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ABSTRACT

The optimal allocation of urban land between the generation of

traffic and the carrying of traffic which minimizes congestion costs is

derived for a circular city. Unlike previous work which dealt only with

the suburbs, this paper deals with both the suburbs and the central

business district. This wider view of the problem leads to different

conclusions, the most important of which are the fact that at no point

in the city is all the land used for transportation and secondly that

there is a maximum size for a city of a given working population which

is independent of relative land and congestion costs.

Research sponsored by the National Science Foundation, Grant GK-10656X1.

-3-



1. Introduction

Two recent papers have analyzed the optimal allocation of urban

land between the generation of traffic and the carrying of traffic.

Mills and de Ferranti [3] worked with a circular city, and Solow and

Vickery [4] with a long narrow city; both used a measure of congestion

costs as the principal criterion by which the optimal allocation of

land was determined. The Solow-Vickery model was a homogeneous business

district whereas the Mills-de Ferranti problem dealt with the suburbs

outside the central business district. This paper adopts the circular

city approach of Mills and de Ferranti but considers the allocation of

land within both the C.B.D. (central business district) and the suburbs.

Whereas Mills and de Ferranti found that at certain points of the city

all available land is used for transportation, it is shown here that

this never occurs when land in both the CBD and the suburbs is optimally

allocated. It is also shown that for a city of a given population there

exists a maximum and a minimum bound on the radius of the city.

We begin by presenting the basic assumptions about congestion costs,

traffic flows and land values. The Mills-de Ferranti problem is then

presented so that it can be contrasted with the the CBD problem which

is its complement. A graphical solution is presented for the Mills-

de Ferranti problem which clarifies several points and the case of all

available land being used for transportation purposes is fully analyzed.

A solution for the complete city follows straightforwardly from the

results obtained for the Mills-de Ferranti and CBD problems.

The Maximum principle is used in the analysis of the allocation
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problem since this allows us to deal easily with the boundary conditions

that arise at the edge of the CBD and also with the possible existence

of constrained solutions (i.e. where all available land is used for

transportation.)

2. Traffic Patterns, Land Use Densities and Congestion Costs

The question which this paper attempts to answer is; given that

N people work in the CBD of a circular city and live in the suburbs

which lie beyond the CBD, how should the land available be allocated

between transportation use and business use in the CBD and between

transportation use and residential use in the suburbs so as to minimize

the social costs arising from congestion when these N people travel to

and from work? Since the land used for the city has social value how

large should the city be?

Although the city is assumed to be circular the analysis is gener

alized slightly by assuming that only 0(<^ 2-rr) radians of land is avail

able. Each point in the city is identified by its distance from the

city center, u. The number of travellers at a point is denoted by T(u);

the amount of land used for transportation by L«(u); and L-(u) denotes

land used for business in the CBD and for residence in the suburbs. All

available land at any radius, 8u, is allocated for one purpose or

another; hence

L1(u) + L2(u) « 6u. (2.1)

Also no more than all the available land can be allocated for a single
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use, i.e.

L-(u) >. 0 and L2(u) >_ 0 . (2.2)

The boundary of the CBD with the suburbs occurs at a radius e from the

city center and the boundary of the city at a radius u. Since all the

N workers in the CBD live in the suburbs it follows that

T(0) = 0 = T(u) and T(e) » N. (2.3)

The density of workers in the CBD is assumed to be a constant a and

the residential density in the suburbs, a , is also assumed constant.

The residential density term can be adjusted to cover the case where

each worker has a family which stays at home and doesn't travel to work

in the CBD. Hence within the CBD the number of people working at a

radius u from the city center, N (u), is given by

N (u) = a LAxx) = a (6u - L0(u)), (2.4)
C C 1 c £

and similarly the number of workers residing in the suburbs at a radius

u from the cith center, N (u), by

Ng(u) = a^Cu) = ag(9u -L2(u)). (2.5)

The land on which the city is to be built is assumed to have a

rental value of R.. This valuation can either be thought of as the

market rent for an alternative nonurban use or as the social valuation of

open space and parks. The congestion costs per traveller, p(u), are

given by the function
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p2
p(u) = p + Px T(u)

L2(u) (2.6)

which is the one used by both the Solow-Vickery and the Mills-de

Ferranti papers. In order to simplify the analysis p is taken to be

zero. Hence total social costs are given by the integral

i
p2[P1 C(u) + RA6u]du, (2.7)

where C(u) * T(u)/L2(u). The limits of the integral depend upon the

part of the city being studied; i.e. 0 to e for the CBD, e to u for the

suburbs and of course 0 to u for the whole city.

