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Shadows of Fuzzy Sets

L. A. Zadeh *

In information theory as well as in many other fields of science it

is customary to treat uncertainty and imprecision through the concepts

and methods of probability theory. The almost exclusive reliance on prob

ability theory for this purpose obscures the fact that there are many situ

ations in which the source of imprecision is not a random variable but a

class or classes which do not possess sharply defined boundaries. For

example, the "class" of real numbers which are much greater than 10 is

clearly not a precisely defined set of objects. The same is true of the

"class" of good strategies in a game, the "class" of handwritten charac

ters representing the letter A, the "class" of intelligent men, the "class"

of systems which are approximately equivalent to a specified system, etc.

In fact, on closer examination it appears that most of the classes of ob

jects encountered in the real world are of this fuzzy, not sharply defined,

type. In such classes, an object need not necessarily either belong or not

belong to a class; there may be intermediate grades of membership. Thus,

to describe the degree of belonging to such a class requires the use of a

multivalued logic with a possibly continuous infinity of truth values.

In a recent paper, a conceptual framework for dealing with classes

in which there may be grades of membership intermediate between full mem

bership and non-membership was outlined. A central concept in this frame

work is that of a fuzzy set, that is, a "class" with a possibly continuous

infinity of grades of membership in it. More specifically, let X be a
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collection of objects (points) with a generic object (point) denoted by

x. Thus, X = {x}. Then, a fuzzy set A in X is characterized by a mem

bership function, y. (x) (or simply p.), which assigns to each x a number

in the interval [0,1] which represents the grade of membership of x in A.

Thus, the nearer the value of u. (x) to unity, the higher the grade of

membership of x in A; and conversely, the smaller the value of y. (x), the

lower the grade of membership of x in A.

Consider, for example, the fuzzy set in E : A = {x|x>> 10}. In this

case, A may be characterized - subjectively, of course - by a membership

function y. whose typical values may be: y. (10) = 0; y. (50) =0.3;

yA (100) = 0.9; yA (200) = 1, etc.

The concept of a fuzzy set provides a natural way of formulating the

problem of abstraction - a problem which plays a central role in pattern

2
classification, heuristic programming and many other fields. Specifically,

assume that we are given a finite number of samples from a fuzzy set A,

e.g., N pairs of the form (x^ yA (x^), •••> (x , yA (x )), where

x^y i = 1, ..., n, is a point in X and ]i. (x.) is its grade of membership

in A. Then, an abstraction on this set of samples consists in estimating

the membership function yA of A from the sample values

(x^,yA(x^)), ... , (xn>^A^xn^# In tlie f°rm stated, this is not, of course,

a mathematically well-posed problem, since there is no provision for assess

ing the goodness of the estimate of ]i.. To make abstraction mathematically

meaningful, it is necessary to have some a priori information about the

class of functions to which y. belongs and have some way of comparing y.

with its estimate. What is disconcerting about the problem of abstraction

is that the human mind can perform abstraction very effectively even when

the problems involved are not mathematically well defined. It is this lack
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of understanding of abstraction processes and our consequent inability to

instruct machines on how to perform them that is at the center of many un

resolved problems in heuristic programming, pattern classification and re

lated problem areas.

It should be noted that, from the point of view of fuzzy sets, when

one says, for example, "Eugene is a tall man," one gives a pair (Eugene, y.)

where A is the fuzzy set of tall men and y. is its membership function.

Usually, y (x) would be known only for a finite set of sample men and

thus, in general, one would have to perform an abstraction to estimate yA.

As a first step toward the development of systematic techniques for

performing abstraction on finite samples from fuzzy sets, it is necessary

to construct a mathematical framework for manipulating fuzzy sets and

studying their properties. In this note, we shall concern ourselves

with one particular aspect of such sets, namely, the notion of a shadow

of a fuzzy set and certain properties related to the dual notions of con

vexity and concavity. Although the theory of fuzzy sets appears to have

considerable relevance to problems in pattern classification, optimization

under fuzzy constraints and transmission of information, we shall not touch

upon these and other applications in the present discussion.

In order to make our discussion self-contained, we summarize below

some of the basic definitions relating to fuzzy sets.

1. Two fuzzy sets A and B are equal, written as A = B, if and only if

yA (x) = yR (x) for all x. In the sequel, this relation will be written

as yA = y_, with the understanding that the suppression of x indicates

that the equality holds for all x. The same convention will be used in all

cases where an equality or inequality holds for all x.

