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ABSTRACT

An exact solution is found for the fields of a spherical antenna with an

anisotropic surface. The surface, for which a rather simple solution

is found, conducts perfectly only along spiral lines which go from pole

to pole, and is otherwise non-conducting. The antenna is either excit

ed by fields at a gap around the equator or between adjacent spirals.

The method of solution is described, and results of several represent

ative cases are presented.
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SOLUTIONS TO SPHERICAL ANISOTROPIC ANTENNAS

by

K. K. Mei*and M. Meyer*

1. Introduction

The antenna as an anisotropic-boundary-value problem was

first considered by Cheo, Rumsey and Welch in their solution to

the frequency-independent-antenna problem. A solution of Maxwell's

equation is obtained for a boundary consisting of an infinite number

of equally spaced wires in the form of coplanar equiangular spirals.

Despite the seemingly academic nature of the boundary conditions,

the radiation patterns so obtained agree closely with experimental

results. Therefore, the directionally conductive surface as a

mathematical model of an electromagnetic radiator is a potentially

powerful approach to antenna analysis. A theoretical investigation

of the solutions of a class of spherical-spiral antennas, utilizing

the same model as considered by Cheo, et al. , has been made.

Because of the geometry of such antennas, the solutions will

facilitate the design of numerous antennas, which possibly may be

used in satellites.

2. Description of the Antennas

The antennas discussed consist of spherical-directionally

conductive surfaces. The direction of conducting curves can be

described in terms of the functional relation of <p and 6 as

Department of Electrical Engineering, University of California,
Berkeley 4, California.

'Formerly of Department of Electrical Engineering, University of
California, now at Hughes Aircraft Co., E. M. Staff Dept. Fullerton,
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1. Cheo, B., Rumsey, V. H. and Welch, W. J., "A Solution to the
Frequency-Independent-Antenna Problem, " IRE Trans. . Vol. AP-9;
pp. 535-545, Nov. 1961.
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T =e +sine4££. (i)

We shall confine our discussion to two particular functions of

^>(8), namely

•W-S^TTSB' (2)

and

<p{Q) = b log sin 6 , (3)

where a and b are arbitrary constants. These functions are

illustrated in Figs, la and lb. It is noticed that the main difference

between these two curves is that (3) represents a spiral with a

mirror image about the 6 = ir/2 plane, whereas (2) represents

a single-sensed spiral. The method of solution described can be

applied to all <p( 6) with derivatives

dc?/d8 = a cos 6 sin 6 (4)
^ nm * '

for all integers m and n. Thus (2) and (3) are special cases of

m = -1 and n = 0, 1, respectively.

The exciting field for this antenna is established across a

narrow slot encircling the antenna at 6=6, and has a variation

of eJ Y.

3. Basis of Analysis

2
By applying the well-known method of the Hertz potential,

the general solutions of the Maxwell's equations can be represented

in terms of two scalar functions, St and SIL, as

2. Harrington, R. F., Time-Harmonic Electromagnetic Fields,

McGraw-Hill Book Company, New York, 1961; Chap. 6.
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E = - -r-°- VxVx4r-Vx*, r; (5)
/v k 1 ** 2 /v

H = - .-4— VxVxtrtVxin (6)*v kZ 2 a/ 1 ~'
o

where Mfc and S&2 are solutions of the scalar wave equations

(V2 +k2)f =0 . (7)

Because we have assumed the excitation to be of the form

ejm^ ag the antenna structure is uniform in azimuth, we shall

consider the ^-variation of the resulting fields to be everywhere

eJm^ where m is any integer. Thus, * and ^El may be repre
sented by their expansions in spherical harmonics

co

*o1 = I B q1 z (kr)P m(cos 0) e>m* ; (8)
1 *— n n n

n=m

oo .

