Fuzzy Algorithms

Roughly speaking, a fuzzy algorithm is an ordered set of fuzzy

instructions which upon execution yield an approximate solution to a
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specified problem. In one form or another, fuzzy algorithms pervade

much of what we do. Thus, we employ fuzzy algorithms both consciously

and subconsciously when we walk, drive a car, search for an object,

tie a knot, park a car, cook a meal, find a number in a telephone

directory, etc. Furthermore, there are many instances of uses of what

in effect are fuzzy algorithms in a wide variety of fields, especially

in programming, operations research, psychology, management science

and medical diagnosis.

The notion of a fuzzy set and, in particular, the concept of a

fuzzy conditional statement provide a basis for using fuzzy algorithms

in a much more systematic and hence much more effective way than was

possible in the past. Thus, fuzzy algorithms can become a highly

important tool for an approximate analysis of systems and decision pro

cesses which are much too complex for the application of conventional

mathematical techniques.

A formal characterization of the concept of a fuzzy algorithm can

be given in terms of the notion of a fuzzy Turing machine or a fuzzy

Markoff algorithm [6], [7], [8]. In this section, the main aim of our

discussion is to relate the concept of a fuzzy algorithm to the notions

introduced in the preceding sections and illustrate by simple examples

some of the uses of such algorithms.

The instructions in a fuzzy algorithm fall into three classes:

(1) Assignment statements, e.g.,

x = 5 (i.e., x is approximately equal to 5)

x = small
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x is large

x is not large and not very small

(2) Fuzzy conditional statements, e.g.,

IF x is small THEN y is large ELSE y is not large

IF x is positive THEN decrease y slightly

IF x is much greater than 5 THEN stop

IF x is very small THEN go to 7.

Note that in such statements either the antecedent or the consequent

or both may be labels of fuzzy sets.

(3) Unconditional action statements, e.g.,

Multiply x by y

Decrease x slightly

Delete the first few occurrences of 1

Go to 7

Print x

Stop

Note that some of the above instructions are fuzzy and some are not.

The combination of an assignment statement and a fuzzy conditional

statement is executed in accordance with the compositional rule (5.16).

For example, if at some point in the execution of a fuzzy algorithm

we encounter the instructions
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(a) x = very small

(b) IF x is small THEN y is large ELSE y is not very large

where small and large are defined by (4.2) and (4.7), then the result

of the execution of (a) and (b) will be the value of y given by (5.19),

that is

y = 0.36/1 + 0.4/2 + 0.64/3 + 0.8/4 + 1/5 (6.1)

An unconditional but fuzzy action statement is executed similarly.

For example, the instruction

Multiply x by itself a few times (6.2)

with few defined as

few = 1/1 + 0.8/2 + 0.6/3 + 0.4/4 (6.3)

would yield upon execution the fuzzy set

y = 1/x + 0.8/x2 + 0.6/x3 + 0.4/x4 (6.4)

It is important to observe that, in both (6.1) and (6.4), the

result of execution is a fuzzy set rather than a single number. How

ever, when a human subject is presented with a fuzzy instruction such

as "Take several steps," with several defined by (see (2.10))

several = 0.5/3 + 0.8/4 + 1/5 + 1/6 + 0.8/7 + 0.5/8 (6.5)

the result of execution must be a single number between 3 and 8. On
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what basis will such a number be chosen?

As pointed out in [6], it is reasonable to assume that the result

of execution will be that element of the fuzzy set which has the highest

grade of membership in it. If such an element is not unique, as is

true of (6.5), then a random or arbitrary choice can be made among the

elements having the highest grade of membership. Alternatively, an

external criterion can be introduced which linearly orders those ele

ments of the fuzzy set which have the highest membership, and thus

generates a unique greatest element. For example, in the case of (6.5),

if the external criterion is to minimize the number of steps that have

to be taken, then the subject will pick 5 from the elements with the

highest grade of membership.

An analogous question arises in situations in which a human sub

ject has to give a "yes" or "no" answer to a fuzzy question. For example,

suppose that a subject is presented with the instruction

IF x is small THEN stop ELSE go to 7 (6.6)

in which small is defined by (4.2). Now assume that x = 3, which has

the grade of membership of 0.6 in small. Should the subject execute

"stop" or "go to 7"?

