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ABSTRACT

A hypergraph is a combinatorial structure with nodes and arcs,
similar to an ordinary "linear' graph, except that arcs are incident
to arbitrary subsets of nodes, instead of pairs of nodes. Cutsets of
hypergraphs are defined in a natural way, and it is shown that optimal
cutsets can be found by means of a network flow computation. The optimal
cutset computation can be used to generate a family of subsets of nodes,
which we call LS sets. Intuitively, an LS set is a subset of nodes
that are more strongly connected to each other than to nodes in the -
complementary set. LS sets are useful for constructing optimal or
near-optimal partitions of the nodes. A polynomial-bounded partitioning

algorithm is presented, and various applications are suggested.

Research sponsored by the Naval Electronic Systems Command, Contract
NO0039~-71-C-0255.



1. Introduction

A hypergraph [1] is a combinatorial structure with nodes and arcs,
similar to an ordinary "linear" graph, except that arcs are incident to
arbitrary subsets of nodes instead of pairs of nodes. Thus a hypergraph
with n nodes may have as many as 2" distinct arcs.

Many of the definitions and concepts of graph theory apply to hyper-
graphs without any particular difficulty. For example, let G = (N,A)
be a hypergraph, and S C N be a subset of nodes. Let A(S) denote the
set of all arcs that are incident to one or more nodes in S. Then S
is said to be a component of G if A(S) N A(N-S) is empty and S is maxi-
mal with respect to this property. Let s, t b(e distinct nodes of G.
Then C C A 1is said to be an (s,t) cutset if there exists a subset S C N,
where s € S, t € N~-S, such that C = A(S) N A(N-S).

Suppose w: A > R+ is a weighting of the arcs of G with positive
real numbers. Fér a given subset C C A, let w(C) denote the sum of
the weights of the arcs in C. For a given subset S C N, let v_:'(s) =
w(A(S) N A(N-S)). I.e. w(S) is the sum of the weights of the arcs
disconnecting or cutting S from N-S.

The first problem we consider is that of finding, for given s and t,
a minimum-weight (s,t) cutset. This can be formulated and solved as a
conventional network flow problem.

The second problem we consider is that of identifying all the "LS
sets" of a weighted hypergraph. A subset S C N is said to be an LS set
(after Luccio and Sami [5], who called them "minimal groups") if, for

all proper subsets T C S, it is the case that w(T) > w(S). Intuitively,



an LS set is a subset of nodes that are more strongly connected to each
other than to nodes in the complementary set. We develop a computational
procedure for identifying all the LS sets of a hypergraph, using the
minimum-weight cutset algorithm as a éubroutine. This procedure is
efficient, in the sense that the number of computational steps is bounded
by a polynomial function of the number of nodes and arcs.

We next consider the problem of optimally partitioning the nodes
of a hypergraph. Various optimality criteria are formulated and it is
shown that, for certain of these criteria, there exist optimal or near-
optimal partitions in which each block is an LS set. A simple and ef-
ficient algorithm is presented for obtaining optimal partitions into
LS sets,

Hypergraphs are useful models for a‘variety of structures. Some of
these are indicated, and possible applications of the partitioning algo-

rithm are discussed.

2. Minimum-Weight Cutsets

Let G = (N,A) be a given hypergraph, w: A - R* be a weighting of
its arcs with positive real numbers, and let s, t be distinct nodes. A
minimum-weight (s,t) cutset in G is identified with a minimum-capacity
cutset in a flow network G' constructed as follows.

The flow network G' has one node i for each node i of G and two

nodes, j' and j", for each arc a, of G. There is an arc from j' to j"

k|
in G' and its capacity is set equal to the weight of arec aj in G. If

arc aj is incident to node i in G, G' has arcs with infinite capacity

from 1 to j' and from j" to i1 in G'. These relationships are illus-



trated in Figure 1. Numbers on arcs in G' indicate capacities.

Theorem 2.1

There 1is a one—oné correspondence between minimum-weight (s,t)
cutsets of the hypergraph G and minimum-capacity (s,t) cutsets of the
flow network G'. Arc j of an (s,t) cutset of G is identified with arc

(3's i) of the corresponding (s,t) cutset of G'.

Proof: Follows immediately from the construction of G'.

A minimum-capacity (s,t) cutset of G' can be found by a standard
network flow computation. It is well-known that such a cutset is the
dual of a maximum value (s,t) flow [3].

We can establish an upper bound on the length of the maximum flow
computation, as follows. Suppose the hypergraph G has n nodes and m
arcs. The structure of G' is such that each augmenting path can be
assumed to contain no more than 3(n-1) arcs. Suppose for each augmen-
tation we choose the shortest available augmenting path. Then it fol-
lows from the reasoning of Edmonds and Karp [2] that no more than O(mn)
augmentations are required.