* ° = I B ° 7. (kr)P m(cos 6) e*m» , (9)
2 *— n n ' n x ' ' -*

n=m

where the superscripts i and o denote the potentials inside and

outside the sphere, respectively. The symbol z (kr) represents
(2) n

the spherical Hankel function h (kr) outside and the spherical

Bessel function j (kr) inside the sphere. In terms of (8) and (9),

the components of the electric fields (5) are

E°X =-jZ J™* Ia q1 n(n +1)^^- Pm(cos 6); (10)
r Jo *- n N 'kr n*

n=m

i . ^- i/z (kr) \ ,
E ° =iZe,m"h0 -2j—- +»' (kr) P m (cos 9) sin 8 -

kr nx '/ n

£ i Pm(cos6)
- jmeJm * X B ° a (kr) n. . ; (11)

J n n ' sin 6
n=m
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i £ i/* 0<r) \ Pn' (cose)
E° =„Zo^»" I An° (-V- +̂ (kr) nsin6

™ n=m N '

co 4

- Jm* 7 B ° z (kr)P m' (cos 8) sin 6 , (12)
n=m

i i

where the coefficients An° and Bn° are to be determined from
the boundary conditions.

The anisotropic boundary condition of the antenna is charac
terized by the conducting direction of the spherical surface; that is,
the electric fields in the direction T vanish everywhere on the

surface except across the gap. Hence,

E-T =EQ +sine-^i2LE =C6( 8- 6) eJm «\ (13)
~ & 0 d6 <p o

where C is a constant denoting the magnitude of the exciting field.

For the antenna of Fig. la, the boundary condition (13)

requires

EQ +aE =C6(8 - 6J a*"* , at r =r , (14)

where r is the radius of the antenna. When (11) and (12) are sub-
o

stituted into (14) and multiplied by sin 6, we have

rc\ CO

jZ 1 Aol xol F„m' (cos 6) sin28 - jm I b/w/ Pnm(cos 8)
o n n n n=m

n=m

~" i i _ <*- o1 o1 _ m«. ... 2.co < * °° i i
+amZ I An° xn° P^cos 6) - a 1 Bn° Wn° P^ (cos 6)sin 8

° n=m n=m
- C 6(8 - 8 ) sin 8, (15)

o

where

i z (kr) Qi

nx ~ kr ' "n^o' ' "n n*~ o
o" _ n*~"' + zt (kr ) and W ° = z(kr ).
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The left-hand side of (15) may be rewritten in a series of

P (cos 8) by applying the recurrence relation

„ m' . .. . 2n (n +m)(n +l) ^m n(n - m + 1) „m /lA»
P (cos 8) sin 8 = —=—t1! P , —^—t-s—- P ,. • \lo)

n x ' 2n •+ 1 n-1 2n •+ 1 n+1

After expanding the right-hand side of (15) into the associated

Legendre polynomials, and equating term by term in (15), we

have

To1 (n+m +l)(n+2)1 Ao\ +amZ o1 o1
L3 o n+12KT3 J n+l+am on n

-Ooi i£#r£i] Ai -[**d (n+2r+T2) ] Bn«

•J»ViB.°1 +[^i1TST!L]Bii
CP m(cos 8 )sin28 (2n+l)(n-m).'

= 2 2 2 , (n=m, m+1, m+2, . . . ) (17)
2(n + m) I

These equations and the conventional boundary conditions of the

antenna uniquely determine the radiated fields everywhere.

For the antenna of Fig. lb, the characteristic boundary

condition is

E. + b cos 8 E = C 6 ( 6 - 8 ) . (18)
u <p o

If we make use of the recurrence relations (16) and

P m(cos 8) cos 6 =t^T-T [(n-m +lJP™ +(n +m)Pm J (19)
n ' 2n+ 1 u n+1 n-1*

we obtain a set of equations

I" (n+mtl)(n+2) bm 1.^1)1 o* X
L o 2n + 3 o 2n + 3 J n+1 n+1
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u r(n+m+2)(n+3)(n +m+l) 1 woX ^o1
" b L (2n+5)(2n+3) J n+2 n+2

|"u 3n2 -n(4m2 - 1) - 3m2 .1 w o* o1
- [b (2n+l)(2n-l)(an+3) jmJ Wn Bn
+rb(n-2)(n-m l)(n.m)"j 0X bO1

L (2n-3) (2n-l) J n-2 n-2

CP m(cos 8 )sin 6 (2n+l)(n-m)J
2 °- p£ ; (n = m, m+1, m+2, . . . ) (20)