2. The complement of a fuzzy set A is a fuzzy set A whose membership
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function is expressed by

(1) MA' =1" PA

3. A fuzzy set A is contained in a fuzzy set B, written as A C B, if

and only if

(2) *A i *B
4. The union of two fuzzy sets A and B is denoted by A U B and is defined

as the smallest fuzzy set containing both A and B. The membership function

of A U B is given by

(3) i»A UB (x) = Max [uA (x), yB (x) ]

5. Similarly, the intersection of two fuzzy sets A and B is denoted by

A n b and is defined as the largest fuzzy set contained in both A and B.

The membership function of A H b is expressed by

W ^A nB (x) = Min CyA (x) »yB (x) ]

6. The union and intersection of A and B are special cases of the convex

combination of A, B and a third fuzzy set A. Specifically, the membership

function of the convex combination - denoted by (A, B: A) - of A, B and A

is expressed by

(5) P(A,B; A) (x) = MA (x) MA (x) + (1 " MA (x)) yB (x)*
In what follows, we assume for concreteness that X is a real Euclidean

n-space E . In such a space, a fuzzy set A is convex if and only if the

sets Ta = (x|yA (x) >. a} are convex for all a> 0. Equivalently, A is

convex if and only if the inequality

(6) yA (A x1 + (1 - A) x2) >. Min [uA (x^^) ,yA (x2) ]

holds for all x1, x2 in E and all A in the interval [0,1].

A fuzzy set A is concave if A is the complement of a convex set.

This implies that for a concave set the inequality (6) is replaced by the
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dual inequality

(7) yA (A xr + (1 - A) x2) <.Max [yA (X]_) , yA (x£)]

It is easy to show [1] that convexity is preserved under intersec

tions. Dually, concavity is preserved under unions.

The convex hull of A is denoted by convA and is defined as the small

est convex fuzzy set containing A. Similarly, the concave core of A is

denoted by concA and is defined as the largest concave fuzzy set contained

in A.

We are now ready to define the notion of a shadow of a fuzzy set and

examine some of its basic properties.

Let pn and H be, respectively, a point and a hyperplane in E . Then,

a point shadow of A on H is a fuzzy set S(A) in H whose membership func

tion yc/AN (x) is defined as follows: Let L be a line passing through pQ,
S (A} u

with L intersecting H at a point h. Then,

(8) Ms(k) (h) = Sup yA(x) ,heH
^ xeL

Ps(A)(x) =0 ,x<M
Note that we use the suggestive term "point-shadow" to describe this fuzzy

set because it bears resemblance to the shadow thrown by a cloud A on a

plane H, with p0 acting as a point source of light.

Dual to the notion of a point-shadow is that of a complementary

point-shadow, C(A), which is defined as the complement of S(A ) on H,

where A' is the complement of A. More explicitly,

(9) UC(A) (h) =Inf p(A)(x) ,hsH

MC(A) (X) "° . «*H
The transformation S which takes A into S(A) will be referred to as

point-projection of A on H with respect to pQ. In the special case where
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pQ is a point at infinity and the lines L are orthogonal to H, we shall

refer to S(A) and S as orthogonal shadow and orthogonal projection, re

spectively. For example if H is the coordinate plane

H= {x|x1 = 0}, x= (x.., ... ,x ), then the orthogonal shadow of A on

H is characterized by the membership function

(10) yS(A) (x2» -••• 'Xr? = Sup PA^X1' "•• 'xn* *XeH
xl

= 0 , x ^ H

In the sequel, we shall frequently use the terms shadow and projection

without the adjective "point" or "orthogonal", relying on the context to

indicate the specific meaning in which these terms should be understood.

We proceed to establish several basic properties of shadows and com

plementary shadows of fuzzy sets. Most of these properties are immediate

consequences of the defining relations (8) and (9).

Homogeneity. Let kA denote a fuzzy set whose membership function is given by

<u> ^(x) =kyA(x)

where k is a constant, 0 <. k <. 1. Then clearly

(12) S(kA) = kS(A)

Monotonicity. This property is expressed by the relation

(13) ACB => S(A) C s(B)

and is an immediate consequence of

(14) Vx [yA(x) <uB(x)] =* Sup uA(x) <. Sup yfi(x)
xeL xeL

Distributivitv. For any fuzzy sets A and B, we have

(15) S(A U B) = S(A) U S(B)

which implies that S is distributive with respect to U. This follows at
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once from the identity

(16) Sup Max [yA(x), yB(x)] = Max [Sup yA(x), Sup yfi(x)]
xeL xeL xeL

In connection with (15), it is natural to raise the question: Is

S distributive with respect to f\ that is, is it true that

(17) S(A Hb) = S(A) H S(B).