Each augmentation requires the execution of a "labelling" routine.

" as many as m nodes

When the label of one of the n nodes i is "scanned,
j' may have to be labelled as a result. The scanning of any one of the
m nodes j' requires fixed effort. The scanning of any one of the m
nodes j" may require the labelling of as many as n nodes i. We conclude
that the labelling routine requires O(mn) computational steps.

Since there are O(mn) augmentations, and each augmentation requires

O(mn) steps, it follows that the overall computation is O(mznz) in length.



We note that the flow computation does not actually have to be
carried out over the network G'. I.e. a specialized procedure could
be designed to operate 'directly" on the hypergraph G. The design of
such an algorithm is, however, a relatively straightforward matter,
and we do not deal with it here.

Finally we note that fhe cutset computation of the previous section
can be adapted to find a minimum-weight cutset separating X and Y, where
X and Y are arbitrary disjoint subsets of nodes. We construct the flow
network G' as before, except with a dummy source node s and dummy sink
node t. Source s is connected to each node in X by an arc of infinite
capacity and each node in Y is connected to t by an arc of infinite
capacity. Then a minimum-capacity (s,t) cutset in G' corresponds to a

minimum-weight cutset separating X and Y in G.

3. LS Sets
We recall the definition of an LS set from Section 1. A subset
S C N is said to be an LS set if, for all proper subsets T C S, it is
the case that w(T) > w(S). (By "properh, we mean that T # S and T # ¢.)
Note that all singleton sets of nodes are LS sets. Moreover, if G
is connected then N is itself an LS set. Thus every hypergraph has at

least n, and possibly n+l, trivial LS sets.

Theorem 3.1
Let S be an arbitrary subset of nodes and T be a proper subset of
S for which w(T) is minimal. Then any LS set properly contained in S

is contained either in T or in S-T.



Proof:
Suppose there were to exist an LS set UC S, where U g.*_ T and
U & S-T. The sets S, T, U induce a partition of the nodes of the

hypergraph into five subsets as follows:

N, = N-S,

N, =8 = (TUU),
N, = T-U,

N, =TNU,

N, = U-T.

In turn, the sets Nl’ N2, cee, N5 induce a partition of the arcs into

31 subsets, as follows:

-
]

A'(Nl) N A'(NZ) N A'(N3) N A'(N4) n A(NS)

hg
1]

ATN) NAT(N) N AT(N) N AN NAT(NY,

A, = A(Nl) N A(N,) N A(N3) N A(Na) N A(NS),

where A'(Ni) denotes the complement of A(Ni), i.e. A'(N,) = ArA(Ni).

)
Because T is such that'G(T) is minimal,

(3.1) w(T-U) > w(T).

Because U is an LS set and U-T is a proper subset of T (by assumption

UET, UES-T),



(3.2) w(U-T) > w(U).

It is possible to represent ;(T—U), w(T), w(U-T), w(U) in terms of

w(Ai), i=1, 2, *»+, 31, For example,

w(T-U) = W(A) + W(Ag) +W(A) + W(A,)

* Ay T WA F Gy

+ W(AZO) + w(A21) + w(A22)

+ w(A23) + w(A28) + w(A29)

+ w(A3o) + w(A31).

It can then be shown that (3.1) implies that W(A6) 3_W(A3), and that
(3.2) implies that W(A3) > W(AG)' This is a contradiction, from which

it follows that the LS set U cannot exist.

Corollary 3.2 (Luccio-Sami [5]).

LS sets do not partially overlap. I.e. if S1 and 82 are LS sets,

then either S, N 82 = ¢ or S

C
1 C§,o0rsS

2 2 &8

1 1

Proof: Let Sl’ S2 be LS sets and apply the theorem to S = S1 v Sz.

Note: Luccio and Sami proved this corollary as their main theorem,

in the specialized form in which the arcs have equal weights.

Corollary 3.3

In a hypergraph with n nodes, there are at most 2n-l1 LS sets.

Proof: Let T be a proper subset of N for which GXT) is minimal, and



suppose |T| = p. Then, by inductive hypothesis, there are at most 2p-1
LS sets in T and 2(n-p)~1 LS sets in N-T. These exhaust the LS sets,
except for N itself. Hence there are at most (2p-1) + (2(n-p)-1) + 1 =

2n-1 LS sets in all.