3. The Mills-de Ferranti Problem

Before going on to extend the basic problem which Mills and de

Ferranti studied it is useful to analyze their problem so that parallels

between it and work in later sections of this paper are obvious. Indeed

some of the conclusions reached about the Mills-de Ferranti model go

beyond the statements in their paper and are fundamental to the

solution of the extended problem.

The city with which Mills and de Ferranti worked had a CBD of

given radius, e, all the residents of the city worked in the CBD and

lived in the suburbs. The route to work is assumed to be along the

radius of the city passing through the place of residence. Social costs

arise from these journeys to work and from the use of land for the city.

Given that N people work in the CBD how big should the suburbs be and

what is the optimal allocation of land between residential and transpor

tation uses which minimizes social costs?

Given the assumption of the route to work above, it follows that
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the number of travellers at a point u, within the suburbs, is given by

:u> -J
u

T(u) = | Ng(v)dv. (3.1)
u

Equation (3.1) can be differentiated, using the definition of N (v)
s

given by (2.5), yielding the differential equation

T'(u) = a L0(u) - a 6 . (3.2)
s 2 s u

The Mills-de Ferranti problem is to minimize the costs given by (2.7)

subject to the differential equation (3.2) and the inequalities (2.2),

which can be rewritten in terms of L~(u) alone.

L2(u) >, 0, L2(u) <. 6u (3.3)

Since C(u) becomes infinite when L2(u) = 0 and T2(u) ^ 0 clearly no

part of the optimally planned city can have zero land allocated for

transportation as it would imply infinite social costs.

The Hamiltonian, (JW S, for the Mills-de Ferranti problem is

s p2CJ_JS = p± C(u) + RA6u + [-agX(u) + p(u)][6u -L2(u)], (3.4)

where y(u) is the multiplier applying to the constraint L2(u) £ 6u and

X(u) is the langrangian multiplier for the differential equation (3.2).

y(u) ^ 0 if L2(u) = 6u and y(u) = 0 if L2(u) < 6u. The usual first

order conditions follow immediately from (3.4);

^ --i *<»> -"&2 +M2 (3-5)
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and

Z°&s p?+1
3L = " plp2 C + agX - y = 0. (3.6)

At the edge of the city, u = u, we have a transversality condition,

i.e. y^ (u) = 0, which gives the following condition

RA6u + [-agX(u) + y(u)][9u - L2(u)] = 0, (3.7)

since T(u) =0. If the problem is to have a meaningful solution then

u > e > 0 so (3.7) implies that L„(u) 4 u. If we take L2(u) = 0 then

(3.6) and (3.7) become

P1P2 - P2+l RAX(u) =-^Cfci) Z+i =-^ . (3.8)
a a
s s

Since we have shown that for u = u, y(u) = 0, equations (3.5) and

(3.6) can be solved to yield

a

C(u) - CM = -2- [u - u], (3.9)
P2

i.e. congestion is a linear function of u. Equation (3.9) may be

rewritten as

a

C(u) = -S- Q(u) (3.10)
p2

1/P9+1
p C(u) p / R \

where Q(u) = u - u + H and H = — = -=• [—=-) . Thus
as \plp2/

in Eq. (3.10) we have a description of the optimal solution to the
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Mills-de Ferranti problem for those parts of the suburbs beyond the

last point at which all land is used for transportation. As [3]

showed (3.10) together with (3.2) can be combined to give the following

function for T(u):

as9 ~p2T(u) =̂ Q(u) P9+1 P9+1 n/ /2r\/ \ 2 - ,. 2 Q(u)
uQ(u) - u H + ^v

p0+2 p2+2
- H

Po+2
(3.11)

A more useful approach is to use the same two equations to derive

a relation describing the optimal allocation of land:

L2<u> =ir Vu> • iifsr
P2 6u

L2(u) --pT+r

From (3.12) it follows that

du

L0(u) =
(p2+l)(p2+2)

Q(u)2
L2(u)

P2 0u

(3.12)

-p2 e(u+H)

(P 2+l) (P 2+2)

(3.13)

Using (3.12) and (3.13) we can sketch the form of the optimal solution

for L2(u), see Fig. 1. For each pair (N,RA) there is a unique u solu

tion and Fig. 1 shows the optimal allocation of land for transportation

associated with a particular u and varying values of N and R,.
A

Thus for some values of N and R. the allocation of land for trans-
A

portation, L2(u), increases monotonically as one moves in from the city

boundary, for lower values of (N,R.) L„(u) reaches a maximum value

and then falls for the rest of the distance to the CBD boundary. The

rental value of land R may be sufficiently low that at some point L2(u)
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reaches its constrained value of 9> from this point inwards Eq. (3.11)

is no longer valid and perhaps nearer the city center L_(u) again

becomes less than 0u. This is what we consider next.