We shall assume that in situations of this kind the subject will

pick that alternative which is more true than untrue, e.g., x is

small over x is not small, since in our example the degree of truth of

the statement "3 is small" is 0.6, which is greater than that of the

statement "3 is not small". If both alternatives have more or less
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equal truth values, the choice can be made arbitrarily. For convenience,

we shall refer to this rule of deciding between two alternatives as the

rule of the preponderant alternative.

It is very important to understand that the questions discussed

above arise only in those situations in which the result of execution

of a fuzzy instruction is required to be a single element (e.g., a

number) rather than a fuzzy set. Thus, if we allowed the result of

execution of (6.6) to be fuzzy, then for x = 3 we would obtain the

fuzzy set

0.6/stop + 0.4/go to 7 (6.7)

which implies that the execution is carried out in parallel. The

assumption of parallelism is implicit in the compositional rule of

inference and is basic to the understanding of fuzzy algorithms and

their execution by humans and machines.

In what follows, x*e shall present several examples of fuzzy algo

rithms in the light of the concepts discussed in the preceding sections.

It should be stressed that these examples are intended primarily to

illustrate the basic aspects of fuzzy algorithms rather than demonstrate

their effectiveness in the solution of practical problems.

It is convenient to classify fuzzy algorithms into several basic

categories, each corresponding to a particular type of application.

The categories in question are: Definitional algorithms, generational

algorithms, relational and behavioral algorithms, and decisional
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ft

algorithms. We begin with an example of a definitional algorithm.

Fuzzy definitional algorithms

One of the basic areas of application for fuzzy algorithms lies in

the definition of complex, ill-defined or fuzzy concepts in terms of

simpler or less fuzzy concepts. Examples of such fuzzy concepts are:

sparseness of matrices; hand-written characters; measures of complexity;

measures of proximity or resemblance; degree of clusteriness; criteria

of performance; soft constraints; rules of various kinds, e.g., zoning

regulations; legal criteria, e.g., criteria for insanity, obscenity,

etc.; fuzzy diseases such as arthritis, arteriosclerosis, schizophrenia.

As a very simple example of a fuzzy definitional algorithm, we

shall consider the fuzzy concept oval. It should be emphasized again

that the oversimplified definition given below is intended only for

illustrative purposes and has no pretense at being an accurate definition

of the concept oval.

The instructions comprising the algorithm OVAL are listed below.

The symbol T in these instructions stands for the object under test.

The term CALL CONVEX represent a call on a subalgorithm labeled CONVEX

which is a definitional algorithm for testing whether or not T is

convex. An instruction of the form IF A THEN B should be interpreted

as IF A THEN B ELSE go to next instruction.

ft

It should be noted that an algorithm of a particular type can include
algorithms of other types as subalgorithms. For example, a definitional
algorithm may contain relational and decisional subalgorithms.
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Algorithm OVAL

1. IF T is not closed THEN T is not oval; stop.

2. IF T is self-intersecting THEN T is not oval; stop.

3. IF T is not CALL CONVEX THEN T is not oval; stop.

4. IF T does not have two more or less orthogonal axes of

symmetry THEN T is not oval; stop.

5. IF the major axis of T is not much longer than the minor

axis THEN T is not oval; stop.

6. T is oval; stop.

Subalgorithm CONVEX

Basically, this subalgorithm involves a check on whether the curva

ture of T at each point maintains the same sign as one moves along T in

some initially chosen direction.

1. x = a (some initial point on T).

2. Choose a direction of movement along T

3. t = direction of tangent to T at x

4. x' = x + 1 (move from x to a neighboring point)

5. t1 = direction of tangent to T at x*

6. a = angle between t1 and t

7. x = x1

8. t = direction of tangent to T at x

9. x1 = x + 1

10. t' = direction of tangent to T at x1

11. 3 = angle between t' and t

12. If 3 does not have the same sign as a THEN T is not convex; stop
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13. IF x1 = a THEN T is convex; stop

14. Go to 7

Comment. It should be noted that the first three instructions in OVAL

are non-fuzzy. As for instructions 4 and 5, they involve definitions

** of concepts such as "more or less orthogonal," and "much longer," which,

though fuzzy, are less complex and better understood than the concept

of oval. This exemplifies the main function of a fuzzy definitional

algorithm, namely, to reduce a new or complex fuzzy concept to simpler

or better understood fuzzy concepts.

