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ABSTRACT

There are known polynomial bounded algorithms for computing optimal

intersections of two matroids, but no such algorithms have been dis

covered for problems involving three or more matroids. In this paper

we prove that the maximum weighted intersection of k (k >_ 4) matroids

over n elements can be found by computing the maximum weighted inter

section of three matroids over 2kn elements. In other words, there

exists a polynomial bounded algorithm for the intersection of three

matroids if and only if there exists a polynomial bounded algorithm for

the intersection of an arbitrary number of matroids. The problem re

duction yielding this result is presented in terms of the more general

matroid "parity" problem, and the relationship between the intersection

problem and the parity problem is explained.

Research sponsored by the Air Force Office of Scientific Research, Grant
AFOSR-71-2076.



1. Introduction

Edmonds [2,3] has shown that matroid theory provides a natural and

useful generalization and explication of the optimization methods sub

sumed under the heading of network flow theory. Thus, for example, the

minimum-cost network flow problem can be reduced to the weighted bipartite

matching problem, and the matching problem can be viewed as a problem

calling for the computation of a maximum-weight intersection of two par

tition matroids.

There are polynomial bounded algorithms for computing optimal inter

sections of two matroids, provided there exists a polynomial bounded

algorithm for testing independence of arbitrary sets of elements in

each of the matroids. (We assume that the reader is familiar with the

notion of a polynomial bounded computation. Cf. [4].) Thus, for example,

it is possible to efficiently compute the intersection of two graphic

matroids or a graphic matroid and a partition matroid. (This latter is

the "optimal branchings" problem [1].)

However, there is no known polynomial bounded algorithm for com

puting optimal intersections of three or more matroids. This fact is

sometimes cited in connection with the traveling salesman problem, which

calls for the intersection of one graphic and two partition matroids.

In this paper we present a problem reduction which proves the fol

lowing.. The maximum weighted intersection of k (k >_ 4) matroids over n

elements can be found by computing the maximum weighted intersection of

three matroids over 2kn elements. In other words, there exists a poly

nomial bounded algorithm for the intersection of three matroids if and
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only if there exists a polynomial bounded algorithm for the intersection

of an arbitrary number of matroids.

We shall present the problem reduction in terms of the more general

matroid "parity" problem. The technique is essentially the same as that

employed to reduce the "exact covering problem" to the three dimensional

assignment problem, so as to place the latter on Karp's [4] list of

"complete" problems.

We note that the three-dimensional assignment problem asks for a

maximum-cardinally intersection of three partition matroids, and is.

therefore considerably more specialized than the problem of finding a

maximum-weight intersection of an arbitrary number of arbitrarily-

structured matroids, yet the three dimensional assignment problem is

"complete" in Karp's sense, and thus apparently one for which no poly

nomial bounded algorithm exists. We can therefore hold out small hope

that a polynomial bounded algorithm will ever be discovered for the

optimal intersection of three or more matroids.

2. Definitions

A matroid M « (E, a)) is a combinatorial structure in which E is a

finite set of elements and -.9 is a nonempty family of subsets of E

(called independent sets) satisfying the axioms:

(2.1) If Ie 9 and I' £ I, then lr G3 .

(2.2) If I and I are sets in 3 containing respectively p and

p+1 elements, then there exists an element e e I - 1 such that
p+1 p

I .U {e} € 3 .
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As examples of matroids, consider the following.

(2.3) Matric Matroids

Let A be a finite matrix, whose elements belong to an arbitrary

field. Let E be the set of columns of the matrix and let 3 contain

all subsets of linearly independent columns. M = (E, 3 ) is the

matroid of the matrix A.

(2.4) Graphic Matroids

Let G be a finite graph. Let E be the set of arcs of G and let

>y contain all subsets of arcs which do not contain a cycle (each such

subset is a tree or a forest of trees). M = (E, 3 ) is the (graphic)

matroid of the graph G.

(2.5) Partition Matroids

Let E be an arbitrary finite set, and let it be an arbitrary par

tition of E. Let 3 contain all subsets of E which contain no more than

one element from any block of it. M = (E,.Q) is a matroid.

Let M- = (Ej.y.) and M„ = (E,,y„) be matroids over the same set of

n elements. A set I that is independent in both matroids, i.e. I € .y

n y«, is said to be an intersection of M. and M«. In some cases, we

seek to find an intersection which contains as many elements as possible;

this is the cardinality intersection problem. In other cases the ele

ments in E are weighted by real numbers and we seek to find an inter

section for which the sum of the weights of the elements is as large

as possible; this is the weighted intersection problem.

