

Copyright © 1972, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

ON FUZZY ALGORITHMS

by

L. A. Zadeh

Memorandum No. ERL-M325

22 February 1972

/

/ . />••?...• .A

V

ON FUZZY ALGORITHMS

by

L. A. Zadeh

Memorandum No. ERL-M325

22 February 1972

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

ON FUZZY ALGORITHMS

*

L. A. Zadeh

ABSTRACT

A fuzzy algorithm is an ordered set of fuzzy instructions which upon

execution yield an approximate solution to a given problem.

Two unrelated aspects of fuzzy algorithms are considered in this

paper. The first is concerned with the problem of maximization of a

reward function. It is argued that the conventional notion of a maxi

mizing value for a function is not sufficiently informative and that a

more useful notion is that of a maximizing set. Essentially, a maximizing

set serves to provide information not only concerning the point or points

at which a function is maximized, but also about the extent to which the

values of the reward function approximate to its supremum at other points

in its range.

The second is concerned with the formalization of the notion of a

fuzzy algorithm. In this connection, the notion of a fuzzy Markoff

algorithm is introduced and illustrated by an example. It is shown that

the generation of strings by a fuzzy Markoff algorithm bears a resemblance

to a birth-and-death process and that the execution of the algorithm

terminates when no more "live" strings are left.

ft

Department of Electrical Engineering and Computer Sciences, and the
Electronics Research Laboratory, University of California, Berkeley,
California 94720.

This work was supported in part by the Navy Electronic Systems Command,
Contract N00039-71-C-0255.

I. Introduction

Roughly speaking, a fuzzy algorithm [1] is an ordered set of fuzzy

instructions which upon execution yield an approximate solution to a

given problem. As in the case of non-fuzzy algorithms, a fuzzy algorithm

is usually expected to be capable of providing an approximate solution to

any problem In a specified class of problems rather than to a single prob

lem.

Simple examples of fuzzy algorithms which occur in everyday experience

are cooking recipes, instructions for parking a car, instructions for ty

ing a knot, etc. As a more concrete example, consider the following

simple control problem. Suppose that we wish to transfer a blind-folded

subject A from an initial position x in a room with no obstacles to a final

position y. Furthermore, suppose that the fuzzy instructions are limited

to the following set: 1) Turn counter-clockwise by approximately a

degrees, with a being a multiple of, say, 15; 2) Take a step; 3) Take a

small step; and 4) Take a very small step.

Under these assumptions, a simple fuzzy algorithm for guiding A

from x to y may be stated as follows. (It is understood that after A

executes an instruction, his new position and orientation are observed

fuzzily by the experimenter, who then chooses that instruction from the

algorithm which fits most closely the last observation.)

1. If A is facing y then go to 2 else go to 5.

2. If A is close to y go to 3 else go to 7.

3. If A is very close to y go to 4 else go to 8.

4. If A is very very close to y then stop.

-2-

5. Ask A to turn counterclockwise by an amount needed to

make him face y. Go to 1.

6. Ask A to take a step. Go to 1.

7. Ask A to take a small step. Go to 1.

8. Ask A to take a very small step. Go to 1.

Will this algorithm work? If yes, how well? A basic characteristic

of fuzzy algorithms is that questions of this type cannot, in general, be

answered precisely. Thus, one must be content with fuzzy answers such as

"The algorithm will work reasonably well so long as the degree of fuzzi-

ness in observations is relatively small and the subject executes the

instructions in a way that is consistent with the expectation of the ex

perimenter." Needless to say, such vague assertions would not be accept

able to those who expect the convergence properties of an algorithm to be

expressible as a provable theorem. Unfortunately, unpalatable as it may

be, there may be no alternative to accepting much lower standards of preci

sion if we wish to be able to devise approximate (that is, fuzzy) solutions

to the many complex and ill-defined problems which arise in the analysis

of large-scale man-machine and man-like systems [2].

Fuzzy algorithms and fuzzy algorithmic definitions may well prove to

be of considerable practical importance once we learn more about their

properties and how to construct them for specific purposes. In what

follows, we shall focus our attention on a few concepts which may con

tribute to this objective.

-3-

2. The Concept of a Maximizing Set

Consider a real-valued function f on X = {x}, with f(x) representing

the reward associated with an action x, x e X. We assume that f is

bounded both from above and from below, that is, - » <Inf f < Sup f < <»,

where Sup f and Inf f represent, respectively, the supremum and infimum

of f over X.