In a more elaborate version of algorithm OVAL, the answers to 4

and 5 could be the degrees to which the conditions in these instructions

are satisfied. The final result of the algorithm, then, would be the

grade of membership of T in the fuzzy set of oval objects.

Fuzzy generational algorithms

As its designation implies, a fuzzy generational algorithm serves

to generate rather than define a fuzzy set. Possible applications of

generational algorithms include: generation of handwritten characters

and patterns of various kinds; cooking recipes; generation of music;

generation of sentences in a natural language; generation of speech.

As a simple illustration of the notion of a generational algorithm,

we shall consider an algorithm for generating the letter P, with the

height of the letter, h, and the base of P, b, constituting the para-

meters of the algorithm. For simplicity, P will be generated as a dotted

pattern, with eight dots lying on the vertical line.
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Algorithm P(h,b)

1. i = 1

2. X(i) = b (first dot at base)

3. X(i+1) = X(i) + -r (put dot approximately -r- units of distance

above X(i))

4. i = i + 1

5. IF i = 7 THEN make right turn and go to 7

6. Go to 3

7. Move by -r units; put a dot
D

8. Turn by 45°; move by -r units; put a dot

9. Turn by 45°; move by — units; put a dot
•*— 6

i_

10. Turn by 45°; move by -r units; put a dot

11. Turn by 45°; move by -r units; put a dot

12. Move by -r units; put a dot; stop

The algorithm as stated above is of open-loop type in the sense

that it does not incorporate any feedback. To make the algorithm less

sensitive to errors in execution, we could introduce fuzzy feedback by

conditioning the termination of the algorithm on an approximate satis

faction of a specified test. For example, if the last point in step

11 does not fall on the vertical part of P, we could return to step 8

and either reduce or increase the angle of turn in steps 8-11 to

correct for the terminal error. The flowchart of a cooking recipe for

chocolate fudge (Fig. 3), which is reproduced from Ledley's manual on

Fortran IV (Ref. [19]), is a good example of a fuzzy generational algo

rithm with feedback.
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Fuzzy relational and behavioral algorithms

A fuzzy relational algorithm serves to describe a relation or

relations between fuzzy variables. A relational algorithm which is

used for the specific purpose of approximate description of the

behavior of a system will be referred to as a fuzzy behavioral algo

rithm.

A simple example of a relational algorithm labeled R which involves

three parameters x, y and z is given below. This algorithm defines a

fuzzy ternary relation R in the universe of discourse

U = l + 2 + 3 + 4 + 5

with small and large defined by (4.2) and (4.7).

Algorithm R(x,y,z)

1. If x is small and y is large THEN z is very small ELSE

z is not small.

2. IF x is large THEN (IF y is small THEN z is very large

ELSE z is small) ELSE z is very very small.

If needed, the meaning of these conditional statements can be

computed by using (5.9) and (5.11). The relation R, then, will be

the intersection of the relations defined by instructions 1 and 2.

Another simple example of a relational fuzzy algorithm F(x,y)

which illustrates a different aspect of such algorithms is the following.

Algorithm F(x,y)

1. IF x is small and x is increased slightly THEN y will increase

slightly
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2. IF x is small and x is increased substantially THEN y will

increase substantially

3. IF x is large and x is increased slightly THEN y will increase

moderately

4. IF x is large and x is increased substantially THEN y will

increase very substantially

As in the case of the previous example, the meaning of the fuzzy

conditional statements in this algorithm can be computed by the use of

the methods discussed in Sections 4 and 5 if one is given the defini

tions of the primary terms large and small as well as the hedges slightly,

substantially and moderately.

As a simple example of a behavioral algorithm, suppose that we have

ft

a system S with two non-fuzzy states labeled q1 and q2» two fuzzy input

values labeled low and high, and two fuzzy output values labeled large

and small. The universe of discourse for the input and output values

is assumed to be the real line. We assume further that the behavior of

S can be characterized in an approximate fashion by the algorithm given

below. However, to represent the relations between the inputs, states

and outputs, we use the conventional state transition tables instead of

conditional statements.