£,\t\. + m; •

4. Additional Boundary Conditions

When the antenna is constructed of an anisotropic sheet of ^

vanishing thickness, it is transparent to waves polarized perpen

dicular to the conducting direction. The remaining boundary con

ditions for such an antenna are that:

(a) The tangential electric fields be continuous across

the boundary, i. e.,

Ee°<ro> " Eei(ro> • and V(r°) =V(ro> • (21)
(b) The magnetic fields parallel to the current be con

tinuous across the boundary, i. e.,

*' H°(r ) ' T =H*(r ) • T . (22)
O *v/ O ru

(c) The current densities at the poles of the sphere vanish,

if the antenna is an open circuit at the poles.

6=0f v = v

H°(r )*(Txr)= Hx(r )• (TXr) at \
V U = TT

The boundary condition (21) requires

-6-
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and

A °x ° = A *x * , (24)
n n n n •

B °W°= B iWi . (25)
n n n n

The condition (22), for the antenna of Fig. la for example, requires

HQ° +aH ° =H* +aH i . (26)
0 <P \3 <p

Thus, upon substitution of the corresponding components of H in

(26) and using (24) and (25), we obtain

•fa« -<&) (n+r;r2)-^i ♦ j- {<-<$)
N xn+l n

A° Jw° W1 Xn-lVn-D(n-») A° *i±-/'x0 -An " a\Wn.l Wn-1 T^ / 2n-l n-1 *JZQ \^Xn+l
xn-l

i Wn+l\ (n+m +l)(n+2) Ro am / o i ^n_ \
" xn+l ^jX"y 2n+ 3 """ n+1 TZ \xn " n w i /

n+1 ° n

/ W° \
B°-j * (x° , -*1 . H^1) (n;1)(nrm) B° . =n J % \ n-1 n-1 wi / 2n - 1 n-1

n-1

0 ; (n = m, m+1, m+2, ... ) . (2?).

Because of (22), condition (23) may be simplified to

h°=h1 re = ore = o

le =it
or Q . at 1 (28)

H0 = He
l i

The coefficients A and B can be obtained by assuming a

converging-series solution for the field so that those terms in

-7-



(28) of order greater than a sufficiently large number N can be

neglected.

Now, let n = m in (17) and (28). We obtain two equations

involving Am+1, Am°, B^, and Bm°, so that A^ and B° +1
may be solved in linear combinations of A and B . Substituting

J m m

those values of A °,1 and B° ., into (17) and (27) for n=m+l,. we
m+1 m+1

get A , _ and B , ~ as linear functions in A_ and B^ . Hence, in
& m+2 m+2 mm

principle, each of the coefficients A and B may be resolved to

linear functions in A and B ° . When the coefficient s in (28) are
mm o o

replaced by their corresponding functions in A and B , the
r J i o mm

values A and B are obtained and consequently the remaining

coefficients.

5. Results

(a) m = 0

In this case the gap field E is uniform in (J> . For circumferential

field excitation around the equator of the antenna of Fig. la, the

electric field along the spiral is given by

E
2x-l/2T= (1 +aY 7 [E0 +aE ] =Eo6(6-|) (29)

Applying the relation

1 dP«<1>F1 = sinS-s^ (30)
n utj

we get from (15)

5 (jZ A°X ° - aB ° W ° )P (cos 8) =E (l+a^S (8 -~) (31)
^L VJ o n n n n ' n ' o ' x 2' ^ '

n=l

2,

Expanding the right-hand side of (31) in P (cos 8) and equating (31)

term by term, the following relation is obtained:

•'on n

i i n o ..r o _ /t , 2V 2n+l -rX t v
Ao__o«aB W --E(l + a) ^ j ,tv P (o)
AX n n o ' 2n(n+l) n * '

-8
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The boundary condition (26) gives