Suppose that we wish to maximize the reward and pose the question:

For what value of x does f attain its maximum value? A conventional

answer to this question might be "At x = x ," say. It is clear, however,

that such an answer does not provide sufficient information about the

value that should be assigned to x because what matters is not only that

f is maximized at x- xq, but also how it behaves in the neighborhood of

x . Thus, if f is quite flat around x , then the solution x = x is a
w o o

robust one and hence it is not essential that x be exactly equal to x .

The opposite is true, of course, if f is sharply peaked around x .
o

The inadequacy of the concept of a maximizing value suggests the

introduction of a more general concept, namely, the concept of a maxi

mizing set. Intuitively, a maximizing set M(f), or simply M, for a

function f on X is a fuzzy subset of X such that the grade of membership

of a point x in M represents the degree to which f(x) approximates to Sup f

in some specified sense. For example, suppose for simplicity that X

is the finite set X « {1,2,3,4,5,6,7,8} and that f(l) = 5, f(2) = 6,

f(3) - 8, f(4) « 10, f(5) = 9, f(6) = 2, f(7) =-,6 and f(8) = 1. Further,

-4-

suppose that the grade of membership of x in M is defined by

2

(1)

= 0 if u^x) £ 0.5

Then R,(3) = 0.64, \\.W = 1, Uw(5) = 0.81, with all other points having

zero grade of membership in M.

In the case under consideration, the maximizing value of x is x =4

and the maximizing set for f is the fuzzy set M = {(3,0.64),(4,1.0),

(5,0.81)}. Clearly, since the maximizing set provides essential informa

tion about the effect of choosing values of x other than x on the values

of the reward function f, it would be very desirable, in general, to know

M - and not just x - in situations involving a decision on the value to

assign to x in order to maximize a reward function. For example, if the

maximizing set M for a reward function defined on the interval [0,10] is

of the form

y^(x) =0.9 for 0 < x < 5

y^(x) =0.2 for 5 < x < 6

VL.(x) = 1.0 for x = 6

u^x) =0.1 for 6 < x < 10

then the maximizing value for the reward is x =6. However, inasmuch as

the values of the reward function in the immediate neighborhood of x =6

are very low, it would be very risky to set x = 6. Obviously, it would be

much better to set x = 3, say, since \l^ is flat and close to unity in the

-5-

neighborhood of 3. Although contrived to illustrate the point, the

example clearly shows the inadequacy of the notion of the maximizing

value for dealing with realistic decision problems - problems in which

the sensitivity of the solution to perturbations is almost always an

important issue.

An equation such as (1) serves to "calibrate" the definition of a

maximizing set. It would be unreasonable to expect that a universal de

finition be applicable to all situations. However, the following cali

brating definition can frequently be used as a starting point from which

other definitions, if necessary, may be obtained by modification.

Definition of a maximizing set

Assume that a real-valued reward function f is defined over a domain

X and that - °° < Inf f <_ Sup f < °°, that is, f is bounded both from above

and from below. To define a maximizing set for f it is expedient to con

sider separately three cases, as follows.

Case 1. A reward function f will be said to be positive-definite if it

is non-negative for all x in X, that is, if Inf f ^ 0 (Fig. 1). In this

case the membership function of the maximizing set is defined by

(2> Vx) =l£h > x e x •Sup

Case 2. A reward function f is non-definite if Inf f <_ 0 and Sup f ^> 0

(Fig. 2). In this case, the defining relation (2) is applied to a trans

late of f expressed by

(3) f* = f - Inf f

Thus, for a non-definite reward function, the membership function of the

-6-

maximizing set is defined by

f - Inf f(4) ^(x) =
Sup f - Inf f

Case 3. A reward function f is negative-definite if it is non-positive

for all x in X, that is, Sup f < 0. In this case, (2) is applied to a

translate of f expressed by

(5) f* = f- Sup f- Inf f

yielding the definition

Inf f - f(6) Vx) -^J_±
Inf f

Taken together, (2), (4) and (6) constitute a general definition of

the maximizing set for a reward function which is bounded both from above

and from below.

The following properties of the maximizing set are immediate conse

quences of the above definition.