When L2(u) = 6u, y ^ 0, and we can differentiate (3.6) and use

the value of X'(u) given by (3.5) to give the following differential

equation in y(u):

^y(u) =Pl(p2+l)CP2 dC
a + P0 i~
s 2 du

(3.14)

Along the constraint L„(u) = 9u, T(u) remains constant at some value,

- N
N say; thus C(u) = — whenever (3.14) is valid. Since

DU

d r. , N C
*7 C(u) ="7T ="u

0U

along the constraint, from (3.14) it follows that ~ < 0 for all u
du

P2 C(u)
such that = Q(u) > u.

a x
s

Equations (3.10) and (3.11) give an expression for L«(u), which is

valid from u inwards until the constraint L9(u) = 9u is reached, it may

be written as,

P2 9u p2 9(H+^) p2 0 /H\P2+1
L2(u) =̂ +2-+(p^+1) (^+2) "(p2+l)(p2+2) (qJ <H+<p2+2 )S>'

(3.15)

Noting that the third term on the right-hand side of (3.15) is always

positive and referring to (3.13) we see that L2(u) always lies below

the L2(u) = 0 line. If u is the point at which L2(u) reaches the

constraint then
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or

a p9 6u p2 9(H+u)
9U < -t—Tn- +P2+2 T (p2+l)(p2+2) '

« <^riH +s-»i--l?r-<««)- (3a6)

Condition (3.16) proves that y(u) is a monotonic function and hence

that once L?(u) reaches its constrained maximum value, 9u, it remains

constrained from that point inwards to the CBD boundary.

Figure 1 therefore illustrates all possible forms of the solution

to the Mills-de Ferranti problem. The most alarming aspect of the results

is that near the CBD all available land may well be used for roads. One

is tempted to suggest that perhaps the size of the CBD should be expanded

under these circumstances. As we shall show when we plan for both the.

CBD and the suburbs at no point is all available land used for

transportation.

4. The CBD Problem

We now consider a problem which is complementary to the Mills-de

Ferranti problem, just as they ignored social costs arising within the

CBD so we ignore social costs arising in the suburbs. Thus the city is

considered to be made up entirely of a CBD with all the workers living

outside the city limits. Land has to be allocated between transporta

tion and business so that for a given number of workers, N, the social

costs given by (2.7) are minimized yielding an optimum radius for the

city, e. All the workers are assumed to travel to the city boundary
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along the radius passing through their place of work, thus the number

of travellers is given by

_u

(u) = I Nc(v)dv. (4.1)

N (v) is defined in (2.4) and we get the differential equation for the

number of travellers

T'(u) = a 0u - a L0(u) (4.2)
c c z

As in the previous section we can rule out the possibility of their

being no land allocated for transportation, i.e. L?(u) = 0, except when

T(u) = 0.

The Hamiltonian, ^Jj , for the CBD problem is

C p29J =Px C(u) +RA9u + [acX(u) + y(u)][9u -L2(u)], (4.3)

where y(u) is, as before, the multiplier applying to the constraint

L2(u) _< 9u. The first order conditions are

^- =-X*(u) =Pl(p2+l)C l (4.4)

and

.qyc p+i
^_=-PlP2C -acX-y =0 (4.5)

At the boundary of the city, y = e, we know that T(e) = N, and

there is the traversality condition that 3v (e) = 0. Equations (4.3)
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and (4.5) yield the expression for the Hamiltonian along the optimal

path,

r-ttQ. p2 p2+1\# = RA9u + Pl C(u) T(u) - P1P2 C(u) [6u - L2(u)]. (4.6)

Hence the transversality condition is

RA0e = plp2 C(e)
P2+l

0e -

(P2+1)L2(E)
(4.7)

A priori we assume R. > 0 and congestion at the boundary C(e) must also

be positive which implies the inequality

P2 0e

L2(e) < ^+r • (4.8)

