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Abstract

A matroid generalization is given to a theorem of Mendelsohn and

Dulmage concerning assignments in bipartite graphs. The generalized

theorem has applications in optimization theory and provides a simple

proof of a theorem of Nash-Williams.
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1. A Theorem of Mendelsohn and Dulmage

A theorem of Mendelsohn and Dulmage [3] was originally proved for

(0,1) matrices. However, it can be regarded as a theorem on bipartite

matchings and hence it is a special case (finite) of Banach's mapping

theorem [1]. We first give a simple proof of this theorem using the

concept of a matching.

Theorem (1.1) (Mendelsohn-Dulmage). Let G(X,Y) be a bipartite

graph, the two parts being X and Y. Let S, T be subsets of X,Y re

spectively such that each set has an assignment into the other part.

Then there is an assignment between two subsets of X,Y which contain

both S and T.

Proof. Let f: S •+ Y and g: T •* X be the assignments. Write

F = {(x,f(x)): x S s}, H = {(g(y),y): y e T}. F and H are matchings

in G and they cover respectively S and T. Form the symmetric difference

F A H. It consists of the five types of cycles and chains shown in

Figure 1. (Some of these chains could be infinite in one or both di

rections if G is an infinite graph). In each case above we can select

a matching set of edges M^_ F A H such that it covers all the vertices

of X U Y covered by F A H. Then M U (F n H) is a matching that covers

S U T.

Remark. Banach's mapping theorem is same as Theorem (1.1) for

arbitrary |x U y|, possibly infinite. For other variations of

Banach's theorem see [4].

We proceed to prove our main theorem We shall write a matroid

as M = (E,$) where E is the set of elements and $ is the family of
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independent subsets of E.

Theorem 1.2. Let M., M- be two matroids on E and I-, I« each be

independent in both matroids. Then there exists a set I C I U I

independent in M-, M. such that

spV) Dsp1^), i=l,2

where sp ( ) stands for span in matroid M..

To see how these two theorems are related we take E = set of edges

of the graph G(X,Y) and consider the natural partitions of E defined as

follows. P- = {E : xe x}, P2 = {E : y € Y} where E = set of edges

incident with vertex v. Let M., 1=1,2 be the partition matroids cor

responding to P±, i.e., a set I is independent in M. if and only if

11 n E |£ 1 for all x (resp. |l n E | <_ 1 for ally). Then

I. = the edges of the assignment of S

I„ - the edges of the assignment of T

I = the edges of the assignment given by the theorem.

2
Proof of Theorem 1.2. If sp (I-) 3 I2 tnere is nothing to prove.

Let eeI2\sp2(I1); I +eis in.^. If I +ebelongs to ^ let
Ij - I- + e. Otherwise, there exists a M--circuit C such that e6CC

I1 + e. Now C-e $ I- ni since I, is in A,. Choose e* e Cn (I-^Ij)

and define Ij =I -e' +e. We have Ij €^ and sp1(ip =sp1(I1) and
also I* is trivially independent in M«. However, |l' n I | > |l n 1 |.
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(k)
Thus we can apply the same procedure to define I. , k=l,2,.. such that

sp1^) =sp1(I1), I<k) e^ n,92 until sp2(l{k)) 3I2. Then I=I00
proves the theorem.

2. Application to Optimization.

Suppose 6- and 0„ are two different criteria of optimality, such

that

spi(A) 2 sp±(B)

implies

A >_B (0±), i=l,2,

i.e. A is to be preferred to B with respect to 9 . Let I., I« be sets

in the family ,Q n Q which are maximal with respect to 6-, 9„ re

spectively. Then by Theorem 1.2 there exists a set I € ,(}- n ^ which

is maximal with respect to both 6. and 6?.

Specifically, let X, Y in the bipartite graph G(X,Y) represent men

and jobs to be matched, where the edges denote the compatibility relation.

Suppose 8 is a union-determined criteria of optimality based on seniority

of men and 6. is a management-determined criterion of optimality based on

priority of jobs. Let I- be a subset of edges representing a union-

optimal assignment of men to jobs, possibly as determined in Gale [2],

and let I„ be a management-optimal subset. Then by Theorem 1.2 (or 1.1)

there exists an assignment I ^ t u i which is simultaneously union-

optimal and management-optimal.
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3. Proof of a Theorem of Nash-Williams.

Theorem 1.2 provides a simple and direct proof of a theorem of Nash-

Williams [5].

Theorem 3.1

Let M- = (E, A) be amatroid and h: E-*• EQ be amapping of Einto

En. Then Mrt = (E_, ,Qrt) is a matroid, where
u u u ~^u

#0 =(I0 £EQ: for some I± e ^, h^) -IQ}.

Proof:

It is sufficient to show that if I , I ,, are two sets in ,0rt
p p+1 ^0

respectively with p and p+1 elements, there exists a set h(I) € ((\

with p+1 or more elements such that I Ch(I)Cl U I . Let M0 =
p ~~ — p P+-L ^

(E,«y2) be a partition matroid where

$2 ={I2 -E: lX2 °h"1(e)l -X> for a11 e€V'

Let I', I'+1 be sets in ,y , respectively with p and p+1 elements, such

that h(I') = I and h(I') = I ,.,. The sets I', I* - are independent
p p p+1 p+1 p' p+1 r

in M_ as well as M., and we can apply Theorem 1.2. Thus there is a

set Ie $ n ,0 such that

sp^I) Hsp1^^),

hence 111 >^ p+1, and
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sp2(i) d sP2(r),

from which it follows that

h(I) ^h(I') = I
P P

Also h is one-one on I and I^'I'.U If+i> which implies that |h(I)|>. p+1

and h(I) £ I U I Thus ,(L defines the independent sets of a matroid.
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Fig. 1. Components of F A H
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