1. The maximizing set for f is unique.

2. The maximizing set for f is invariant under linear scaling.

In other words

(7) M(kf) = M(f)

where k is any real constant.

3. The maximizing set for f is not invariant under translation.

Thus, if f £ 0 and a = constant ^ 0, then in general

M(f + a) 4 M(f).

More specifically, for any fixed x, the dependence of U«(x) on

a is of the form

, N a + a

Vx) =m

-7-

where a and b are constants. This implies that, as the magnitude of

a increases, the membership function tends to unity.

4. For X = R the maximizing set is convex if and only if the

reward function is quasi-concave.

By definition, a fuzzy subset A of R (linear vector space of

n-tuples of real numbers) is convex [3] iff all of its level

sets are convex, that is, iff the sets

(8) Aa = {x|yA(x) >a} , 0<a <'

are convex in R . Equivalently, A is convex iff y satisfies

(9) uA(X X]L + (1-A)x2) >Min (U^), VA(*2))

for all Xin [0,1] and all x_,x2 in Rn .

Also by definition, a function f on R is quasi-concave iff

all of the level sets

fa = {x|f(x) >a}

are convex for all finite a in (-00,00).

Now the definition of]i^ in terms of f implies that if f is

quasi-concave, so is JJL.. This in turn implies the convexity of

M. Thus, if f is quasi-concave then M is convex and vice-versa.

Example. The maximizing sets for the reward functions shown in Figs.

1, 2 and 3 are convex.

Comment It should be observed that a concave reward function can be

transformed into a quasi-concave function which is bounded both from above

and from below by an order-preserving transformation.

The fuzzy maximum

The concept of a maximizing set is, in effect, a fuzzification of

-8-

the concept of a maximizing value. From this point of view it is natural

to ask the question: What is the fuzzy counterpart of the notion of the

maximum of a function? To put it another way: If x is a maximizing

value for f then the maximum value of f is f(x), that is, the image of
o

x under the mapping f. What is the corresponding image of the maxi

mizing set M?

To answer this question we note that if f is a function from X = {x}

to Y = {y} , with y = f(x), then, as defined in [3]» a fuzzy set A in

X induces a fuzzy set B in Y whose membership function is given by

(10) UB(y) = Sup uA(x)
x £f^y)

where f (y) is the preimage of y, that is

(11) f"1(y) = {x |,y = f(x)}

If we identify A with the maximizing set in X, then B may be inter

preted as the fuzzy maximum of f, which is a fuzzy subset of Y (Y = range

of f). Denoting this fuzzy subset of Y by MM, it follows from the defini

tion of M that the value of PM(x) for each point in the preimage of f is

the same, namely, VUXf (y))« Consequently, from (10) we can infer that

the membership function of the fuzzy maximum of f is given by

(12) u^y) =)JM(f"1(y)) if f_1(y) exists

= 0 otherwise.

Example. Suppose that X = [0,10] and f has the form shown in Fig. 1.

More specifically,

f(x) = x + 2 , 0<x<2

f(x) =-x+6 , 2<x<3

-9-

f(x) = 3 , x > 3

The maximizing set for f is given by

u^x) =i±-£ , 0<x<2

UM(x) =^-=-2 , 2<x<3

VX) = 4 ' X > 3

Correspondingly, the fuzzy maximum of f is given by

yMM(y) = 4 , 2<y <4

= 0 elsewhere.

The minimizing set

So far we have focused our attention on the concept of the maximizing

set for f - denoted by M(f) or simply M. In terms of M, the minimizing

set for f (denoted by m(f) or simply m) may be defined by

(13) Minimizing set for f = Maximizing set for -f.

By using the expressions for \l. given by (2), (4), and (6), it can

readily be shown that the sum of]L. and pi is a constant. Thus

(14) V«M(x)+ Pm(x) = UP Sup ^ for positive-definite f

(15) Vv,(x)+ y (x) = 1 for non-definite f

and

(16) lJM(x)+ Um(x) = Up fn for negative-definite f.

The constancy of the sum of yw(x) and y (x) implies that Uvr(x) is

large where y (x) is small and vice-versa. (Fuzzy sets which are
m

-10-

?

related to one another in this way are weakly complementary.) In parti

cular, if f is non-definite, then by (15) M and m are complementary fuzzy

subsets of X - a property which is in accord with our intuition.

The maximizing and minimizing sets of a reward function contain the

type of information which is usually provided by a sensitivity analysis.