Thus without a doubt the L»(u) trajectory close to the city boundary

is unconstrained and is governed by the congestion equation

a p? C(e)
C(u) = — [u - e + G] where G = —

p2 ac
(4.9)

This equation is derived from the adjoint equation (4.4) and (4.5), as

was Eq. (3.10) in the previous section. Define P(u) = u - e + G and

(4.2) and (4.9) may be integrated to yield

P2 P2 aceP(u) ZT(u) = G ZN +-^r
P2+l

P9+l P9+l p/uxP2+2 _ P2+2
uP(u) 2 - sG 2 - ^ -^P2+2

(4.10)

If Eq. (4.10) holds, i.e. L«(u) ^ 9u, over the range 0 <_ u <_ e, then we
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can use the condition T(0) = 0 and get

P 2 ac 6
G Z N = C

P2+l

o +1 P2+2 P?+2 ""£GP2+1 (G-e)2 -G2
P2+2 (4.11)

Equations (4.7) and (4.11) can theoretically be solved to yield the

optimal e as a function of N and R. since L„(e) in (4.7) can be replaced

by
P^
a £
c

The equation determining the amount of land allocated for transpor

tation in the city can easily be obtained from (4.10) and (4.11) and

acP(u) L (.u)
the identity, T(u) = . Hence:

P2 9
L2<U>=p7+T

P(u)
P2+l

P +1 P2+2 P2+2uP(u)P2+1 +(G-e) -P(u) 2
P2+2 (4.12)

The validity of this relationship depends upon the assumption that

L2(u) $ 9u in the range 0 < u < e. It can be rewritten in the form:

P2 9u p2 9(G-e)
L2(u) =JJT " (Po+l)(p +2) 1 -

G - £

G - e + u

P2+l
(4.13)

As u becomes large so the L„(u) curve asymptotically approaches the

line,

P2 9u p2 9(G-e)
L2(u) =7+2~ " t« 4.^^ ^ • (4.14)(p2+l)(p2+2) '

It is easily shown that
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L'(u)

and

Lj(u)

P2+l

p(uT

P~ 9u

(p2+l)(p2+2)

P(u)2

p9 0u p 0(G-e)

L2^>-^ +(P2+l) (P2+2)

(4.15)

(4.16)

The L^(u) = 0 line is the same as the Mills-de Ferranti case and the

L^'(u) = 0 line is Eq. (4.14). Thus we are able to sketch the L (u)

curve on the basis of the above information; and noticing also from

P2 0u
(4.13) that L0(u) < ,0 for all u > 0.2 - P2+2

Let us now consider possible alternatives to the solution shown in

Fig. 2. Suppose the number of travellers is zero within a radius r of

the city center, then the land allocated to business within that zone

will be zero and all the land will be used for transportation even

though no one is travelling. The cost of this land, 1/2 RA 0r2, in no
way reduces overall congestion costs so we may rule it out as a possible

optimal solution. Having previously shown that L„(u) > 0 for all

uG (0,e] and L2(e) $ 9e, the only possible exception to Fig. 2 is

L2(u) = 9u for some u £ (0,e).

Along the arc L2(u) = 0u it follows from differentiating (4.5)

with respect to u and substituting for X'(u) from (4.4) that:

X'(u) = P;L(p2+l)C |_du-p2 -acJ'
But since C(u)

N

0u
along the arc, where N is a constant, then

-16-
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y'(u) = - p1(p2+l)C [¥ *,1 • (4.18)

showing that y(u) ±s a monotonically decreasing function of u for

positive u. Thus once the allocation of land for transportation has

reached its maximum, it remains constrained at that value for all points

closer to the city center. N in (4.17) is therefore equal to 0.

Let u be the distance from the city center at which the amount

of land allocated for transportation becomes equal to 9u. We have

already shown that T(u) = 0, hence from (4.10),

P2 a 0
G N = C

P2+l

p9+l p9+l vr P2+2 p2+2
eG 2 -uP(u) 2 +P(U) n -GP2+2 (4.19)

but L2(u)a P(u) = P2 T(u) = 0 which implies P(u)

t 0. Thus (4.19) becomes

0 when L.(u) = 9u

N

a 9
c

P2+l

P2+1
£G

P9+2
G

P2+2

and (4.10) can be simplified to

T(u) =
ac6
P2+l

u -
P(u)
P2+2 P(u)

(4.20)

(4.21)

From (4.21) we can also obtain an expression for the allocation of land

for transportation and it proves to be linear in u, the distance from

the city center..