Now let M a (E„j)) be a given matroid and let tt be a partition
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which pairs the elements. I.e. each block of tt contains exactly two

elements e and e, we call e the mate of e, and vice versa. A set

ACE is said to be a parity set if, for each element e, e £ A if and

only if e e A. The cardinality parity problem is to find a parity set

which contains as many elements as possible. The weighted parity

problem is to find a parity set for which the sum of the weights of

the elements is maximum, for some given weighting.

We generalize these problems in the natural way to intersection

problems with k matroids and to parity problems where each element

has k-1 mates. We speak of these as k-matroid intersection problems

and k-parity problems, respectively.

3. Reduction of the k-Matroid Intersection Problem to the k-Parity

Problem

We now illustrate the reduction of the k-raatroid intersection

problem to the k-parity problem.

Let M1 =(E, -9^, M2 =(E,,92), •-., ^ =(E, 3k) be the k
matroids to be intersected. Let E.., E„, ..., E, be disjoint sets, where

E. = {e- , e_ , •••, e }. Replace M. by the isomorphic matroid

M.,= (E.,y!) over E., using the correspondence of e. and e . Form
ill 1 J J

the sum, Mf =(E\,()f) of Mj, M^, •••, M£, as follows:

E1 = U E.
1

i=l
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g ={i;ui;u...ut^|i|6 3'±}.

It is a well-known fact of matroid theory that M1 is a matroid.

Moreover, it is possible to test for independence of a set in M* by

means of a polynomial bounded algorithm if there is a polynomial-

bounded algorithm for independence testing in each of the matroids M..

(One can apply a two-matroid intersection algorithm [6] or a matroid

partition algorithm [2] for this purpose.)

Define parity sets for M1 in the obvious way. I.e. A is a parity

set if for j- 1, 2, •••, n, either all k of the elements e^ ,e. ,
GO

*•*, e> belong to A, or none of them does. It is quite clear that

there is a one-one correspondence between independent parity sets of Mf

and intersections of the k matroids M-, M«, •••, M, .

In [7] the following problem reduction is illustrated. Let M =

(E,,()) be a given matroid and let tt be an arbitrary partition of its

elements. An apparent generalization of the parity problem is obtained

by asking for an independent set I which contains a maximum number of

elements (or is of maximum weight), subject to the condition that I

contains an even number of elements from each block of tt. In fact,

however, any problem of this type can be reduced to the 2-parity prob

lem. That is, existing polynomial bounded computations for the 2-parity

problem are sufficient to solve the apparently more general even-parity

problem.

4. Reduction of k-Parity Problems to 3-Parity Problems

Let M = (E,$) be the matroid of a k-parity problem, and let
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e. , e. , •••, e. be a typical set of k elements, all of which or
3 3 3

none of which must be contained in a parity set.

Let EOe be a set of 2n elements in which for each element e.
- J

of E there is a second element e.' . Let M. = (E,f,Q,) be the matroid
j 1 ^1

obtained from M by letting I. belong to ,Q if and only if I n E6 .y .

Let M„ = (E,'^2) be apartition matroid, where I« e ,Q if and only if

not both ejx' and e/1' belong to I,for all j. Let M =(E1,,^)
also be a partition matroid, where I G 3* if and only if, for all j,

not both e^* 1 and e..U+ belong to I3> i=1, 2, •••, k-1, and not
both e.'^ and e. ' belong to I0.

3 3 3

As a consequence of this construction, a maximum-cardinality inter

section of M , M_ and M. contains exactly n elements. Moreover, there

is a one-one correspondence between these n-element intersections and

k-parity sets of M.

Suppose w(ej ') is the weight of element e. in the original

weighted k-parity problem. In the new 3-matroid intersection problem

let the weight of element e>x' be w(efi)) + K, and the weight of e'̂
3 3 3

be K, where K is a sufficiently large constant. Then it is the case

that there is a one-one correspondence between maximum-weight k-parity

sets of M and maximum-weight intersections of M , M and M .

This construction establishes the following theorem.

Theorem 4.1

The weighted k-parity problem for a matroid with n elements reduces

to a weighted intersection problem for three matroids over 2n elements,

two of which are partition matroids. That is, there is a polynomial
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bounded algorithm for the weighted k-parity problem if and only if there

is a polynomial bounded algorithm for the weighted 3-matroid intersection

problem.

Taking the reduction of Section 3 into account, we have the follow

ing result.

Corollary 4.2

The weighted k-matroid intersection problem for n elements reduces

to a weighted 3-matroid intersection problem for 2kn elements.
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