In practice, these sets would usually be defined by exemplification, that

is, by associating approximate grades of membership with a finite set of

representative points in X.

3. Fuzzy Markoff Algorithms

In the preceding section, we were concerned with the formalization

of the notion of an approximate maximizing value, which led us to the

concept of a maximizing set.

In this section, our concern is with the formalization of the notion

of a fuzzy algorithm. As was pointed out in [1], a fuzzy algorithm may

be equated with a fuzzy Turing machine. In [4], both the fuzzy Turing

machine and the fuzzy Markoff algorithm are defined and their equivalence

is demonstrated. Here, we shall give a simpler definition of a fuzzy

Markoff algorithm which is a natural extension of the conventional way in

which a Markoff algorithm is defined [5], [6]. In effect, our defini

tion of a fuzzy Markoff algorithm is intended mainly to make more precise

the concept of a fuzzy algorithm in the same sense that a Markoff algorithm

formalizes the concept of a non-fuzzy algorithm.

*

Let A denote the set of all finite strings over a finite alphabet

A. For our purposes, it will be convenient to represent a finite fuzzy

subset, L, of A in the form of a linear combination

(17) l = U-Ct. + y_a0 + ... + u a
11 2 2 'n n

-11-

where the a., i = l,...,n, denote strings in A and the y. represent

their respective grades of membership in L.

Example. Let A = {a,b}. Then

L = 0.3 aab +0.8 bba + 1.0 aa + 0.3 ba

is equivalent to expressing L as the collection of ordered pairs

L = {(0.3,aab), (0.8,bba), (1.0,aa), (0.3,ba)}

When expressed in the form (17), the concatenation of two fuzzy sets

of strings

L = y.a.. + ... + y a
11 n n

and

L1 = yXT + ... + y'aT
11 mm

where a..,...,a and a',...,aT are strings in A , can readily be
In 1 m

obtained by term by term multiplication and addition, with the under

standing that

(18) y±u» = y± /syj = Min (vvVp

(19) ui + vj = yi v uj = Max ^i'ty

and

(20) a.aT. = concatenation of a. and a!.

Example.

L = 0.3 aa + 0.5 aba

Lf = 0.2 ab + 0.9 ba

Then

LLT =0.2 aaab + 0.2 abaab + 0.3 aaba +0.5 ababa

-12-

*>

"k -k
A non-fuzzy Markoff algorithm M is a function from A to A which

is characterized by a finite sequence of productions P ,.. ., P of the

general form

•- (21) a -* 6 or a ->• $.

where a (the antecedent) and $ (the consequent) are strings in A and

the arrow signifies that if a occurs as a substring in a string x, then

the leftmost occurrence of a in x may be replaced by 0 . The presence of

the period indicates that the production is terminal in the sense that the

execution of the algorithm terminates after a terminal production is applied,

A typical very simple problem in the theory of Markoff algorithms is

the following. Suppose A = {a,b,c} and let x be any string in A .

Find a Markoff algorithm which removes the first three occurrences of c

from x. E.g., acabbcabcc is transformed into aabbabc.

A fuzzy version of this problem would be: Find a fuzzy Markoff

algorithm which removes the first few occurrences of c from x. In this

case, if we define few as the fuzzy set

few= {(1,1.0), (2,1.0), (3,0.8), (4,0.6)}

then the result of applying this fuzzy Markoff algorithm to x = acabbabcc

would be a fuzzy set rather than a single string. Thus, denoting the

fuzzy algorithm by FM, we have in symbols

V FM(acabbcabcc) =1.0 aabbcabcc +1.0 aabbabcc +0.8 aabbabc +0.6 aabbab

^- More generally, let rJ(A*) denote the set of all fuzzy subsets of
*

A . Then a fuzzy Markoff algorithm, FM, may be regarded as a function

from A to yP(A) which satisfies certain conditions and is characterized

-13-

in a particular way which will be described presently.

*

Specifically, let L be a finite fuzzy subset of A

*

(22) L = y-a. + ... + y a , a. e A , i = 1, ..., n .
' 11 n n i

Then we postulate that the image of L under FM is given by

(23) FM(L) - FM(y1a]L + ... + y^)

= y. FM(ol) + ... + u FM(a)
11 n n

which implies that FM is a linear operator in A . In consequence of

(23), the operation of FM on a fuzzy set of strings can be described in

terms of its operation on individual strings. This basic property of

fuzzy Markoff algorithms plays an important role in the description of

their execution.