P9 9
L2(u) =-*—

1 P0+1 b-m (.4.22)
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However, when we solve (4.22) for the distance u at which all the

land is allocated for transportation, we discover that this implies

that P(u) = (p2+2)u. P(u) has already been shown to be zero and hence

the only place in the city where all the land is allocated for trans

portation is at the city center. We have thus shown that at no point

in the CBD city is all the land allocated for transportation. The

case where P(u) becomes zero at the city center proves to be a limiting

case as we shall see.

Figure 2 shows the set of possible solutions to the CBD problem

for a given number of people working in the city and varying values of

land rent, RA« If R is very high the city will be small and congestion

costs high since not much land is allocated to transportation. For

increasingly high R we approach but never reach the limiting case

where no land is used for transportation, i.e. L (u) = 9u, implying

that

C min „ ,. v
2 = N" (4.23)

As RA decreases so the relative costs arising from congestion can be

decreased by expanding the city's size. Since in (4.9) we showed that

congestion increases linearly with the distance from the city center

(as the size of the city expands), it will be the city center which has

zero congestion costs before any another point. Once we have attained

zero congestion costs at the city center (P(0) = 0) there is no point

in expanding the city further since taking a person from the center

where he creates zero congestion costs to the edge of the city is
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clearly non-optimal. Thus as we have previously shown mathematically

P2 9u
no solutions lie above the L_(u) = —rr— line.2 p2+2

If we examine this upper bound on the solution of L?(u), we find,

since as was shown above it implies G = e, that

an 6eL^ = <P9+2)N. (4.24)
c max l

Thus £ . and £ are the lower and upper limits on the radius
mm max

of the CBD city irrespective of the value of R for a given working

population and at no point~ is all the land used for transportation

purposes.

5. The Unified City Problem

One of the conclusions of the Mills-de Ferranti work was that

close to the boundary of the CBD with the rest of the city all avail

able land is under certain circumstances used for transportation. This

is hardly a satisfactory "optimal" result and once this state of satura

tion has been reached the obvious answer is to extend the boundary of

the CBD. The problem tackled here is to accommodate N workers within

the CBD who all live outside the CBD and travel to work along the radius

of the city which passes both through their place of work and their

homes. Again the city should be designed to minimize social costs

defined by (2.8), this time however the limits of integration are from

u = 0, the city center, to u = u, the boundary of the city which is

unknown, as is the radius of the CBD, £.
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The solution can be tackled in two parts which are in essence the

CBD problem of the previous section and the Mills-de Ferranti problem.

Now that we are considering both the CBD and the suburbs the assumption

made above concerning the direction of travel to work and the direc

tional location of a workers residence are somewhat more unrealistic

than in the previous sections. The assumption does have the advantage

of keeping Eqs. (3.2) and (4.2) as the differential equations relating

to travellers within the suburbs and the CBD respectively.

Again we may rule out the possibility of L„(u) = 0 except where

T(u) = 0 and so the Hamiltonian for the unified problem is equal to

£yc, (4.3), within the CBD and equal to ^JJ8, (3.4), within the suburbs.

The transversality condition at the edge of the city, (3.7), also applies

but at £, the junction of the CBD and the suburbs, the transversality
2

condition (4.7) is replaced by a set of boundary conditions relating

variables on either side of £. These are,

T(e") = T(e+) = N

3JC(0 =£WS(e+)
(5.1)

X(e") = X(£+) + v,

+
£ = £ = £

where £ denotes "on the CBD side of the boundary" and £ "on the

suburban side of the boundary." From (4.6) we know that

^ c - po+1C^ (£ )= RA 0£ - Pl COO z [p 9£ - (p +1)L (£-)] (5.2)
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and similarly

CJJS(£+) =RA Be +p± C(e+) 2 [p2 Qe -(p2+l)L2(e+)]

Equating ^Jj (e ) and ^^S (e ) gives

L2(e )

L2(£+)

since

C(s*)
C(c")

P2+l
(p2+l)L2(e ) - p2 0e

(p2+l)L2(e+) -p2 9e

T(e+)
L2(e+)

L2(e ) L2(e )

T(e ) L2(£+)

= 0,

(5.3)

(5.4)

One solution to (5.4) is L2(e )=L (e~), i.e. there is continuity in

the allocation of land across the CBD boundary. Differentiating (5.4)

with respect to L„(s ) we obtain

P2(P2+l)(L2(e )-9e)

((p2+l)L2(e+)-p2ee)L2(e")
(5.5)

which shows (5.4) to be a monotonic function of L (e~) for positive

values of e. Hence L^e )= L2(e~) is the only feasible solution for

the boundary condtions. Note that (5.2) and (5.3) apply even if at one

or both sides of the boundary L«(e) has a constrained valued.