Algorithm BEHAVIOR

u = input at time t; y = output at time t; x = state at time t.
t t • t

ft
A discussion of fuzzy states and systems can be found in [3]
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xt+l yt

ut \ ql q2 ql q2

low

high

q2

ql

ql

ql

large

small

small

large

(6.8)

On the surface, this table appears to define a conventional non-

fuzzy finite-state system. What is important to recognize, however,

is that in the case of the system under consideration the inputs and

outputs are fuzzy subsets of the real line. Thus, we could pose the

question: What would be the output of S if it is in state q and the

applied input is very low? In the case of S, this question can be

answered by an application of the compositional inference rule (5.16).

On the other hand, the same question would not be a meaningful one if

S is assumed to be a non-fuzzy finite-state system characterized by

Table (6.8).

Behavioral fuzzy algorithms can also be used to describe the more

complex forms of behavior resulting from the presence of random elements

in a system. For example, the presence of random elements in S might

result in the following fuzzy-probabilistic characterization of its

behavior.

\»*
x1:+l yt

"K ql q2 qi q2
low q^ likely q- likely large

likely

small

likely2

high
2

q. likely
2

q. unlikely small

likely2
large

2
unlikely
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In this table, the term likely and its modifications by very and

not serve to provide an approximate characterization of probabilities.

For example, if the input is low and the present state is q , the next

state is likely to be q«. Similarly, if the input is high and the

present state is q2 then the output is very unlikely to be large. If

the meaning of likely is defined by (see (4.16))

likely = 1/1 + 1/0.9 + 1/0.8 + 0.8/0.7 + 0.6/0.6 + 0.5/0.5

+ 0.3/0.4 + 0.2/0.3

then

unlikely = 0.2/0.7 + 0.4/0.6 + 0.5/0.5 + 0.7/0.4 + 0.8/0.3

+ 1/0.2 + 1/0.1 + 1/0

(6.10)

(6.11)

very likely s 1/1 + 1/0.9 + 1/0.8 + 0.6/0.7 + 0.4/0.6 + 0.3/0.5

(6.12)
+ 0.1/0.4

and

very unlikely s 0.2/0.6 + 0.3/0.5 + 0.5/0.4 + 0.6/0.3 + 1/0.2

(6.13)
+ 1/0.1 + 1/0

Fuzzy decisional algorithms

A fuzzy decisional algorithm is a fuzzy algorithm which serves to

provide an approximate description of a strategy or decision rule.

Commonplace examples of such algorithms - which we use for the most

part on a subconscious level - are the algorithms for parking a car,

crossing an intersection, transferring an object, bying a house, etc.
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To illustrate the notion of a fuzzy decisional algorithm, we shall

consider two simple examples drawn from our everyday experiences.

Example. Crossing a traffic intersection.

It is convenient to break-down the algorithm in question into

4* several subalgorithms each of which applies to a particular type of

intersection. For our purposes, it will be sufficient to describe

only one of these subalgorithms, namely, the subalgorithm SIGN, which

is used when the intersection has a stop sign. As in the case of other

examples in this section, we shall make a number of simplifying assump

tions in order to shorten the description of the algorithm.

Algorithm INTERSECTION

1. IF signal lights THEN CALL SIGNAL ELSE IF stop sign THEN CALL

SIGN ELSE IF blinking light THEN CALL BLINKING ELSE CALL

UNCONTROLLED

Subalgorithm SIGN

1. IF no stop sign on your side THEN IF no cars in the intersection

THEN cross at normal speed ELSE wait for cars to leave the

intersection and then cross

2. IF not close to intersection THEN continue approaching at

normal speed for a few seconds; go to 2.

3. Slow down

>

4. IF in a great hurry and no police cars in sight and no cars in

the intersection or its vicinity THEN cross the intersection

at slow speed
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5. IF very close to intersection THEN stop; go to 7

6. Continue approaching at very slow speed; go to 5

7. IF no cars approaching or in the intersection THEN cross

8. Wait a few seconds; go to 7.

It hardly needs saying that a realistic version of this algorithm

would be considerably more complex. The important point of the example

is that such an algorithm could be constructed along the same lines as

the highly simplified version described above. Furthermore, it shows

that a fuzzy algorithm could serve as an effective means of communicating

know-how and experience.