4, 1Identification of LS Sets

In their paper [5] Luccio and Sami proposed a relatively inefficient
(non-polynomial—bounded) procedure for identifying LS sets. Theorem 3.1
suggests an alternative approach to the problem of identifying all the
LS sets of a given hypergraph. That is, start with S = N and find a
proper subset T C S for which WKT) is minimal. Then repeat, with T and
N-T in the role of S. Continue to separate subsets into smaller and
smaller subsets until only singleton subsets remain. The collection of
all subsets thus generated contains all the LS sets. Those sets S in
the cﬁllection which are not LS sets (but are unions of LS sets) are
easily identified, since S is an LS set if and only if w(T) > w(8).

Now let us consider how to identify a proper 'subset T C S for
which w(T) is ﬁinimal. Let x and y be nodes in S. Let X = {#} and
Y = N~S U {y}. Then a minimum-weight cutset separating X and Y deter-
mines a proper subset T C S for which W(T) is minimal, subject to the
constraint that x € T and y € S-T.

Without loss of generality, let S = {1,2,+-:,p}. Suppose we compute
minimum-weight cutsets separating X and ¥, for x =1 and y = 2, 3, ***, P
and also for y =1 and x = 2, 3, ***, p. Then we shall have exhausted
all possibilities for proper subsets T C S. I.e. the minimum of the

minimum-weight cutsets determined for the 2(p-1) X, Y pairs determines



T for which W(T) is minimal.

Thus the computation of T requires 0(n) network flow computations.
There are 0(n) computations of T to be performed, in order to identify
all LS sets. Each network flow computation is 0(m2n2) in length. Thus
the overall computation of the LS sets is 0(m2n4) in length.

As an example, of the LS-set computation, consider the hypergraph

with 5 nodes and © arcs defined by the incidence matrix below:

Let w(ai)=l, i=1,2,...,5, and w(a6)=4. The result of the computation
is indicated in Figure 2. A set S is identified with each node of the
binary tree. One branch below each node is directed to T and the other
to S-T. The values of w(T) and w(S-T) are indicated in parentheses.

All sets generated are LS sets, except {1,2}.

5. Optimal Partitions

Consider the following optimization problem. Given an arc-weighted
hypergraph G and an integer k, find an optimal partition of the nodes of

G into k blocks S ***, S, . The objective of the optimization may

1° Sp» 7ts Sy

be to minimize



, k
(5.1) ‘ Z;(Si)
i=1

or to minimize

(5.2) max {a(sin
i

or to lexicographically minimize the sequence

(5.3) (W(81)5 W(S,), +==y W(S)).

We refer to these optimization criteria as min-sum, min-max and min-

lexicographic respectively.

We are unable to propose a good algorithm for any one of these
optimization criteria. However, we can solve the following type of
problem. Find a partition of the nodes of G into at least k blocks
Sl’ 32, -
(Thus, the value of the objective function depends upon the k blocks

° Sp’ (p > k), such that (5.1), (5.2) or (5.3) is minimized.

Si for which 5{81) is smallest.) We refer to a solution to this type

of problem as a weakly optimal partition.

Theorem 4.1
For any G and any k, there exists a weakly optimal partition in

which each block is an LS set.

Proof:
Suppose Sl’ 82, see, Sp is a weakly optimal partition, and Si is

not an LS set. Split Si into two blocks Si and Si - Si where Si is an

-10~



LS set and G{Si) 5_§(si). Continue to split blocks in this way until
a weakly optimal solution is obtained in which each block is an LS set.
The following simple recursive procedure solves the weak optimi-

zation problem for the min-sum criterion (5.1). Let

W(s,k) the minimum weight of a partition of S into at

least k blocks.

Clearly, if S is a singleton set,

0 ,ifk=0
(5.4) W(S,k) =< w(S), if k = 1
+ o, if k> 1

If S is not a singleton set, and T is a proper subset of S for which

w(T) is minimal (as determined by the LS-set computation),

o, if k

0

(5.5) W(S,k) = min {w(S), w(T)}, if k = 1

min {W(T,k'") + W(S-T,k-k')}, if k > 1.
<k'<k
For the min-max criterion (5.2), equation (5.5) becomés

0, ifk=20

(5.6) W(S,k) = min {w(S), w(T)},if k = 1

min max {W(T,k"), W(S-T,k-k")}, if k > 1
0 <k'<k

The recursion for the lexicographic minimum criterion (5.3) is formally

similar to (5.5), except that W(S,k) denotes an ordered sequence, and the

-11-



"+" operation in (5.5) is replaced by a sequence-merging operation.