Let us consider initially the case where L„(e) < 9e, then

X(e ) =
"Plp2

C(e)

p9+l -A(e+) a
^ s

-21-
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However

C(e)p p? a a
g=— _i._i[H +;_e].^Q(e)

C C 2 r

where

and

P0 a 9
G 2N = c

p2+i ,_

p?+l p +2 p +2
EG Z ,(G-e) Z -GZ

P2+2

P2+2 p +2
- H

P, a e Po+1 p„+l
Q(E) 2 - uH 2 +^>

P2+2

(5.6)

(5.7)

(5.8)

three equations in three unknown variables, G, e and u. Equation (5.7)

is (4.11) and (5.8) comes directly from (3.1) by setting u = £ and

T(e) = N.

P2 9e
From our analysis of the CBD problem we know that L-(e) < _

2 — P^+2

so in this section we are not troubled by the possibility of L9(u)

ever equalling 9u since we have shown continuity of L«(e) across the

boundary. Also we know from our analysis of the Mills-de Ferranti
P? 9e

problem that L9(u) has the maximum value of L«(e) when L0(e) < ., .
z z 2 — p2+l

The solution to the unified problem for a given working population for

the city can easily be presented as in Fig. 3 by combining the solutions

to the CBD and Mills-de Ferranti problems.

We may summarize the findings by stating that the optimal alloca

tion of land for transportation as we move out from the city center is

a monotonically increasing concave function until the boundary of the

CBD is reached when it becomes a monotonically decreasing convex
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function until the boundary of the city is reached when it is zero.

It only remains to find the maximum and minimum bounds on the

city*s size for a given working population, N. e . and £ are as

in (4.23) and (4.24) respectively. From (5.6) given that we know

£ = G,
max

e = — [H + u -£ ],
max a max max

c

and from (3.8) and (4.7),

1/P2+1 l/p2+2

H =
PiP1H2

P2 max \p0+2

These two equations provide the relationship

u a
max _ -i , c

e a
max s

i- U+2y
1/P9+1-I

I

2 (p2+2)N
where e = —

max a 9
c

•

It can easily be shown that

u . a
min _ - c

e . a
min s

from which it follows that

'min

2N

a 9 '
c
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(5.9)

(5.10)

(5.11)

(5.12)



u /p.+2
max •» / 2

" V 2
min

6. Conclusions

i/p2+i
a

1 - .
as + ac \p2+2

(5.13)

In this paper we have shown that by extending the Mills-de Ferranti

problem to deal with the optimal allocation of land for transportation

both in the suburbs and the CBD the conclusions of Mills that at some

point in the city all land is used for transportation is no longer valid.

Indeed we have proved the existence of an upper limit on the amount of

land used for transportation and of a maximum city size for a given

working population regardless of the alternative rental value of land.

It is comforting to find that the Mills-de Ferranti vision of a city

consisting entirely of roads at some points is false when we adopt a

wider view of the problem.

The assumptions made in analyzing this problem are quite severe and

in particular no one can seriously pretend that the major item of social

costs arising in a city is congestion. Artie [1] in discussing the

original Mills-de Ferranti paper raises many valid points the only one

of which we have attempted to answer here is the neglect of social costs

within the CBD.
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Footnotes

RA 9U" plp2 A(u) \P2+11. Suppose L (u) 4 0, then X(u) = - = -±-±-\^^L
ag[9u -L2(u)] as \L2(uX

but T(u) = 0 by assumption and hence implies that u = 0 if l>nM

^ 0. u > 0 by assumption and hence L«(u) = 0.

2. See Bryson and Ho [2] pp. 101-106. v is the multiplier associated

with the constraint [T(u) - N] =0.
u=£
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Fig. 2. Optimal allocation of land for transportation within the CBD

for a fixed working population.
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Fig. 3. Optimal allocation of land for transportation in both the

CBD and the suburbs for a fixed working population.
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