In this case, the corresponding relation in terms of membership functions

reads

(18) Sup Min [yA(x), yB(x)] = Min [Sup yA(x), Sup yR(x)]
xeL xeL xeL

This equality does not hold for arbitrary \i. and yg. However, it can be

made valid by suitably restricting yA(x) and Pg(x), as in the minimax
3

theorem. For arbitrary y. and y^, one can assert that

(19) S(A Hb) C s(A) n S(B)

since (see (43) et seq.)

(20) Sup Min [yA(x) ,yfi(x)] <Min [Sup yA(x) ,Sup yfi(x)]
xeL xeL xeL

Note that by combining (11) and (15), we have for any constants

k- and k2 in [0,1],

(21) S(kxA U k2B) = k1S(A) U k2S(B)

This identity indicates that S is a linear transformation, with the re

striction that k-, k2 e [0,1]. Note also that S is idempotent, i.e.,

S2(A) = S(S(A)) = S(A).

Invariance of convexity and concavity under projections. Let A be a convex

fuzzy set in En and let S(A) be an orthogonal shadow of A on a hyperplane H.

Then S(A) is a convex fuzzy set in H. Dually, if A is concave, then so is

C(A) (complementary shadow of A).
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Proof, it will suffice to prove the assertion relating to convexity. To

this end, let h.. and tu be two arbitrary points in H and let h be any

point in H defined by

(22) h = A hx + (1 - A)h2

with A e [0,1]. Let L-, and L2 and L be lines orthogonal to H and pass

ing through h1, h2 and h respectively.

By the definition of Sup, for every e > 0 there will be at least two

points x. and x« in L, and L2 such that

(23) Sup yA(x) - PA(xx) •£- e
xeL.

(24) Sup yA(x) - UA(x2) 1 c
xeL2

Now, since A is a convex fuzzy set, we have

(25) ^A(Xx! + (1 " A) x2) > Min [l^O^) ,UA(x2) ]

which in view of (23) and (24) implies

(26) ^A(Ax! + (1 - x>x2 - Min fSuP ^A(x>' SuP yA(x)^ ~ e
xeL- xeL„

Noting that

(27) Ps(A)(h) " SuP Vx) - PA(Xxl + (1 " X)X2}
xeL

and

(28) Vs^Chj) = SuP ^A(x>
xeL-

(29) MS(A)(V " SUP PA(x)
xeL2

we can infer from (26)

(30) p (h) i Min [Vg^jCV. "S(A)(h2)] " £
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for all e > 0, and hence

(3D PS(A) (h) >Min [„S(A) (hl) ,ys(A) (h2)3,

which demonstrates that S(A) is a convex fuzzy set in H. Q.E.D.

Bounds in terms of shadows and complementary shadows. The shadows and

complementary shadows of A on a set of hyperplanes provide an obvious

means of placing upper and lower bounds on A. Such bounds are useful

when A has to be estimated from the knowledge of its shadows, as is fre

quently the case in problems involving optimization under fuzzy con

straints.

Specifically, let A be a fuzzy set in E with membership function

yA(x> ... ,x ) and let H. denote the i coordinate hyperplane

H. = {x|x. = 0}, i = 1, ... , n. Let S. and C. denote, respectively, the

shadow and complementary shadow of A on H., with the membership functions

of S, and C. given by

(32) yg (x) = Sup MA(x1, ... ,xr) , xeH±
i x.

i

=0 ,x^

(33) yc (x) = Inf WA(x1, ... ,xr) , xeHi
i xt

=0 ,x^

Consider now cylindrical fuzzy sets S. and C. generated by S. and C,

via the membership functions

(34) u«; (x) = Sup ^(x^ ••• ,xn)
i x.

l

(35) y- (x) = Inf MA(x]L, ... ,xn)
i x±

In terms of these cylindrical fuzzy sets, A can be bounded from above

and below by the intersection of the S. and the union of the C , i = 1, ... ,n,

-9-



Thus

n n

(36) U C C A c n s
i = l1 i - 1

This relation is an immediate consequence of the inequalities

(37) Inf yA(xr ... ,xn) <. VA(xv ••• »xn) <. Sup PA(xr ••• »xn> •
x. x.

i — 1, ... ,n.