As a final example, we consider a decisional algorithm for trans

ferring a blind-folded subject H from an initial position start to a

final position goal under the assumption that there may be an obstacle

*

lying between start and goal (see Fig. 4).

The algorithm, labeled OBSTACLE, is assumed to be used by a human

controller C who can observe the way in which H executes his instruc

tions. This fuzzy feedback plays an essential role in making it possible

for C to direct H to goal in spite of the fuzziness of instructions as

well as the errors in their execution by H.

The algorithm OBSTACLE consists of three subalgorithms: ALIGN, HUG

and STRAIGHT. The function of STRAIGHT is to transfer H from start to

an intermediate goal, I-goal.; and then, from I-goal,, to goal. (See

ft

Highly sophisticated non-fuzzy algorithms of this type for use by
robots are incorporated in Shakey, the robot built by the Artificial
Intelligence Group at Stanford Research Institute. A description of
this robot is given in [20].
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Fig. 4). The function of ALIGN is to orient H in a desired direction;

and the function of HUG is to guide H along the boundary of the obstacle

until the goal is no longer obstructed.

Instead of describing these subalgorithms in terms of fuzzy condi

tional statements, as we have done in previous examples, it is instruc

tive to convey the same information by flowcharts, as shown in Figs. 5

6, and 7. In the flowchart of ALIGN, £ denotes the error in alignment

and we assume for simplicity that ^ has a constant sign. The flow

charts of HUG nad STRAIGHT are self-explanatory. Expressed in terms of

fuzzy conditional statements, the flowchart of STRAIGHT, for example,

translates into the following instructions:

Subalgorithm STRAIGHT

1. IF not close THEN take a step; go to 1.

2. IF not very close THEN take a small step; go to 2.

3. IF not very very close THEN take a very small step; go to 3.

4. Stop

Concluding remarks

In this and the preceding sections of this paper, we have attempted

to develop a conceptual framework for dealing with systems which are

too complex or too ill-defined to admit of precise quantitative analy

sis. What we have done should be viewed, of course, as merely a first

tentative step in this direction. Clearly, there are many basic as

well as detailed aspects of our approach which we have treated incom

pletely, if at all. Among these are questions relating to the role of
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fuzzy feedback in the execution of fuzzy algorithms; the execution of

fuzzy algorithms by humans; the conjunction of fuzzy instructions; the

assessment of the goodness of fuzzy algorithms; the implications of

the compositional rule of inference and the rule of the preponderant *4

alternative; and the interplay between fuzziness and probability in the

behavior of humanistic systems.

Nevertheless, even at its present stage of development, the method

described in this paper can be applied rather effectively to the formu

lation and approximate solution of a wide variety of practical problems,

particularly in such fields as economics, management science, psychology,

linguistics, taxonomy, artificial intelligence, information retrieval,

medicine and biology. This is particularly true of those problem areas

in these fields in which fuzzy algorithms can be drawn upon to provide

a means of description of ill-defined concepts, relations and decision

rules.

<e^0
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1

Add 2 cups gronulotod sugar to saucepan
Add 1 cupbottled milk to soucopan
Add Ktoaspeen salt to soucopan
Add 2 os unswootonod chocoloto to soucopan
Add 2 tablespoons whito corn syrup to soucopan
Put soucopan aver low hoot

Loop for
dissolving <
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I
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1 E

i

Yos
__i

Loop for
cooking

Cook' gontly Removal from heat

Drop a littlo of the mixture
into cold water

Drop in 2 tbsp butter
•©

Stir a little
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©
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loop
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r

No
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1

3 £
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Add Yi tsp vanilla

Beat with

spoon
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Yes

1^
No
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Yes

1
*j Wash dishes

I
Exit

Fig. 3. Recipe for chocolate fudge (from Ledley [19])
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Algorithm OBSTACLE

Fig. 4. The problem of transferring a blind
folded subject from start to goal.
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Fig. 5. Flowchart for subalgorithm ALIGN.
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Fig. 7. Flowchart for subalgorithm STRAIGHT,


	Copyright notice 1972
	ERL-342