In contrast to the form of a production in a non-fuzzy Markoff algo

rithm, a typical production, P., in a fuzzy Markoff algorithm has the

appearance

(24) Pi : a- WjBj + ... + ^ + Vl ek+l *+ •••+"A *

ft

where the $?s e A , the y's are numbers in the interval [0,1], and the

terms ending with a period are tt>e terminating components in the con

sequent of P.. The important point is that the consequent of P is a

fuzzy set of strings rather than a single string.

Now suppose that a string x can be expressed as x = u a v, where u,a,

ft

v e A and a is not a substring of u. (I.e., a in u a v represents its

leftmost occurrence.) Then, on substituting the consequent of P^. for a

in x, we obtain the fuzzy set of strings represented by

(25) u av = u <u 6 + ... + u^ + yk+1 $k+1 •+ .. •+ Un3R.)v

-14-

V*

M-

$

- y^v + ... + yku3k v+ yk+1 u3k+1 v •+ ... + ynu3n v .

Furthermore, if p is a number in [0,1], then

(26) p u a v = p Uxu$ v+ ... + p yk u3k v + p yk+1 u$k v •+ ...+

p ynu3n v #

where p y. = p ,s u. , i = 1, ... , n .

Example. Suppose x = abbabbb and

ba + 0.3 ab + 0.9 a ,

Then

abbabbb = 0.3 ababbbb +0.9 ababbb,

and

0.4 abbabbb = 0.3 ababbbb +0.4 ababbb*

In summary, a production P. is applicable to a string x if its

antecedent is a substring of x. The result of applying of P. to x is

expressed by (25) and (26). (Note that the substitution is made in the

leftmost occurrence in x of the antecedent of P..)
i

We are now ready to define the execution of a fuzzy Markoff algorithm

in terms of (23) and the rewriting rules (25) and (26).

Definition of a fuzzy Markoff algorithm

ft s~T ft
A fuzzy Markoff algorithm, FM, is a function from A to cr(A)

which satisfies (23) and is characterized by (a) a finite alphabet A; (b)

^ possibly a finite auxiliary alphabet A' (comprising various markers which

may be needed for bookkeeping purposes); and (c) a finite sequence of

productions P_ , ..., P of the form (24), with P : A -*• A. (A = null string)
In ' n

-15-

It is convenient to describe the operation of FM on a string x in

A in terms of a subalgorithm FM which is defined on ^ (A). Thus, if
ft

L is a fuzzy set of strings in A , e.g.,

*

L = y^ + ... + yrvr , v e A , i = 1, ... , r

then, as in (23)

(27) FM(L) = y, FM (v.) + ...+ y FM (v)
l jl r r

— *

To compute FM (v.) , v. e A , i = 1, ..., r , we proceed as follows:

Apply the first applicable production in the sequence P,, ..., P

to v± and call the result FM (v.). (Note that P will always be

applicable since v. may be written as A v..) Set

(28) D(v.) = sum of terms in FM (v.) which terminate in a period

(29) B(v.) = sum of the remaining terms in FM (v.)

and

(30) D(L) = u-DCv.) + ... + y D(v)
i i r r

(31) B(L) = y-B(v.) + ... + y B(v)
11 r r

The result of operating with FM on L is defined to be the sum of the

fuzzy sets of strings D(L) and B(L). Thus

(32) FM(L) = D(L) + B(L)

— ft

In terms of FM, the computation of FM(x) , where x e A , is carried

out as follows.

1. Set L = x = initial string

2. Set FM(x) = 0 (empty set)

-16-

p$

3. Apply FM to L and compute FM(L) = B(L) + D(L).

4. Set

(33) FM(x) = FM(x) + D(L)

5. If B(L) is empty, terminate the execution of FM.

6. If B(L) is not empty, set L = B(L). Go to 3.

The execution of the algorithm is actually quite straightforward and

simple in principle. The following example will serve as an illustration.

(No auxiliary alphabet used.)

Example. Assume A = {a,b} and

P1: ab -* 0.3 bb + 0.6 a + 0.9 ab.

P2: ba •*• 0.8 a. + 1.0 bb.

Py b -* 0.6 a.