It is possible to employ essentially the same type of recursion

to compute an optimal partition, subject to the constraint that each
block is one of the sets in the collection é; generated by the LS-set

identification procedure of the previous section. Let

*
W (S,k) = the minimum weight of a partition of S into

exactly k blocks drawn from Sg.
If S is a singleton set,

. w(s), if k = 1,
+ o, if k> 1.

If S is not a singleton set, and T is a proper subset for which w(T) is

minimal,
x w(s), dif k=1
(5.8) W (S,k) = . .
min {w (T,k") + W (S-T,k-k')}. if k > 1.
1 <k'<k-1

Similar recursion equations can, of course, be formulated for the
min-max and min-lexicographic criteria.

We can estimate the complexity of the computation of both W(N,k)
and W*(N,k) as follows. There are 2n-l subsets S and at most n values
of k for which (5.4) or (5.5) must be solved. Each equation in the set
(5.5) involves minimization over at most n alternatives; Thus the over-
all computation is 0(n3).

Clearly W(N,k), the cost of a weakly optimal solution, is a lower

-12-



*
bound on the cost of an optimal solution. And W (N,k), the cost of a
feasible solution, is an upper bound. If it happens that W(N,k) =

*
W (N,k), then an optimal solution has been found by the computation of

*
W (N,k).

As an example, if the partitioning algorithm is applied to the

example in Section 4, the following results are obtained:

K ||wev,k) | won,e) | wE-Partition

1 0 0 {1,2,3,4,5}

2 2 2 {1,2,3,4},{5}

3 5 6 {1,2},{3,4},{5}

4 7 7 {1},{2},{3,4},{5}
5 17 17 {1},{2},{3},{4},{5}

In two of the three nontrivial cases, i.e. k = 2 and k = 4, the
partition determined by the W*-computation is optimal bécause W(N,k)=
W*(N,k). In the third case, k = 3, the computed partition can be shown
to be optimal by an ad hoc examination of possibilities.

It is believed that for a variety of problems of interest, partitions
of hypergraphs into LS sets and unions of LS sets will often be optimal,

and nearly always quite close to optimal.

6. Applications

'There are a number of contexts in which one may seek to partition

the nodes of a hypergraph. Consider the following.

Network Analysis. For the purpose of analysis, it is desired to

partition the nodes of a given network in such a way that the number

-13-



of arcs extending between blocks of the partition is as small as
possible.
In this case, the hypergraph is an ordinary linear graph, and the

welght of each arc is unity.

Information Storage and Retrieval. A collection of technical docu-

ments 1s indexed by 'descriptors'. It is desired to partition the docu-
ments info subcollections in such a way that each subcollection is con-
cerned with a coherent technical area.

A hypérgraph can be defined in which each node is identified with
a document, and each arc is identified with a descriptor. Cf. reference
[6].

Numerical Taxonomy. The presence or absence of certain attributes

has been determined for each of several biological species. It is de-
sired to find some objective basis upon which to partition the species
(where a block of the partition is a phylum, order, genus, or whatever)
in accordance with the observed data.

A hypergraph can be defined in which each node is identified with

a species and each arc is identified with an attribute.

Packaging of Electronic Circuits. A number of digital circuit

modules are to be grouped together into "packages'". Each circuit module
has identified with it (as inputs an& outputs) various "signals". Elec-
trical interconnections must be provided to transmit each signal between
the modules with which it is identified. Interconnections between pack-
ages are less desirable than connections made between modules in the

same package.

14~



A hypergraph can he defined in which each node is identified with
a circuilt module and each arc is identified with a signal.

In a previous paper [4], the author considered the optimal par-
titioning problem in the context of electronic circuit packaging. The
objective was to minimize the sum of the weights of the blocks of the

partition, where the weights were assigned by an arbitrary function
w: P »r.

It was shown that if w is monotone, in the sense that S.S T implies
w(S) < w(T), then the eptimal partitioning problem can be formulated as
a covering problem. However, this does not provide a good solution
method, except for relatively small problems.

A monotone weighting function of particular interest in the case

of electronic circuit packaging is
w(S) = w(A(S)),

where, as before, w is the arc-weighting function. The effect of this
weighting function w can be achieved by adding an (n+l)st node to the
hypergraph, and making all arcs incident to that node. Then, if node

n+l does not belong to S,
w(S) = w(A(S)).

The partitioning procedure of Section 5 can then be applied to the (n+1)-
node hypergraph, to obtain a weakly optimal partition of the original n
nodes. However, such a weakly optimal solution will not necessarily be

very close to optimal.
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LIST OF FIGURES

Fig. 1. Hypergraph G and Flow Network G'.

Fig. 2. Result of Generating LS Sets.
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