JB °X ° „ „ jB 4 i . ,
5 n +aA °W ° = % n +aA X (33)
Z n n Z n n

Hence, the values of A and B may be obtained from (24)» (25),

(32), and (33), i.e.,

n

B^JaX i+WnXn 1 (2n+l) E (1 +a2l/2^
n L n aW x J 2n(2n+I) oA n*

n

At very low frequencies (kr small) the series converges very fast,

so that the first term is sufficient to represent the solution. In
?

this case, the approximate formulas for the radial functions of

small arguments may be used to obtain A. and B- , which are

found to be

A° * - -^ | *1TV •> I kr. (36)
3E / „ , 2,1/2o( (l +a'>1/Z )

a V(kr )"2 +a2 /
o

2xl/23aE / n .,2.1/2 \ 7

The far fields are

2.1/2 \ -jkr

(ko

- E / ... 2.1/2 \ -jkr

=!z-° L -* * ^ai°9 <38>o * (kr ) +a /

j3aE / ... 2.1/2 \ , -.jkr

E*= T5 ( V 2) (kro> "V- si» e <39>
(kr ) + a

o

Which are just dipole patterns with ratio
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E

"S* '" jl (kro} *JS <40)

When S=l, we have circularly polarisation for all 8. The effect

of the spiral parameter a in the radiation pattern is quite clearly

shown in (38) and (39), i. e.» the pattern reduces to that of an

electric dipqle when a—*0, and that of a magnetic dipole when

a—>co. Computated results of the complete expression for the

fields using as many terms as was necessary for convergence,

are shown in Figs. [Z) through (4). The low frequency approxi

mations are good for kr <1.
** o

(b) m=l

Computed results for the antenna of Fig. la,. with circum

ferential field excitation of e^ around the equator are shown in
FigSo (5) to (7) for various parameters. It is of interest to note

that in this case, the fields at low frequencies are essentially

transverse magnetic, and the 4>=component of the electric field

is practically omnidirectional. The dual of this solution is a

TE field. A simplified solution of the antenna may be obtained when

the excitation is transverse electric. This can be considered as

a rough approximation to the radiation from a "spiral slot" on a

conducting,sphere at low frequencies. In this case, the recur

rence relations (17) are reduced to

a W° , t»-»y*lH»+2) b° - jmW °B ° - a W° ,i2^M£l2) =
o n+1 2n + 3 n+1 J n n o n-1 Zn - 1

Let m=l, and start with n=l, and we have

_ ,o o _ . 0.777 w o_ o
2 2 J ""a" ' ' '"1 **1 •••» ©tC
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An interesting feature of this recurrence relation is that the
products B °W ° are independent of the size of the sphere. There-

n n q
fore, the largest B must be associated with the smallest Wq . M
low frequencies W^ W2% ... « Wn°, so TEU is the dominant
mode. Hence, the low-frequency far fields of this antenna are

-jkr .EeSojBl0-SjLe^; (43)
-jkr .

E sB^cose •£— *1<P* <«*><P I r

A similar result may be obtained when the recurrence relations

(20) are used. That is, the case when the antenna is made of

two oppositely sensed spiral hemispheres, which has been experi-
3

mentally investigated by Riblet. The boundary condition of the

antenna in Riblet*s investigation can be shown to be that of (18). We
notice that (43) and (44) represent an omnidirectional E - in the sense

of a "time average, " circularly polarized fields in the polar direc

tions, and linearly polarized fields in the equatorial plane. Those

are essentially the results obtained by Riblet.

3. Riblet, H. B., "A Broadband Spherical Satellite Antenna, "'

Proc. IRE, 48, 631, Apr. I960.
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a, 1 - cos 0
<j> = - log

1 + cos 0

dc|) _ a
d9 sin0

(a)

Fig. 1

<j> = b log sin 0

d<j> _ b cos 0
"d0 sin 0

(b)



kr =0.5

.175
*

Fig. 2

-jkr

* Amplitude A of the far field AE
0 r



2. 32

3.04

Fig. 3



kr = 3. 0
0

a = 5. 0

m = 0

0 = 0

Fig. 4
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kr = 0. 5
0 = 0

.276

Fig. 5



V

kr = 0. 5

a = 1. 0

m = 1
0 = 0

.625

Fig. 6



kr =3.0

0 = 0
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