When A is a convex or concave fuzzy set and the H. constitute the

set of all hyperplanes in E , the inequalities in (36) can be replaced

by equalities. More concretely, we can assert that: If A and B are con

vex sets and S(A) = S(B) for all pQ (and a fixed H), then A = B. (Dually,

the same conclusion holds for concave sets and complementary shadows.)

Proof. It will be sufficient to show that if A ^ B, then there exists a

pQ such that S(A) i S(B).

Assuming that A ^ B, let xQ be a point at which VA(xQ) f y (xQ),

e.g., for concreteness, y.(xQ) = a > y (x~) = 3« Since B is a convex

set, the set r = (x|yTJ(x) > 8} is a convex set and hence there exists
p B

a hyperplane F supporting r and passing through x~. In relation to F,

we have y„(x) <. 3 for all x on F and on the side of F not containing ro.
a p

Now let pQ be an arbitrarily chosen point on F, and let L be a line

passing through pQ and x^. At the intersection, h, of this line with H

(which may be at infinity), we have

yS(B)(h) i 6

but on the other hand ^^^.^(h) >. a since yA(x«) = a. Consequently,

ps(A)(h) '."son00- Q-E-D-
In the case of orthogonal shadows, the statement of the property in

question becomes: If A and B are convex sets and S(A) = S(B) for all H,

then A = B. More generally, if A and B are not necessarily convex, then
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the conclusion A = B would be replaced by the weaker equality conv A = conv B,

where conv A and conv B denote the convex hulls of A and B, respectively.

Degree of separability. In [1], the classical separation theorem for con

vex sets was generalized to convex fuzzy sets in the following manner. Let

A and B be two convex fuzzy sets in E and let M be the maximal grade in

the intersection of A and B, i.e.,

(38) M = Sup Min [uA(x), yR(x)]
x

Then, (a) there exists a hyperplane H such that yA(x) <. M for all x on

one side of H and y1J(x) <. M for all x on the other side of H; and (b)
a

there does not exist a number M* < M for which this is true. For this

reason, the number D = 1-M is called the degree of separability of A and B.

In connection with applications to pattern classification, it is of

interest to inquire if the degree of separability can be increased by

projecting A and B on a hyperplane. The answer to this question can

readily be shown to be in the negative.

For simplicity, let n = 2 and consider the shadows of convex fuzzy

sets A and B on the hyperplane {x|x2 =0}. By (10), the membership func

tions of these convex shadows on the hyperplane {x|x2 = 0} are given by

(39) PS(A)*X1* " SUP yA(xl' x2*
x2

(40) yS(B)^xl^ = Sup yB(xl' x2^
x2

Now the degree of separability for A and B can be expressed as

(41) D = 1 - Sup Sup Min tu^O^* x2) , yfi(x;L, x2) ]
xl x2

whereas the degree of separability for S(A) and S(B) is given by

(42) D = 1 - Sup Min [Sup ^(x^ x2) , Sup Pg(x1, x2) ]
xl x2 X2
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Thus, to show that D <. p it suffices to show that, for all x-,

(43) Sup Min [v^Cx^ x2) , yfi(x 1> x2) ] <. Min [Sup V^C^, x2), Sup yfi(x;L, x2]
x2 x2 x2

This inequality follows at once by noting that the inequalities

(44) Sup yA(x1, x2) >. yA(x1? x2) for all x±
x2

and

(45) Sup ^(x^ x2) > yB(x1, x2) for all x±

x2

imply that for all x-

(46) Min [Sup ^(x^ x2), Sup yB(x1, x2)] ^ Min [^0^, x2), Ug^, x2) ]
X2 X2

and hence imply (43).

Concluding remarks. Essentially, the notion of the shadow of a fuzzy set

plays the same role in the theory of fuzzy sets as the notion of a marginal

distribution plays in the theory of probability. In this note, we touched

only upon some of the more elementary properties of shadows of fuzzy sets

and did not concern ourselves with applications. Although work on these is

still in its preliminary stages, it appears that the concept of a shadow

along with some of the other notions sketched in this note may have useful

applications in several areas, particularly in pattern classification and

optimization under fuzzy constraints.
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