A -*• 1.0 A,

Let the initial string be x = abba. Applying FM to L = x, we note

that the first applicable production is P . It yields for L = x

FM(L) =0.3 bbba +0.6 aba +0.9 abba,

D(L) =0.9 abba.

B(L) =0.3 bbba +0.6 aba

and

FM(x) = 0.9 abba.

Since B(L) is non-empty, we apply FM to L = B(L) yielding

FM (0.3 bbba +0.6 aba) = 0.3 FM (bbba) + 0.6 FM (aba)

Now, applying ?2 to bbba we get

FM (bbba) = 0.8 bbba. + 1.0 bbbb.

-17-

and applying P_ to aba we have

FM (aba) =0.3 bba + 0.6 aa + 0.6 aba.

f

Thus

FM(L) = 0.3 bba + 0.6 aa + 0.6 aba. + 0.3 bba. + 0.3 bbbb. ,*

D(L) =0.6 aba. +0.3 bba. +0.3 bbbb.

B(L) =0.3 bba + 0.6 aa

and

FM(x) =0.9 abba. +0.6 aba. + 0.3 bba. + 0.3 bbbb.

Since B(L) is non-empty, we apply FM to L = B(L), obtaining

FM (0.3 bba + 0.6 aa) = 0.3 FM (bba) + 0.6 FM (aa).

Next, applying P_ to bba, we get

FM (bba) = 0.8 ba. + 1.0 bbb.

and applying P co aa, we obtain

FM (aa) =1.0 aa.

thus

FM(L) =0.3 ba. +0.3 bbb. + 0.6 aa.

D(L) = 0.3 ba. + 0.3 bbb. + 0.6 aa.

B(L) = 9

and finally

FM(x) =0.9 abba. +0.6 aba. +0.3 bba. +0.3 bbbb.

+ 0.3 ba. +0.3 bbb. +0.6 aa.

At this point the execution of the algorithm terminates because

B(L) = 6.

The execution of a fuzzy Markoff algorithm may be likened to a -^

birth-and-death process in which the operation with FM on a string v.

gives rise to the birth of new strings, represented by B(v.), and the

-18-

death of others, represented by D(v.). In the same sense, B(L) and D(L)

represent the "newly born" and the "dead" strings resulting from operating

with FM on a "live" fuzzy set of strings L. Finally, F(x) plays the role

of the population of the dead in a cemetery, with (33) representing the

addition of the newly deceased to that population.

As in a birth-and-death process, the population of "live" strings

can grow explosively if the productions P-,..., P are such that each
JL Xx

execution of FM results in significantly more "births" than "deaths."

This rather interesting aspect of fuzzy Markoff algorithms is not present

in conventional Markoff algorithms.

In the foregoing discussion, we have restricted ourselves to formu

lating what appears to be a natural extension of the notion of a Markoff

algorithm. Exploration of the properties of such algorithms will be

pursued in subsequent papers on this subject.

References

1. L. A. Zadeh, "Fuzzy Algorithms," Information and Control, vol. 12,

pp. 99-102, February 1968.

2. S. S. L. Chang and L. A. Zadeh, "Fuzzy Mapping and Control," Trans.

on Systems, Man and Cybernetics, vol. SMC-2, pp. 30-34, January 1972.

3. L. A. Zadeh, "Fuzzy Sets," Information and Control, vol. 8, pp. 338-

353, June 1965.

4. E. Santos, "Fuzzy Algorithms," Information and Control, vol. 17,

pp. 326-339, November 1970.

5. A. T. Berztiss, "Data Structures," Mc Graw-Hill Book Co., New York,

1971.

6. H. Galler and A. Perils, " A View of Programming Languages," Addison

Wesley, Reading, Mass., 1970.

-19-

f.A*M

MM

maximizing value
* &» x

f(x)

Fig. 1. The maximizing set for a positive-definite
reward function.

T>

«v

-9*

•i

f*= f-Supf -Inf f

^M
_ Supf-Hnf-f(x)

(x) =

«*• x

Sup f

Inf f

Fig. 2. The maximizing set for a non-definite reward
function.

Inf f

Sup f

Inf f

f*= f-Inf f

MMW s

«»- x

f-Inf f

Sup f-Inf f

Fig. 3. The maximizing set for a negative-definite
reward function.

/>

	Copyright notice 1972
	ERL-325

